(完整版)高中数学必修一函数大题(含详细解答)
高中数学必修一练习题(二)函数(含详细答案)

高中数学必修一复习练习(二)函数函数的概念班号姓名1.设集合 M= { x|0≤ x≤ 2} ,N={ y|0≤ y≤2} ,给出如下四个图形,其中能表示从集合M 到集合 N 的函数关系的是 ()2的定义域是 ()2. f(x)=x-xA .( -∞, 1]B . (0, 1)∪ (1,+∞ )C. (-∞, 0)∪ (0, 1] D .(0,+∞ )3.函数 y= x2-2x的定义域为 {0 , 1, 2, 3} ,那么其值域为 ()A .{ - 1,0, 3}B. {0 , 1, 2,3}C. { y|- 1≤ y≤3}D. { y|0≤ y≤ 3}4.若函数 f(x)= ax2- 1, a 为一个正常数,且f[f( -1)] =- 1,那么 a 的值是 ()A .1B . 0C.- 1D. 2x25.函数 y=x2+1(x∈R )的值域是 ________.16.设 f( x)=1-x,则 f[f( x)] = ________.7.求下列函数的定义域:4- x2(1) f(x)=2x-1- 3- x+ 1;(2) f(x)=x+1 .8.已知函数 f(x)=x21112 ,(1)求 f(2) + f(), f(3)+ f( )的值;(2) 求证 f(x)+ f( ) 是定值。
1+x23x函数的三种表示法1.已知函数 f ( x) 由下表给出,则A.1 B.2 C.3 2.下列图形中,不可能作为函数f( f(3)) 等于 (D . 4y= f(x) 图象的是())3.已知函数f(2x+ 1)= 3x+ 2,且f(a)=2,则 a 的值等于()A .8B.1C. 5D.-14.某航空公司规定,乘客所携带行李的重量(kg) 与其运费(元 )由右图所示的函数图象确定,那么乘客免费可携带行李的最大重量为A .50 kgB . 30 kg C. 19 kg D .40 kg5.如图,函数 f(x)的图象是曲线OAB,其中点 O, A,B 的坐标分别为1(0, 0), (1, 2), (3, 1),则 f(f(3)) 的值等于 ________.6.已知函数 f(x), g(x)分别由下表给出:x123x123f(x)131g(x)321则f( g(1)) = ________;满足 f(g(x))> g(f(x))的 x 的值是 ________.7. 2010年,广州成功举办了第17 届亚运会,在全部可售票中,定价等于或低于100 元的票数占58%.同时为鼓励中国青少年到现场观看比赛,特殊定价门票最低则只需 5 元.有些比赛项目则无需持票观看,如公路自行车、公路竞走和马拉松比赛均向观众免票开放.某同学打算购买x 张价格为20 元的门票,( x∈ {1 ,2,3,4,5}) ,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.★★分段函数及映射1.设 f : x → x 2是集合 A 到集合 B 的映射,如果B ={1 ,2} ,则 A ∩B 一定是 ()A .?B .? 或{1}C . {1}D . {1}2.已知映射 f :A → B ,即对任意 a ∈ A , f : a → |a|.其中集合 A = { - 3,- 2,- 1, 2,3, 4} ,集合 B 中的元素都是 A 中元素在映射 f 下的对应元素,则集合 B 中元素的个数是 ()A .4B . 5C .6D .7x - 1(x>0),3.已知 f(x)= 0( x =0),则 f ( f (- 2) ) = ()x + 5(x<0),A .-2B . 0C . 2D .-14.已知 f(x)= x - 5(x ≥ 6)),则 f(3) = (f ( x + 2) ( x < 6)A .2B . 3C . 4D . 55.已知集合 A =R , B = {( x , y)|x , y ∈R } , f :A → B 是从 A 到 B 的映射,f : x → (x + 1, x 2+ 1),求 B 中元素 (3,5)与 A 中 ________对应.2 4x 2, x ≤ 0, 则 f(4)= ________.6.已知函数 f(x)=f ( x - 2), x > 0,7.如图所示,函数 f(x)的图象是折线段 ABC ,其中 A 、 B 、C 的坐标分别为 (0, 4), (2, 0),(6,4). (1) 求 f(f(0)) 的值; (2) 求函数 f(x)的解析式.8.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内车距d 是车速 v(公里 /小时 )的平方与车身长S(米 )的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50 公里 /小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(S 为常数).高中数学必修一练习题(二)函数第4页,共8 页函数的单调性1.若函数 f(x)= 4x 2- kx - 8 在 [5, 8]上是单调函数,则 k 的取值范围是 ()A .( -∞, 40)B .[40 , 64]C . (-∞, 40]∪ [64,+∞ )D . [64 ,+∞ )2.已知函数 f(x)是 (-∞,+∞ )上的增函数,若 a ∈ R ,则 ()A .f(a)>f(2a)B .f(a 2)<f(a)C .f(a + 3)> f(a - 2)D . f(6)> f(a)3.函数 y = x 2+x + 1(x ∈ R )的递减区间是 ()A. - 1,+∞B .[- 1,+∞ )C. -∞,-1D . (-∞,+∞ )224.函数 f(x)在 (a , b)和 (c , d)都是增函数,若 x 1∈( a , b), x 2∈ (c , d),且 x 1<x 2 那么 ()A .f(x 1)<f(x 2)B .f(x 1)>f(x 2)C . f(x 1)= f(x 2)D .无法确定x 2+ 1( x ≥ 0)5.函数f(x)=- x 2+ 1的单调递增区间是 ________.( x<0)6.若 f( x)= 2x 2-mx + 3 在 (-∞ ,- 2]上为减函数,在 [- 2,+∞ ) 上为增函数,则 f(1) =.7.求证:函数 f(x)=-1- 1 在区间 (0,+∞ )上是单调增函数.x8.定义在 (-1, 1)上的函数 f(x) 满足 f(- x)=- f(x),且 f(1- a)+ f(1- 2a)<0.若 f(x)是 (-1, 1)上的减函数,求实数a 的取值范围.参考答案函数的概念1.选 D由函数的定义可以判断只有 D 正确.2.选 B由函数 f(x) 的解析式可知,x- x≠0x≥0,解得: x>0 且 x≠1.3.选 A由对应关系 y= x2- 2x 得, 0→0,1→ - 1, 2→0, 3→ 3,所以值域为 { - 1,0, 3} .4.选 A f( - 1)= a- 1, f[f( - 1)] =f(a - 1)=a(a-1)2- 1=- 1,所以 a=1.x2= 1-1,∴ y 的值域为 [0, 1).答案: [0, 1)5.解析: y=x2+1x2+11=1=x- 1x- 16.解析: f[f(x)] =1x .答案:x (x ≠0,且 x≠ 1)1- x- 1 1-1- x1- x2x- 1≥0,?17.解: (1)要使函数 f(x) 有意义,应有x≥2,?1≤x≤3. 3- x≥02x≤3∴f(x) 的定义域是1, 3 . 2(2)函数 f( x)的定义域是4- x2≥ 0,-2≤ x≤2,x? x? { x|- 2≤ x≤ 2,且 x≠ - 1} .x+ 1≠ 0x≠ - 1∴f(x) 的定义域是 [ - 2,- 1)∪ (- 1,2] .x2122( 1)28.