光学显微镜样品制备方法(高分子研究方法)

合集下载

近场光学显微镜的使用技巧与调试方法

近场光学显微镜的使用技巧与调试方法

近场光学显微镜的使用技巧与调试方法近场光学显微镜(SNOM)是一种基于近场效应的高分辨显微镜,能够实现纳米尺度下的图像采集和表面分析。

本文章将介绍近场光学显微镜的使用技巧与调试方法,希望能为研究人员提供一些帮助。

一、近场光学显微镜的基本原理近场光学显微镜是利用近场效应实现高分辨率成像的一种显微镜。

在SNOM 中,光束通过探测器下方的孔径探针(探头)聚焦到样品表面,形成一个极小的光斑。

样品表面的结构或性质会改变光场的分布情况,这些信息被探针收集并转换成电信号,通过信号处理可以得到高分辨率的图像。

二、近场光学显微镜的使用技巧1. 环境控制:由于近场光学显微镜对环境变化敏感,使用时需确保实验室内的温度、湿度和气流等环境因素的稳定。

特别是对于高分辨率的成像,环境的微小变化可能会对结果产生影响。

2. 探针的选择:探针是近场光学显微镜最关键的部件之一。

在使用时应根据样品的性质和实验要求选择合适的探针,如金属探针、光纤探针等。

另外,探针的制备和处理也需要注意,保证探针的清洁和尖端的光滑度。

3. 样品的准备:样品的制备对于近场光学显微镜的成像结果至关重要。

表面的平整度和洁净度都会影响成像的质量。

在样品准备时应避免产生尘埃或杂质污染,可采用特殊的清洁方法,如超声波洗涤或离子注入。

4. 成像参数的调整:在进行成像前,需要调整一些参数以获得最佳的成像效果。

如探针和样品之间的距离(探测高度)、激光功率、扫描速度等。

这些参数的调整要根据具体的样品特性和要求进行优化,可通过观察成像结果实时调整。

三、近场光学显微镜的调试方法1. 光纤对准:光纤的对准是近场光学显微镜调试的关键步骤之一。

要确保光纤的耦合效率和光束聚焦质量,可通过光功率的最大输出以及成像结果的清晰度来评估调试效果。

2. 探针调试:探针的调试对于获得高质量的近场光学成像至关重要。

可通过调整探针的位置、旋转角度和倾斜角度等来优化探针与样品的接触状态,以获得最佳成像效果。

相差显微镜法观察高分子合金的织态结构

相差显微镜法观察高分子合金的织态结构

相差显微镜法观察高分子合金的织态结构从传统上说,合金是指金属合金,即在一种金属元素基础上,加入其他元素,组成具有金属特性的新材料。

所谓高分子合金是由两种或两种以上高分子材料构成的复合体系,并非指真正含金属元素的高分子化合物,而是指不同种类的高聚物,通过物理或化学方法共混,以形成具有所需性能的高分子混合物新材料。

在高分子合金中,不同高分子的特性可以得到优化组合,从而显著改进材料的性能,或赋予材料原不具有的性能。

高分子合金制备简易,并且随着组分的改变,可以得到多样化的物理性能。

制备高分子合金的方法主要分化学方法和物理方法两大类。

其中物理方法比较简单,如溶液共混法,即将两种以上高分子溶液混合在一起,然后蒸去溶剂即可以得到混合均匀的高分子合金;熔融共混法,即将两种以上高分子加热到其熔融温度以上,采用机械搅拌的方法让其混合均匀,然后冷却即得到高分子合金。

化学方法主要有共聚、接枝和嵌段等方法;所谓共聚是指在合成过程中引入第二、第三单体,这样聚合得到主链含有不同单体重复单元的聚合物;接枝是指在某一聚合物主链上,采用共价键联接的方法将另一种聚合物的链段键接上去,形成了一种带支链结构的聚合物;嵌段聚合物指两种以上不同聚合物的线性链间有共价键相连而形成的含多组分聚合物。