解: (1)∵ f(x) =2+2= 1.1+ x2,∴f(2)+f( )=1+ 21)221+(2132(1)231)2= 1.f(3) + f(3)=1+32+1+(31x2+(1)22+12+ 1x=x=x= 1.(2)证明: f(x)+ f(x)=1+x21 2 1+x2x2+ 1x2+ 11+(x)函数的三种表示法1.选 A∵ f(3) = 4,∴ f(f(3)) = f(4)= 1.2.选 C从 y 与 x 的一一对应上来分析,C 项中,当 x ≤ 0 时,对应的 y 值有两个,不符合函数定义.t - 1t - 13.选 B 由 f(2x + 1)= 3x + 2,令 2x + 1= t ,∴ x = 2,∴ f(t) = 3· 2 + 2,∴ f(x) =3( x - 1)+ 2,∴ f(a)= 3( a -1)+ 2=2, ∴ a =1.224.选 C 由题图可知函数的图象是一条直线,所以可用一次函数表示,设其为y = kx + b ,将点 (30, 330)和 (40, 630)代入,可求得 k = 30, b =- 570, 所以 y = 30x -570,令 y =0,得 x =19.1= 1,∴ f( 15.解析:∵ f(3) = 1, f ( 3) f ( 3) )= f(1) =2. 答案: 26.解析:∵ g(1) =3,∴ f(g(1)) =f(3) = 1.x 1 2 3∴ f(g(x))> g(f( x))的解为 x = 2.答案:1 2f(g(x)) 1 3 17.解:解析法: y = 20x , x ∈ {1 , 2, 3, 4,5} .g(f(x))313列表法:x(张 )12 3 4 5 y(元 )2040 6080100图象法:8.解:因为函数 f(x) =- x2+ 2x + 3 的定义域为 R ,列表:x⋯ - 2 - 10 1 2 3 4 ⋯ y⋯- 5343- 5⋯描点,连线,得函数图象如图:(1)根据图象,容易发现f(0) = 3,f(1)= 4, f(3) = 0,所以 f(3)< f(0)< f(1) .(2)根据图象,容易发现当x 1<x 2<1 时,有 f(x 1)<f(x 2 ).★★分段函数及映射1.选 B当 x 2= 1 时, x = ±1;当 x 2= 2 时, x = ± 2.∴当 1∈ A 时, A ∩ B = {1} ;当 1?A 时, A ∩ B = ?,当 x = ± 2时,显然 A ∩B = ?. 2.选 A |- 3|= |3|, |-2|=|2|, |- 1|= 1, |4|= 4,且集合元素具有互异性,故 B 中共有 4 个元素,∴ B = {1,2, 3,4}.3.选 C f( -2) =- 2+ 5= 3, f(f( - 2))= f(3) = 3- 1=2.4.选 Af(3) =f(3 +2) = f(5) , f(5) = f(5 +2)= f(7) ,∴ f(7) = 7- 5= 2.故 f(3) = 2.3,11 x + 1= 2答案:5.解析:由题意知解得 x = .2x 2+ 1=5.246.解析: f(4) = f(2)= f(0) = 0. 答案: 07.解: (1)直接由图中观察,可得f(f(0)) = f(4)= 2.(2)设线段 AB 所对应的函数解析式为 y = kx + b , 将x =0, x = 2,4= b , ∴ b = 4,与代入,得∴ y =- 2x +4(0≤ x ≤ 2).y = 4y = 00= 2k + b. k =- 2. 同理,线段BC 所对应的函数解析式为y = x - 2 (2≤x ≤6).- 2x +4, 0≤x ≤ 2,∴ f(x) =x - 2, 2<x ≤6.8.解:根据题意可得d = kv2S. ∵ v = 50 时, d = S ,代入 d = kv2S 中,解得 k =1. ∴ d = 1v 2S.2500 2500S当 d =S时,可解得 v = 25 2( 0≤ v < 25 2)2. ∴ d =21 v 2S ( v ≥ 25 2)2500高中数学必修一练习题(二)函数第8页,共 8页函数的单调性k k k1.选 C 对称轴 x = 8,则 8≤ 5 或 8≥8,解得 k ≤40或 k ≥64.2.选 C因为函数 f(x) 是增函数,且 a + 3>a - 2,所以 f(a + 3)>f(a - 2).3.选 C1 31,在对称轴左侧单调递减,y = x2 +x + 1= (x +2)2+ 4.其对称轴为 x =- 2∴ x ≤ -1时单调递减.24.选 D 因为无法确定区间的位置关系.5.解析:作出函数 f(x) 的图象 (如图 ).由图象可知 f(x) 的增区间为 (- ∞ ,+ ∞ ).答案: (-∞,+∞ )6.解析: f(x) 的图象的对称轴为 m=- 2,∴ m =- 8.x = 4∴ f(x)= 2x 2+ 8x +3.∴ f(1) =2+ 8+ 3=13.答案: 137.证明:设 x 1, x 2 为区间 (0,+ ∞)上的任意两个值,且x 1<x 2,则 x 1-x 2<0, x 1x 2>0.因为 f(x 1)- f(x 2)= (- 1 - 1)- (- 1 - 1)= 1 - 1 =x 1 - x 2<0,即 f(x 1)<f(x 2).x 1 x 2 x 2 x 1 x 1x 21 故 f(x)=- x -1 在区间 (0 ,+ ∞ )上是单调增函数.8.解:由 f(1- a)+ f(1- 2a)<0,得 f(1 - a)<- f(1- 2a).∵ f(- x)=- f(x), x ∈ (- 1, 1),∴ f(1- a)<f(2a - 1),- 1<1- a<1,又 ∵ f(x)是 (-1, 1)上的减函数,∴ - 1<1 -2a<1,解得 0<a<2.31- a>2a - 1,2故实数 a 的取值范围是 (0, 3)。
高中数学函数必修一习题含答案

第2卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1)D .(-1,1)2.若2lg(x -2y )=lg x +lg y (x >0,y >0)则yx 的值为( ) A .4 B .1或14 C .1或4 D.143.下列函数中与函数y =x 相等的函数是( ) A .y =(x )2 B .y =x 2 C .y =2log 2xD .y =log 22x4.函数y =lg ⎝ ⎛⎭⎪⎫21+x -1的图象关于( )A .原点对称B .y 轴对称C .x 轴对称D .直线y =x 对称5.下列关系中正确的是( ) A .log 76<ln 12<log 3π B .log 3π<ln 12<log 76 C .ln 12<log 76<log 3πD .ln 12<log 3π<log 76 6.已知函数f (x )=⎩⎨⎧log 3x ,x >0,2x ,x ≤0.则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫127的值为( )A.18 B .4 C .2 D.147.函数y =ax 2+bx 与y =log ba x (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )8.若函数y =(m 2+2m -2)x m 为幂函数且在第一象限为增函数,则m 的值为( )A .1B .-3C .-1D .39.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )A .log 2xB .log 12x C.12x D .x 210.函数f (x )=log 12(x 2-3x +2)的递减区间为( ) A.⎝ ⎛⎭⎪⎫-∞,32 B .(1,2) C.⎝ ⎛⎭⎪⎫32,+∞ D .(2,+∞)11.函数f (x )=lg(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,34 B.⎣⎢⎡⎭⎪⎫0,34 C.⎣⎢⎡⎦⎥⎤0,34 D .(-∞,0]∪⎝ ⎛⎭⎪⎫34,+∞12.设a >0且a ≠1,函数f (x )=log a |ax 2-x |在[3,4]上是增函数,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫16,14∪(1,+∞) B.⎣⎢⎡⎦⎥⎤18,14∪(1,+∞) C.⎣⎢⎡⎭⎪⎫18,16∪(1,+∞) D.⎝ ⎛⎭⎪⎫0,14∪(1,+∞) 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,请把正确答案填在题中横线上) 13.计算27- 13+lg 0.01-ln e +3log 32=________.14.函数f (x )=lg(x -1)+5-x 的定义域为________.15.已知函数f (x )=log 3(x 2+ax +a +5),f (x )在区间(-∞,1)上是递减函数,则实数a 的取值范围为________.16.已知下列四个命题:①函数f (x )=2x 满足:对任意x 1,x 2∈R 且x 1≠x 2都有f ⎝ ⎛⎭⎪⎫x 1+x 22<12[f (x 1)+f (x 2)];②函数f (x )=log 2(x +1+x 2),g (x )=1+22x -1不都是奇函数;③若函数f (x )满足f (x -1)=-f (x +1),且f (1)=2,则f (7)=-2;④设x 1,x 2是关于x 的方程|log a x |=k (a >0且a ≠1)的两根,则x 1x 2=1.其中正确命题的序号是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)计算lg 25+lg 2×lg 500-12lg 125-log 29×log 32; (2)已知lg 2=a ,lg 3=b ,试用a ,b 表示log 125. 18.(本小题满分12分) 已知函数f (x )=lg(3x -3). (1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x +3),若不等式h (x )>t 无解,求实数t 的取值范围.19.(本小题满分12分)已知函数f (x )=x-2m 2+m +3(m ∈Z )为偶函数,且f (3)<f (5).(1)求m 的值,并确定f (x )的解析式;(2)若g (x )=log a [f (x )-2x ](a >0且a ≠1),求g (x )在(2,3]上的值域. 20.(本小题满分12分) 已知函数f (x )=lg kx -1x -1(k ∈R ).(1)若y =f (x )是奇函数,求k 的值,并求该函数的定义域; (2)若函数y =f (x )在[10,+∞)上是增函数,求k 的取值范围. 21.(本小题满分12分) 已知函数f (x )=log 31-x1-mx(m ≠1)是奇函数. (1)求函数y =f (x )的解析式;(2)设g (x )=1-x1-mx,用函数单调性的定义证明:函数y =g (x )在区间(-1,1)上单调递减;(3)解不等式f (t +3)<0. 22.(本小题满分12分)已知函数f (x )=log 4(4x +1)+kx (k ∈R )是偶函数. (1)求实数k 的值;(2)设g (x )=log 4(a ·2x +a ),若f (x )=g (x )有且只有一个实数解,求实数a 的取值范围.详解答案1.D 解析:由对数函数恒过定点(1,0)知,函数y =log a (x +2)+1的图象过定点(-1,1).2.B 解析:由对数的性质及运算知,2lg(x -2y )=lg x +lg y 化简为lg(x -2y )2=lg xy ,即(x -2y )2=xy ,解得x =y 或x =4y .所以y x 的值为1或14.故选B.3.D 解析:函数y =x 的定义域为R .A 中,y =(x )2定义域为[0,+∞);B 中,y =x 2=|x |;C 中,y =2log 2x =x ,定义域为(0,+∞);D 中,y =log 22x =x ,定义域为R .所以与函数y =x 相等的函数为y =log 22x .4.A 解析:函数y =lg ⎝ ⎛⎭⎪⎫21+x -1的定义域为(-1,1).又设f (x )=y =lg ⎝ ⎛⎭⎪⎫21+x -1=lg 1-x 1+x ,所以f (-x )=lg ⎝⎛⎭⎪⎫1+x 1-x =-lg ⎝ ⎛⎭⎪⎫1-x 1+x =-f (x ), 所以函数为奇函数,故关于原点对称.5.C 解析:由对数函数图象和性质,得0<log 76<1,ln 12<0,log 3π>1.所以ln 12<log 76<log 3π.故选C.6.A 解析:∵127>0∴f ⎝ ⎛⎭⎪⎫127=log 3127=-3,∵-3<0,f (-3)=2-3=18.故选A.7.D 解析:A 中,由y =ax 2+bx 的图象知,a >0,ba <0,由y =logb ax 知,ba >0,所以A 错;B 中,由y =ax 2+bx 的图象知,a <0,b a <0,由y =log b ax 知,ba >0,所以B错;C 中,由y =ax 2+bx 的图象知,a <0,-b a <-1,∴b a >1,由y =log b ax 知0<ba<1,所以C 错.故选D.8.A 解析:因为函数y =(m 2+2m -2)x m 为幂函数且在第一象限为增函数,所以⎩⎨⎧m 2+2m -2=1,m >0,解得m =1.故选A.9.B 解析:因为函数y =f (x )图象经过点(a ,a ),所以函数y =a x (a >0且a ≠1)过点(a ,a ),所以a =a a 即a =12,故f (x )=log 12x .10.D 解析:令t =x 2-3x +2,则当t =x 2-3x +2>0时,解得x ∈(-∞,1)∪(2,+∞).且t =x 2-3x +2在区间(-∞,1)上单调递减,在区间(2,+∞)上单调递增;又y =log 12t 在其定义域上为单调递减的,所以由复合函数的单调性知,f (x )=log 12(x 2-3x +2)单调递减区间是(2,+∞).11.B 解析:因为函数f (x )=lg(kx 2+4kx +3)的定义域为R ,所以kx 2+4kx +3>0,x ∈R 恒成立.①当k =0时,3>0恒成立,所以k =0适合题意.②⎩⎨⎧k >0,Δ<0,即0<k <34.由①②得0≤k <34.故选B.解题技巧:本题实际上考查了恒成立问题,解决本题的关键是让真数kx 2+4kx +3>0,x ∈R 恒成立.12.A 解析:令u (x )=|ax 2-x |,则y =log a u ,所以u (x )的图象如图所示.当a >1时,由复合函数的单调性可知,区间[3,4]落在⎝ ⎛⎦⎥⎤0,12a 或⎝ ⎛⎭⎪⎫1a ,+∞上,所以4≤12a 或1a <3,故有a >1;当0<a <1时,由复合函数的单调性可知,[3,4]⊆⎣⎢⎡⎭⎪⎫12a ,1a ,所以12a ≤3且1a >4,解得16≤a <14.综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫16,14∪(1,+∞).13.-16 解析:原式=13-2-12+2=-16.14.(1,5] 解析:要使函数f (x )=lg(x -1)+5-x 有意义,只需满足⎩⎨⎧x -1>0,5-x ≥0即可.解得1<x ≤5,所以函数f (x )=lg(x -1)+5-x 的定义域为(1,5]. 15.[-3,-2] 解析:令g (x )=x 2+ax +a +5,g (x )在x ∈⎝ ⎛⎦⎥⎤-∞,-a 2是减函数,x ∈⎣⎢⎡⎭⎪⎫-a 2,+∞是增函数.