表1总结了一些高分子合金的制备方法。

与绝大多数金属合金都是互容的均相体系不同的是,大多数高分子合金都是互不相容的非均相体系,而组分的相容性从根本上制约着合金的形态结构,是决定材料性能的关键。

如何改善共混物组分间的相容性,进而进行相态设计和控制,是获得有实用价值的高性能高分子合金材料的一个重要课题。

对合金的织态结构形态、尺寸的研究对制备高性能高分子合金具有重要的意义。

高分子合金织态结构的研究方法主要有电子显微镜法、光学显微镜法、光散射法和中子散射法等。

光学显微镜法最为简单易行和直观,其中相差显微镜(也称相衬显微镜)适合于观察0.5mm以上的相态结构。

1. 目的要求了解相差显微镜的原理和使用方法。

复习思考题及答案1用光学显微镜观察细菌时为什么一般都需要

复习思考题及答案1用光学显微镜观察细菌时为什么一般都需要

第四章复习思考题及答案1. 用光学显微镜观察细菌时, 为什么一般都需要先将细菌进行染色?制作细菌染色标本片时,为什么必须先对涂在载玻片上的细菌样品进行固定?固定时应注意什么问题?答:由于细菌细胞小且无色透明, 直接用光学显微镜观察时, 菌体和背景反差很小,难以看清细菌的形态, 更不易识别某些细胞结构, 因此,一般都需要先将细菌进行染色, 借助于颜色的反衬作用, 以提高观察样品不同部位的反差, 能更清楚地进行观察和研究。

此外,某些染色法还可用于鉴别不同类群的细菌, 故细菌的染色是工业微生物学实验中重要的基本技术。

染色前必须先对涂在载玻片上的细菌样品进行固定,固定的作用一是杀死细菌并使菌体粘附于玻片上, 一是增加菌体对染料的亲和力。

一般常用酒精灯火焰加热固定的方法,但应注意防止细胞膨胀和收缩,尽量保持细胞原形。

2. 革兰氏染色法包括哪几个基本步骤?你认为影响革兰氏染色结果正确性的关键环节是什么?答:革兰氏染色法的基本步骤是: 先用初染剂草酸铵结晶紫进行初染, 再用媒染剂碘液媒染,然后用脱色剂乙醇处理, 最后用复染剂石炭酸复红或番红进行复染。

经此法染色后, 若细菌不被酒精脱色,能保持结晶紫与碘的复合物而呈现蓝紫色,则该菌称为革兰氏阳性细菌(G+);反之,若细菌能被酒精脱色,而被复红或番红复染成红色, 则称之为革兰氏阴性细菌(G-)。

被普遍采用的经Hucker氏改良的革兰氏染色法, 其操作步骤为:制片→初染→媒染→脱色→复染→干燥→观察。

影响革兰氏染色结果正确性的关键环节是用脱色剂乙醇处理, 为了保证革兰氏染色结果的正确性, 必须控制乙醇脱色时间, 尽量采用规范的染色方法。

3. 放线菌、酵母菌和霉菌显微标本片的制作分别可采用哪些方法?各有什么特点?答:放线菌与细菌的单染色一样,可用石炭酸复红或吕氏美兰等染料着色后,在显微镜下观察其形态。