而f (x )=log 3t ,t ∈(0,+∞)是增函数.由复合函数的单调性,得⎩⎪⎨⎪⎧-a 2≥1,g (1)≥0,解得-3≤a ≤-2.解题技巧:本题主要考查了复合函数的单调性,解决本题的关键是在保证真数g (x )>0的条件下,求出g (x )的单调增区间.16.①③④ 解析:①∵指数函数的图象为凹函数,∴①正确;②函数f (x )=log 2(x +1+x 2)定义域为R ,且f (x )+f (-x )=log 2(x +1+x 2)+log 2(-x +1+x 2)=log 21=0,∴f (x )=-f (-x ),∴f (x )为奇函数.g (x )的定义域为(-∞,0)∪(0,+∞),且g (x )=1+22x -1=2x +12x -1,g (-x )=2-x +12-x -1=1+2x1-2x=-g (x ),∴g (x )是奇函数.②错误;③∵f (x -1)=-f (x +1),∴f (7)=f (6+1)=-f (6-1)=-f (5),f (5)=f (4+1)=-f (4-1)=-f (3),f (3)=-f (1),∴f (7)=-f (1),③正确;④|log a x |=k (a >0且a ≠1)的两根,则log a x 1=-log a x 2,∴log a x 1+log a x 2=0,∴x 1·x 2=1.∴④正确.17.解:(1)原式=lg 25+lg 5·lg 2+2lg 2+lg 5-log 39 =lg 5(lg 5+lg 2)+2lg 2+lg 5-2 =2(lg 5+lg 2)-2 =0.(2)log 125=lg 5lg 12=lg 102lg 3×4=lg 10-lg 2lg 3+lg 4=1-lg 2lg 3+2lg 2,lg 2=a ,lg 3=b ,log 125=1-lg 2lg 3+2lg 2=1-ab +2a.18.解:(1)由3x -3>0解得x >1,所以函数f (x )的定义域为(1,+∞). 因为(3x -3)∈(0,+∞),所以函数f (x )的值域为R .(2)因为h (x )=lg(3x -3)-lg(3x+3)=lg ⎝ ⎛⎭⎪⎫3x -33x+3 =lg ⎝ ⎛⎭⎪⎫1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数,所以函数的值域为(-∞,0).所以若不等式h (x )>t 无解,则t 的取值范围为[0,+∞).19.解:(1)因为f (3)<f (5),所以由幂函数的性质得,-2m 2+m +3>0,解得-1<m <32.因为m ∈Z ,所以m =0或m =1. 当m =0时,f (x )=x 3它不是偶函数. 当m =1时,f (x )=x 2是偶函数. 所以m =1,f (x )=x 2.(2)由(1)知g (x )=log a (x 2-2x ), 设t =x 2-2x ,x ∈(2,3],则t ∈(0,3],此时g (x )在(2,3]上的值域就是函数y =log a t 在t ∈(0,3]上的值域.当a >1时,y =log a t 在区间(0,3]上是增函数,所以y ∈(-∞,log a 3]; 当0<a <1时,y =log a t 在区间(0,3]上是减函数,所以y ∈[log a 3,+∞). 所以当a >1时,函数g (x )的值域为(-∞,log a 3];当0<a <1时,g (x )的值域为[log a 3,+∞).20.解:(1)因为f (x )是奇函数, ∴f (-x )=-f (x ),即lg -kx -1-x -1=-lg kx -1x -1,∴-kx -1-x -1=x -1kx -1,1-k 2x 2=1-x 2,∴k 2=1,k =±1, 而k =1不合题意舍去, ∴k =-1. 由-x -1x -1>0,得函数y =f (x )的定义域为(-1,1). (2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110. 又f (x )=lgkx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1, 故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2), 即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1, ∴k -1x 1-1<k -1x 2-1,∴(k -1)·⎝ ⎛⎭⎪⎫1x 1-1-1x 2-1<0, 又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1. 综上可知k ∈⎝ ⎛⎭⎪⎫110,1.解题技巧:本题主要考查了对数型函数的性质,解决本题的关键是充分利用好奇偶性和单调性.21.(1)解:由题意得f (-x )+f (x )=0对定义域中的x 都成立, 所以log 31+x 1+mx +log 31-x 1-mx =0,即1+x 1+mx ·1-x1-mx =1,所以1-x 2=1-m 2x 2对定义域中的x 都成立,所以m 2=1,又m ≠1,所以m =-1, 所以f (x )=log 31-x1+x.(2)证明:由(1)知,g (x )=1-x1+x,设x 1,x 2∈(-1,1),且x 1<x 2,则x 1+1>0,x 2+1>0,x 2-x 1>0. 因为g (x 1)-g (x 2)=2(x 2-x 1)(1+x 1)(1+x 2)>0,所以g (x 1)>g (x 2),所以函数y =g (x )在区间(-1,1)上单调递减. (3)解:函数y =f (x )的定义域为(-1,1),设x 1,x 2∈(-1,1),且x 1<x 2,由(2)得g (x 1)>g (x 2), 所以log 3g (x 1)>log 3g (x 2),即f (x 1)>f (x 2), 所以y =f (x )在区间(-1,1)上单调递减.因为f (t +3)<0=f (0),所以⎩⎪⎨⎪⎧-1<t +3<1,t +3>0,解得-3<t <-2.故不等式的解集为(-3,-2). 22.解:(1)由函数f (x )是偶函数可知f (x )=f (-x ), ∴log 4(4x +1)+kx =log 4(4-x +1)-kx , 化简得log 44x +14-x +1=-2kx ,即x =-2kx 对一切x ∈R 恒成立,∴k =-12.(2)函数f (x )与g (x )的图象有且只有一个公共点,即方程log 4(4x +1)-12x =log 4(a ·2x +a )有且只有一个实根,化简得方程2x +12x =a ·2x +a 有且只有一个实根,且a ·2x +a >0成立,则a >0.令t =2x >0,则(a -1)t 2+at -1=0有且只有一个正根. 设g (t )=(a -1)t 2+at -1,注意到g (0)=-1<0,所以 ①当a =1时,有t =1,符合题意;②当0<a <1时,g (t )图象开口向下,且g (0)=-1<0,则需满足⎩⎪⎨⎪⎧t 对称轴=-a 2(a -1)>0,Δ=0,此时有a =-2+22或a =-2-22(舍去);③当a >1时,又g (0)=-1,方程恒有一个正根与一个负根,符合题意.综上可知,a 的取值范围是{-2+22}∪[1,+∞).。
高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
高中数学必修一第四章指数函数与对数函数考点精题训练(带答案)

高中数学必修一第四章指数函数与对数函数考点精题训练单选题1、若2x=3,2y=4,则2x+y的值为()A.7B.10C.12D.34答案:C分析:根据指数幂的运算性质直接进行求解即可.因为2x=3,2y=4,所以2x+y=2x⋅2y=3×4=12,故选:C2、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,900=18,故至少需要志愿者18名.50故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.3、已知函数f(x)=a x−2+1(a>0,a≠1)恒过定点M(m,n),则函数g(x)=n−m x不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:C解析:利用指数函数的性质求出m,n,得出g(x)的解析式,从而得出结论.∵f(x)=a x−2+1(a>0,a≠1)恒过定点(2,2),∴m=n=2,∴g(x)=2−2x ,∴g(x)为减函数,且过点(0,1), ∴g(x)的函数图象不经过第三象限. 故选:C .4、设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增B .是奇函数,且在(−12,12)单调递减C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在(−∞,−12)单调递减答案:D分析:根据奇偶性的定义可判断出f (x )为奇函数,排除AC ;当x ∈(−12,12)时,利用函数单调性的性质可判断出f (x )单调递增,排除B ;当x ∈(−∞,−12)时,利用复合函数单调性可判断出f (x )单调递减,从而得到结果. 由f (x )=ln |2x +1|−ln |2x −1|得f (x )定义域为{x |x ≠±12},关于坐标原点对称,又f (−x )=ln |1−2x |−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f (x ), ∴f (x )为定义域上的奇函数,可排除AC ;当x ∈(−12,12)时,f (x )=ln (2x +1)−ln (1−2x ),∵y =ln (2x +1)在(−12,12)上单调递增,y =ln (1−2x )在(−12,12)上单调递减, ∴f (x )在(−12,12)上单调递增,排除B ;当x ∈(−∞,−12)时,f (x )=ln (−2x −1)−ln (1−2x )=ln 2x+12x−1=ln (1+22x−1), ∵μ=1+22x−1在(−∞,−12)上单调递减,f (μ)=lnμ在定义域内单调递增,根据复合函数单调性可知:f (x )在(−∞,−12)上单调递减,D 正确. 故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据f (−x )与f (x )的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.5、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12C .12,13,√3,54,D .13,12,54,√3, 答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .6、2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v =v 0⋅ln Mm 计算火箭的最大速度v(m /s ),其中v 0(m /s )是喷流相对速度,m(kg )是火箭(除推进剂外)的质量,M(kg )是推进剂与火箭质量的总和,Mm 称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge ≈0.434,lg2≈0.301)A .5790m /sB .6219m /sC .6442m /sD .6689m /s 答案:C分析:根据对数的换底公式运算可得结果.v =v 0 lnM m=1000×ln625=1000×4lg5lg e=1000×4(1−lg2)lg e≈6442m/s .故选:C .7、下列函数中是偶函数且在区间(0,+∞)单调递减的函数是( ) A .f(x)=1|x |B .f(x)=(13)xC .f(x)=lg |x |D .f(x)=x −13答案:A分析:利用幂指对函数的性质逐一分析给定四个函数的单调性和奇偶性,可得结论. 解:f(x)=1|x |是偶函数且在区间(0,+∞)上单调递减,满足条件;f(x)=(13)x是非奇非 偶函数,不满足条件;f(x)=lg |x |是偶函数,但在区间(0,+∞)上单调递增,不满足条件; f(x)=x −13是奇函数不是偶函数,不合题意. 故选:A .8、已知函数f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞) ,若函数g(x)=f(x)−m 恰有两个零点,则实数m 不可能...是( )A .−1B .0C .1D .2 答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m 的零点,转化为函数y =f(x)与函数y =m 的交点,数形结合即可求出参数m 的取值范围;解:因为f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞),画出函数图象如下所示, 函数g(x)=f(x)−m 的有两个零点,即方程g(x)=f(x)−m =0有两个实数根,即f(x)=m ,即函数y =f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.多选题9、已知函数f(x)=lg(x2+ax−a−1),下列结论中正确的是()A.当a=0时,f(x)的定义域为(−∞,−1)∪(1,+∞)B.f(x)一定有最小值C.当a=0时,f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是{a|a≥−4}答案:AC分析:A项代入参数,根据对数型函数定义域求法进行求解;B项为最值问题,问一定举出反例即可;C项代入参数值即可求出函数的值域;D项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.对于A ,当a =0时,f (x )=lg (x 2−1),令x 2−1>0,解得x <−1或x >1,则f (x )的定义域为(−∞,−1)∪(1,+∞),故A 正确;对于B 、C ,当a =0时,f (x )=lg (x 2−1)的值域为R ,无最小值,故B 错误,C 正确;对于D ,若f (x )在区间[2,+∞)上单调递增,则y =x 2+ax −a −1在[2,+∞)上单调递增,且当x =2时,y >0,则{−a2≤24+2a −a −1>0 ,解得a >−3,故D 错误. 故选:AC .10、已知n <m ,函数f (x )={log 12(1−x ),−1≤x ≤n22−|x−1|−3,n <x ≤m 的值域是[−1,1],则下列结论正确的是( ) A .当n =0时,m ∈(12,2]B .当n ∈[0,12)时,m ∈(n,2] C .当n ∈[0,12)时,m ∈[1,2]D .当n =12时,m ∈(12,2]答案:CD分析:先对分段函数去绝对值讨论单调性,作出y =log 12(1−x ),x ≥−1和y =22−|x−1|−3,x ≥−1的图象,n =0时,由图可得m 的范围,可判断A ;当n ∈[0,12)时先求出y =log 12(1−x ),−1≤x ≤n 的值域,进而可判断x ∈(n,m ]时,f (x )=1必有解,即可得m 的范围,可判断B ,C ;当n =12时,先计算f (x )=log 12(1−x )在[−1,12]上的值域,即可得y =22−|x−1|−3,n <x ≤m 的范围,进而可得m 的范围,可判断D .