但为了观察放线菌在自然生长状态下的形态特征, 可应用各种培养、制片和观察方法, 其中印片法、插片法和玻璃纸法是三种常用的方法。

光学金相显微技术

光学金相显微技术

光学金相显微技术光学金相显微技术是一种在材料科学和工程中广泛应用的分析方法,它利用光学显微镜观察和分析材料的显微结构和组织特征。

通过该技术,人们可以深入了解材料的晶体结构、晶界、晶体缺陷、相组成等信息,从而对材料的性能和性质进行评估和优化。

光学金相显微技术主要包括样品制备、显微观察和图像分析三个步骤。

首先,对于不同的材料,我们需要选择适当的方法来制备样品。

常见的制备方法包括金相法、腐蚀法、切片法等。

其中,金相法是一种常用的方法,它通过对材料进行精细的研磨和抛光,使其表面得到光洁度较高的状态,从而方便后续的显微观察。

在样品制备完成后,我们就可以利用光学显微镜对样品进行观察了。

光学显微镜是一种使用可见光进行观察的显微镜,它具有高分辨率和高放大倍数的特点。

通过调节光学显微镜的焦距、放大倍数和光源亮度等参数,我们可以得到清晰、细致的样品显微结构图像。

在显微观察的过程中,我们可以使用不同的光学技术来提取样品的信息。

例如,偏光显微镜可以通过观察样品在偏振光下的行为来研究样品的晶体结构和晶体缺陷;差示显微镜可以通过观察样品在不同焦平面上的反射光强度差异来研究样品的相组成和晶粒大小等。

这些技术都能够提供丰富的信息,帮助我们深入了解材料的微观结构和性质。

除了显微观察外,图像分析也是光学金相显微技术的重要环节。

通过对显微图像的数字化处理和分析,我们可以得到更加准确和定量的结果。

常见的图像分析方法包括图像增强、图像滤波、图像分割等。

这些方法可以帮助我们提取图像中的特征信息,并进行图像量化和统计分析,从而得到更加全面和准确的结果。

光学金相显微技术在材料科学和工程中具有广泛的应用。

例如,在金属材料方面,这一技术可以用来观察和分析材料的晶粒大小、晶界分布和晶体缺陷等信息,从而评估材料的力学性能和耐蚀性能。

在陶瓷材料方面,这一技术可以用来观察和分析材料的相组成、孔隙结构和晶体取向等信息,从而评估材料的热导率和电导率等性能。

总的来说,光学金相显微技术是一种非常重要和有效的材料分析方法。

TEM制样方法及详细步骤

TEM制样方法及详细步骤

由透射电镜的工作原理可知,供透射电镜分析的样品必须对电子束是透明的;此外,所制得的样品还必须可以真实反映所分析材料的某些特征,因此,样品制备在透射电子显微分析技术中占有相当重要的位置,也是一个涉及面很广的题目。

大体上透射电镜样品可分为间接样品和直接样品。

我们下面将对间接样品的制备作简单介绍。

间接样品“复型”可以分为五步来进行:第一步,在拟分析的样品表面滴一滴丙酮,将醋酸纤维素薄膜即A.C.纸覆盖其上,适当按压形成不夹气泡的一级复型;第二步,待上述一级复型干燥后,小心地将其剥离,并将复制面向上平整地固定在玻璃片上;第三步,将固定好复型地玻璃片连同一白瓷片置于真空镀膜室中,以垂直方向喷涂碳,以制备由塑料和碳膜构成地“复合复型”。

白色瓷片表面在喷碳过程中颜色的变化可以表示碳膜的厚度。

第四步,将复合复型上要分析的区域剪为略小于样品台钢网的小方块后,使碳膜面朝里,贴在事先熔在干净玻璃片上的低熔点石蜡层上,石蜡液层冷凝后即把复合膜块固定在玻璃片上。