当x >1时,x −1>0,此时y =22−|x−1|−3=22−x+1−3=23−x −3单调递减,当−1<x <1时,x −1<0,此时y =22−|x−1|−3=22+x−1−3=21+x −3单调递增,所以y =22−|x−1|−3在(−1,1)上单调递增,在(1,+∞)上单调递减,所以当x =1时,y =22−|x−1|−3取得最大值,为22−3=1.作出y =log 12(1−x )与y =22−|x−1|−3在[−1,+∞)上的图象如图所示:对于A ,当n =0时,f (x )={log 12(1−x ),−1≤x ≤022−|x−1|−3,0<x ≤m,因为f (x )的值域为[−1,1],结合图象知m ∈[1,2],故A 不正确;对于B ,当n ∈[0,12),x ∈[−1,n ]时,1−x ∈[1−n,2],此时f (x )=log 12(1−x )∈[−1,log 12(1−n )],此时−1≤f (x )≤log 12(1−n )<1,因为f (x )的值域为[−1,1],则x ∈(n,m ]时,f (x )=1必有解,即22−|x−1|−3=1,解得x =1,由图知m ∈[1,2],故B 不正确,C 正确;对于D ,当n =12时,f (x )=log 12(1−x )在[−1,12]上单调递增,此时f (x )的最小值为f (−1)=log 122=−1,f (x )的最大值为f (12)=log 12(1−12)=1,要使f (x )的值域为[−1,1],由图知m ∈(12,2],故D 正确.故选:CD .小提示:关键点点睛:此题考查函数与方程的综合应用,考查分段函数的值域,解题的关键是根据题意作出f(x)的图象,结合图象逐个分析判断,考查数形结合的思想,属于较难题 11、已知正数x ,y ,z 满足3x =4y =6z ,则下列说法中正确的是( ) A .1x +12y=1zB .3x >4y >6zC .xy >2z 2D .x +y >(√32+√2)z答案:ACD分析:将已知条件转化为对数的形式,利用对数运算、商比较法、基本不等式等指数对选项进行分析,从而确定正确答案.正数x ,y ,z 满足3x =4y =6z ,设3x =4y =6z =t (t >1), 则x =log 3t ,y =log 4t ,z =log 6t .对于A ,1x +12y =log t 3+12log t 4=log t 6=1z ,故A 正确; 对于B ,3x =3log 3t ,4y =4log 4t ,6z =6log 6t , ∵3x 4y =3log 3t 4log 4t=34log 34<1,∴3x <4y , ∵4y 6z=4log 4t 6log 6t=23log 46<1,∴4y <6z ,∴3x <4y <6z ,故B 错误;对于C ,由1z=1x+12y>2√12xy(x ≠2y ),两边平方,可得xy >2z 2,故C 正确;对于D ,由xy >2z 2,可得x +y >2√xy >2√2z 2=2√2z >(√32+√2)z (x ≠y ),故D 正确. 故选:ACD 填空题12、里氏震级M 的计算公式为:M =lgA −lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为_________级. 答案:6分析:将A =1000,A 0=0.001代入等式M =lgA −lgA 0计算即可得解.将A =1000,A 0=0.001代入等式M =lgA −lgA 0得M =lg1000−lg0.001=lg106=6. 所以答案是:6.13、已知函数f (x )={2x +1,x ≤02,x >0 ,若f (a 2−2a )≤f (a −1),则实数a 的取值范围是_________.答案:[3−√52,+∞)分析:根据函数单调性分段处理即可得解.由题函数f (x )={2x +1,x ≤02,x >0在(−∞,0]单调递增,在(0,+∞)为常数函数,且f(0)=2若f(a2−2a)≤f(a−1)则a2−2a≤a−1≤0或a2−2a≤0≤a−1或{a 2−2a≥0a−1≥0则{a 2−3a+1≤0a≤1或{a2−2a≤00≤a−1或{a2−2a≥0a−1≥0解得:3−√52≤a≤1或1≤a≤2或a≥2,综上所述:a∈[3−√52,+∞)所以答案是:[3−√52,+∞)14、设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底数),则x2、y2的算术平均值的最小值为__________.答案:1分析:利用指数的运算性质可得出x+y=2,再利用基本不等式可求得结果.由已知条件可得e x⋅e y=e x+y=e2,所以,x+y=2,因为x>0,y>0,由基本不等式可得x2+y2≥2xy,即2(x2+y2)≥x2+y2+2xy=(x+y)2=4,所以,x2+y22≥1,当且仅当x=y=1时,等号成立.因此,x2、y2的算术平均值的最小值为1.所以答案是:1.解答题15、数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a>0,且a≠1,M>0,那么log a M n=nlog a M(n∈R);(2)请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值;(3)因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注lg2019≈3.305)答案:(1)见解析(2)1712(3)20192020的位数为6677解析:(1)根据指数与对数的转换证明即可.(2)根据对数的运算性质将真数均转换成指数幂的形式再化简即可.(3)分析lg20192020的值的范围再判断位数即可.(1)方法一:设x=log a M所以M=a x所以M n=(a x)n=a nx所以log a M n=nx=nlog a M,得证.方法二:设x=nlog a M所以xn=log a M所以a xn=M所以a x=M n所以x=log a M n所以nlog a M=log a M n方法三:因为a log a M n=M na nlog a M=(a log a M)n=M n 所以a log a M n=a nlog a M所以log a M n=nlog a M得证.(2)方法一:lg3 lg4(lg8lg9+lg16lg27)=lg3lg22(lg23lg32+lg24lg33)=lg32lg2(3lg22lg3+4lg23lg3) =lg32lg2⋅17lg26lg3=1712.方法二:lg3 lg4(lg8lg9+lg16lg27)=log43(log98+log2716) =log223(log3223+log3324)=12log23(32log32+43log32)=12log23⋅176log32=1712.(3)方法一:设10k<20192020<10k+1,k∈N∗所以k<lg20192020<k+1所以k<2020lg2019<k+1所以k<2020×3.305<k+1所以6675.1<k<6676.1因为k∈N∗所以k=6676所以20192020的位数为6677方法二:设20192020=N所以2020lg2019=lgN所以2020×3.305=lgN所以lgN=6676.1所以N=106676.1=100.1×106676因为1<100.1<10,所以N有6677位数,即20192020的位数为6677小提示:本题主要考查了对数的运算以及利用对数的运算求解数字位数的问题,需要取对数分析对数值进行分析,属于中档题.。
高中数学必修一函数大题(含详细解答)

高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像.(3)当0a b <<时,若()()f a f b =,求ab 的取值范围.(4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。
高中数学必修一《对数函数》经典习题(含详细解析)

高中数学必修一《对数函数》经典习题(含详细解析)一、选择题1.已知f=log3x,则f,f,f(2)的大小是( )A.f>f>f(2)B.f<f<f(2)C.f>f(2)>fD.f(2)>f>f2若log a2<log b2<0,则下列结论正确的是( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>13函数y=2+log2x(x≥1)的值域为( )A.(2,+∞)B.(-∞,2)C.[2,+∞)D.[3,+∞)4函数y=lo x,x∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]5.不等式log2(2x+3)>log2(5x-6)的解集为( )A.(-∞,3)B.C. D.6函数f(x)=lg是( )A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数7设a=log32,b=log52,c=log23,则( )A.a>c>bB.b>c>aC.c>b>aD.c>a>b8设a=log54,b=(log53)2,c=log45,则( )A.a<c<bB.b<c<aC.a<b<cD.b<a<c9.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.410.若log a=log a,且|log b a|=-log b a,则a,b满足的关系式是( )A.a>1,且b>1B.a>1,且0<b<1C.0<a<1,且b>1D.0<a<1,且0<b<1二、填空题11若函数y=log3x的定义域是[1,27],则值域是.12已知实数a,b满足lo a=lo b,下列五个关系式:①a>b>1,②0<b<a<1,③b>a>1,④0<a<b<1,⑤a=b.其中可能成立的关系式序号为.13log a<1,则a的取值范围是.14不等式12log xx<的解集是.15函数y=log0.8(-x2+4x)的递减区间是.三、解答题16.比较下列各组值的大小.(1)log3π,log20.8.(2)1.10.9,log1.10.9,log0.70.8.(3)log53,log63,log73.17已知函数f(x)=+的定义域为A.(1)求集合A.(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.18已知函数f=log2(2+x2).(1)判断f的奇偶性.(2)求函数f的值域.19已知函数f(x)=log a(1-x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域.(2)若函数f(x)的最小值为-4,求a的值.参考答案与解析1【解析】选 B.由函数f=log3x在(0,+∞)是单调增函数,且<<2,知f()<f()<f(2).2【解析】选B.log a2<log b2<0,如图所示,所以0<b<a<1.6【解析】选A.因为f(-x)=lg=lg=lg=lg=-lg=-f(x),所以f(-x)=-f(x),又函数的定义域为R,故该函数为奇函数.7【解析】选D.因为log32=<1,log52=<1,又log23>1,所以c最大.又1<log23<log25,所以>,即a>b,所以c>a>b.8【解析】选D.a=log54<1,log53<log54<1,b=(log53)2<log53<a,c=log45>1,故b<a<c.9【解析】选 B.无论a>1还是0<a<1,f(x)在[0,1]上都是单调函数,所以a=(a0+log a1)+(a+log a2),所以a=1+a+log a2,所以log a2=-1,所以a=.10【解析】选C.因为log a=log a,所以log a>0,所以0<a<1.因为|log b a|=-log b a,所以log b a<0,b>1.11【解析】因为1≤x≤27,所以log31≤log3x≤log327=3.所以值域为[0,3].答案:[0,3]12【解析】当a=b=1或a=,b=或a=2,b=3时,都有lo a=lo b.故②③⑤均可能成立.答案:②③⑤13【解析】①当a>1时,log a<0,故满足log a<1;②当0<a<1时,log a>0,所以log a<log a a,所以0<a<,综上①②,a∈∪(1,+∞).答案:∪(1,+∞)14【解析】因为<=x-1,且x>0.①当0<x<1时,由原不等式可得,lo x>-1,所以x<2,所以0<x<1;②当x>1时,由原不等式可得,lo x<-1,x>2,综上可得,不等式的解集为{x|0<x<1或x>2}.答案:(0,1)∪(2,+∞)15【解析】因为t=-x2+4x的递增区间为(-∞,2].但当x≤0时,t≤0.故只能取(0,2],即为f(x)的递减区间.答案:(0,2]16【解析】(1)因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.(2)因为1.10.9>1.10=1,log1.10.9<log1.11=0,0=log0.71<log0.70.8<log0.70.7=1,所以1.10.9>log0.70.8>log1.10.9.(3)因为0<log35<log36<log37,所以log53>log63>log73.17【解析】(1)所以所以≤x≤4,所以集合A=.(2)设t=log2x,因为x∈,所以t∈[-1,2],所以y=t2-2t-1,t∈[-1,2].因为y=t2-2t-1的对称轴为t=1∈[-1,2],所以当t=1时,y有最小值-2.所以当t=-1时,y有最大值2.所以当x=2时,g(x)的最小值为-2.当x=时,g(x)的最大值为2.18【解析】(1)因为2+x2>0对任意x∈R都成立,所以函数f=log2(2+x2)的定义域是R.因为f(-x)=log2[2+(-x)2]=log2(2+x2)=f(x),所以函数f(x)是偶函数.(2)由x∈R得2+x2≥2,所以log2(2+x2)≥log22=1,即函数f=log2(2+x2)的值域为[1,+∞).19【解析】(1)要使函数有意义,则有解之得-3<x<1,所以函数的定义域为(-3,1).(2)函数可化为:f(x)=log a[(1-x)(x+3)]=log a(-x2-2x+3)=log a[-(x+1)2+4],因为-3<x<1,所以0<-(x+1)2+4≤4.因为0<a<1,所以log a[-(x+1)2+4]≥log a4,即f(x)min=log a4,由log a4=-4得a-4=4,所以a==.3【解析】选C.设y=2+t,t=log2x(x≥1),因为t=log2x在[1,+∞)上是单调增函数,所以t≥log21=0.所以y=2+log2x(x≥1)的值域为[2,+∞).4【解析】选A.因为0<x≤8,所以lo x≥-3,故选A.5【解析】选D.原不等式等价于解得<x<3,所以原不等式的解集为.。
完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像.(3)当0a b <<时,若()()f a f b =,求ab 的取值范围.(4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。
6、设bx ax x f +=2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。
7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。