将该玻璃片放入丙酮液中,复合复型的A.C.纸在丙酮中将逐渐被溶解,同时适当加热以溶解石蜡。

最后,待AC纸和石蜡溶解干净后,碳膜(即二级复型)将漂浮在丙酮液中,将其转移至清洁的丙酮液中清洗后,再转移至盛蒸馏水的器皿中。

此时,由于水的表面力,碳膜会平展地漂浮在水面,用样品铜网将其捞起,干燥后即可置于电镜下观察。

透射电镜的样品制备是一项较复杂的技术,它对能否得到好的TEM像或衍射谱是至关重要的.投射电镜是利用样品对如射电子的散射能力的差异而形成衬度的,这要求制备出对电子束”透明”的样品,并要求保持高的分辨率和不失真.电子束穿透固体样品的能力主要取决加速电压,样品的厚度以及物质的原子序数.一般来说,加速电压愈高,原子序数愈低,电子束可穿透的样品厚度就愈大.对于100~200KV的透射电镜,要求样品的厚度为50~100nm,做透射电镜高分辨率,样品厚度要求约15nm(越薄越好).透射电镜样品可分为:粉末样品,薄膜样品,金属试样的表面复型.不同的样品有不同的制备手段,下面分别介绍各种样品的制备.(1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚于100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可.(2)薄膜样品绝大多数的TEM样品是薄膜样品,薄膜样品可做静态观察,如金相组织;析出相形态;分布,结构及与基体取向关系,错位类型,分布,密度等;也可以做动态原位观察,如相变,形变,位错运动及其相互作用.制备薄膜样品分四个步骤:a将样品切成薄片(厚度100~200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料(如Si,GaAs,NaCl,MgO)可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直接切割.b切割成φ3mm的圆片用超声钻或puncher将φ3mm薄圆片从材料薄片上切下来.c预减薄使用凹坑减薄仪可将薄圆片磨至10μm厚.用研磨机磨(或使用砂纸),可磨至几十μm.d终减薄对于导电的样品如金属,采用电解抛光减薄,这方法速度快,没有机械损伤,但可能改变样品表面的电子状态,使用的化学试剂可能对身体有害.对非导电的样品如瓷,采用离子减薄,用离子轰击样品表面,使样品材料溅射出来,以达到减薄的目的.离子减薄要调整电压,角度,选用适合的参数,选得好,减薄速度快.离子减薄会产生热,使样品温度升至100~300度,故最好用液氮冷却样品.样品冷却对不耐高温的材料是非常重要的,否则材料会发生相变,样品冷却还可以减少污染和表面损伤.离子减薄是一种普适的减薄方法,可用于瓷,复合物,半导体,合金,界面样品,甚至纤维和粉末样品也可以离子减薄(把他们用树脂拌合后,装入φ3mm金属管,切片后,再离子减薄).也可以聚集离子术(FIB)对指定区域做离子减薄,但FIB很贵.对于软的生物和高分子样品,可用超薄切片方法将样品切成小于100nm的薄膜.这种技术的特点是样品不会改变,缺点是会引进形变.(3)金属试样的表面复型即把准备观察的试样的表面形貌(表面显微组织浮凸)用适宜的非晶薄膜复制下来,然后对这个复制膜(叫做复型)进行透射电镜观察与分析.复型适用于金相组织,断口形貌,形变条纹,磨损表面,第二相形态及分布,萃取和结构分析等.制备复型的材料本身必须是”无结构”的,即要求复型材料在高倍成像时也不显示其本身的任何结构细节,这样就不致干扰被复制表面的形貌观察和分析.常用的复型材料有塑料,真空蒸发沉积炭膜(均为非晶态物质).常用的复型有:a塑料一级复型,分辨率为10~20nm;b炭一级复型,分辨率2nm,c塑料-炭二级复型,分辨率10~20nm;d萃取复型,可以把要分析的粒子从基体中提取出来,这种分析时不会受到基体的干扰.除萃取复型外,其余复型只不过是试样表面的一个复制品,只能提供有关表面形貌的信息,而不能提供部组成相,晶体结构,微区化学成分等本质信息,因而用复型做电子显微分析有很大的局限性,目前,除萃取复型外,其他复型用的很少.TRANSMISSION ELECTRON MICROSCOPE利用电子,一般是利用电子透镜聚焦的电子束,形成放大倍数很高的物体图像的设备。