(1)已知函数)0()(2≠-+=a b bx ax x f 有不动点(1,1)和(-3,-3)求a 与b 的值; (2)若对于任意实数b ,函数)0()(2≠-+=a b bx ax x f 总有两个相异的不动点,求a 的取值范围;(3)若定义在实数集R 上的奇函数)(x g 存在(有限的)n 个不动点,求证:n 必为奇数。
8.设函数)0(1)(≠+=x xx x f ,的图象为1C 、1C 关于点A (2,1)的对称的图象为2C ,2C 对应的函数为)(x g .(1)求函数)(x g y =的解析式;(2)若直线b y =与2C 只有一个交点,求b 的值并求出交点的坐标.9.设定义在),0(+∞上的函数)(x f 满足下面三个条件:①对于任意正实数a 、b ,都有()()()1f a b f a f b ⋅=+-; ②(2)0f =;③当1>x 时,总有()1f x <. (1)求)21()1(f f 及的值;(2)求证:),0()(+∞在x f 上是减函数.10. 已知函数)(x f 是定义在[]2,2-上的奇函数,当)0,2[-∈x 时,321)(x tx x f -=(t 为常数)。
(1)求函数)(x f 的解析式;(2)当]6,2[∈t 时,求)(x f 在[]0,2-上的最小值,及取得最小值时的x ,并猜想)(x f 在[]2,0上的单调递增区间(不必证明);(3)当9≥t 时,证明:函数)(x f y =的图象上至少有一个点落在直线14=y 上。
11.记函数()272++-=x x x f 的定义域为A ,()()()[]()R a b ax b x x g ∈>+-=,012lg 的定义域为B ,(1)求A : (2)若B A ⊆,求a 、b 的取值范围12、设()()1,011≠>-+=a a a a x f xx 。
(1)求()x f 的反函数()x f 1-:(2)讨论()x f1-在()∞+.1上的单调性,并加以证明:(3)令()x x g a log 1+=,当[]()()n m n m <+∞⊂,1,时,()x f1-在[]n m ,上的值域是()()[]m g n g ,,求a 的取值范围。
13.集合A 是由具备下列性质的函数)(x f 组成的:(1) 函数)(x f 的定义域是[0,)+∞; (2) 函数)(x f 的值域是[2,4)-;(3) 函数)(x f 在[0,)+∞上是增函数.试分别探究下列两小题:(Ⅰ)判断函数1()2(0)f x x =≥,及21()46()(0)2x f x x =-⋅≥是否属于集合A ?并简要说明理由.(Ⅱ)对于(I )中你认为属于集合A 的函数)(x f ,不等式)1(2)2()(+<++x f x f x f ,是否对于任意的0≥x 总成立?若不成立,为什么?若成立,请证明你的结论.14、设函数f(x)=ax 2+bx+1(a,b 为实数),F(x)=⎩⎨⎧<->)0()()0()(x x f x x f(1)若f(-1)=0且对任意实数x 均有f(x)0≥成立,求F(x)表达式。
(2)在(1)的条件下,当x []2,2-∈时,g(x)=f(x)-kx 是单调函数,求实数k 的取值范围。
(3)(理)设m>0,n<0且m+n>0,a>0且f(x)为偶函数,求证:F(m)+F(n)>0。
15.函数f(x)=bax x+(a ,b 是非零实常数),满足f(2)=1,且方程f(x)=x 有且仅有一个解。
(1)求a 、b 的值;(2)是否存在实常数m ,使得对定义域中任意的x ,f(x)+f(m –x)=4恒成立?为什么? (3)在直角坐标系中,求定点A(–3,1)到此函数图象上任意一点P 的距离|AP|的最小值。
函数大题专练答案1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
解:(1)当0k =时,(,4)A =-∞;当0k >且2k ≠时,4(,4)(,)A k k=-∞++∞U ; 当2k =时,(,4)(4,)A =-∞+∞U ;(不单独分析2k =时的情况不扣分)当0k <时,4(,4)A k k=+。
(2) 由(1)知:当0k ≥时,集合B 中的元素的个数无限;当0k <时,集合B 中的元素的个数有限,此时集合B 为有限集。
因为44k k+≤-,当且仅当2k =-时取等号,所以当2k =-时,集合B 的元素个数最少。
此时()4,4A =-,故集合{}3,2,1,0,1,2,3B =---。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
解:(1) 当[]0,1x ∈时,总有2g x x 0()=≥,满足①,当12120,0,1x x x x ≥≥+≤时,22221212121212g x x x x 2x x x x g x g x +=++≥+=+()()(),满足② (2)若a 1<时,h 0a 10()=-<不满足①,所以不是G 函数;若a 1≥时,h x ()在x 01[,]∈上是增函数,则h x 0≥(),满足①由1212h x x h x h x +≥+()()() ,得1212x x x x a 21a 21a 21+⋅-≥⋅-+⋅-,即12xx a 121211[()()]---≤,因为 12120,0,1x x x x ≥≥+≤所以 1x0211≤-≤ 2x0211≤-≤ 1x 与2x 不同时等于1 11xx021211()()∴≤--<11x x 1a 12121()()∴≤---当12x x 0==时,11x x 1112121min ()()()=--- a 1∴≤, 综合上述:a 1{}∈(3)根据(2)知: a=1,方程为xx42m -=,由x 02110x 1⎧≤-≤⎨≤≤⎩ 得 x 01∈[,] 令x 2t 12=∈[,],则2211m t t t 24=-=--()由图形可知:当m 02∈[,]时,有一解;当m 02∈-∞⋃+∞(,)(,)时,方程无解。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围.[解] (1)当0<x 时,0)(=x f ;当0≥x 时,x x x f 212)(-=. 由条件可知 2212=-x x ,即 012222=-⋅-x x , 解得 212±=x .02>x Θ,()21log 2+=∴x .(2)当]2,1[∈t 时,021*******≥⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-t t tt t m , 即 ()()121242--≥-t t m .0122>-t Θ, ∴ ()122+-≥t m . ()2[2,3],12[65,17]t t ∈∴-+∈--Q ,故m 的取值范围是[17,)-+∞.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像.(3)当0a b <<时,若()()f a f b =,求ab 的取值范围.(4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.[解](1)当(,0)x ∈-∞时,11()()11f x f x x x=-=-=+-. (2))(x f 的大致图像如下:.(3)因为0a b <<,所以()()f a f b =2211111111112a b a b a b ⎛⎫⎛⎫⇔-=-⇔-=-⇔+= ⎪ ⎪⎝⎭⎝⎭,2a b ab ⇔+=>解得ab 的取值范围是(1,)+∞. (4)由(2),对于方程()f x a =,当0a =时,方程有3个根;当01a <<时,方程有4个根,当1a ≥时,方程有2个根;当0a <时,方程无解.…15分所以,要使关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,关于)(x f 的方程0)()(2=++c x bf x f 有一个在区间(0,1)的正实数根和一个等于零的根。