材料科学与工程基础实验指导书

材料科学与工程基础实验指导书

3
实验一
普通光学金相显微镜的构造及使用
一、实验目的 1.了解普通光学显微镜的构造,各主要部件及元件的效用。 2.掌握正确的使用操作规程及维护方法。 二、金相显微镜的原理及使用 1.原理 正常人眼看物体时, 最适宜的距离大约在 250mm 左右, 在这一距离眼睛可以很好地区 分物体的细微部分而不易疲劳,这个距离称为“明视距离” 。物体上的两点要能被眼睛分辨 清楚,必须使它们的像落在人眼视网膜的两个不同的感光细胞上,从眼睛的光心到物体两 端所引的两条直线的夹角叫视角,人眼可分辨清楚的最小视角为 2′∼4′,在 250mm 处能分 辨的最小距离约 0.15∼0.30mm。为了增大视角,就在物体与眼睛间置一放大镜,其放大倍 数为:
M =
250 f
f 为放大镜的焦距,从上式可见,f 愈小、M 愈大,但实际上不可能用焦距很短的放大镜 来观察。透镜的曲率半径太小,眼睛所观察 的范围就更小,且象差愈显著,所以放大镜 一般在 20 倍以下, 若要再提高放大倍数以观 察更细微的物体,就必须用显微镜。 显微镜通过物镜及目镜两次放大而得到 倍数较高的放大像。图 1-1 是它的放大原理 图。 若将试样置于物镜下方的焦点 F1 外少 许,则物镜将试样上被观察的物体(以箭头 所指 WS 表示)放大,而在物镜的上方得到 一个倒立的实像 W1S1, 在设计显微镜时就已 安排好使这个实像刚好落在目镜的焦点 F2 以 内,因而再经过目镜放大后,人眼在目镜上 观察时, 在 250mm 的明视距离处, 看到一个 经再次放大的虚像 W2S2。 所以观察到的像是 经物镜和目镜两次放大的结果。总的放大倍 数 M 应为物镜放大倍数 M 物与目镜放大倍数 M 目的乘积,即:
6
5.调整和维护 1)光源的调整 光源的调整包括径向调整与轴向调整,前者的目的是让发光点调到仪器的光学系统的 光轴上;后者主要是让灯丝通过聚光镜后汇聚在孔径光阑上,以得到“平行光照明” 。光源 精确调整好后应达到视野照明最明亮且均匀,视野内无灯丝像。 2)光阑的调整 在金相显微镜的照明系统中常有两个孔径可变的光阑。孔径光阑装在光源聚光透镜之 后,视域光阑装在孔径光阑之后。 (1)孔径光阑 孔径光阑用以控制射向物镜的入射光束的粗细。孔径光阑若开得太大,则入射光过强, 增加了镜筒内部的反射与炫光,降低影像的衬度。缩小孔径光阑可避免上述弊病,且可消 除由透镜边缘引起的球面像差并提高映像的景深。但若孔径光阑缩得太小,光束只通过物 镜的中心部分,使实际的数值孔径减小,使物镜的分辨能力降低。因此,应按观察的要求 适当调节孔径光阑的大小。一般是调到刚好使光线充满物镜的后透镜为宜,此时物镜的分 辨能力最高。有人认为可以将试样调焦后,去掉目镜,观察镜筒内的光斑,以刚好充满镜 筒底部的四分之三为准。一般却是调节到观察时物像最清晰、不产生浮雕,晶界不变形、 不弯曲,光的强弱使人眼舒适为原则。物镜的数值孔径不同,透镜组尺寸也不同,更换物 镜后必须重新调节孔径光阑。 (2)视场光阑 视场光阑用以改变视场大小、减小镜筒内部的反射与炫光以提高映像的衬度而不影响 物镜的分辨能力。视场光阑的调节方法是在显微镜调焦后,缩小视场光阑,在目镜中观察 其像,然后扩大它,使其边缘正好包围整个视物。有时为了观察某一试样的局部细致组织, 也可将视场光阑缩小到刚好包围此局部组织,以收到更好的效果。 总之,孔径光阑与视场光阑,都是为了提高成像质量而加入到光线系统中去的。通过 调节这些光阑可最大限度地利用物镜的鉴别率并得到良好的衬度。 3)维护要点 金相显微镜是精密光学仪器,使用时必须了解其基本原理及操作规程,要认真维护、 保管,细心谨慎使用。 (1)操作显微镜时双手及样品干净,绝不允许把侵蚀剂未干的试样在显微镜下观察, 以免腐蚀物镜。 (2)操作时应精力集中,小心谨慎。接电源时应通过变压器,装卸或调换镜头时必须 放稳后才可松手,不可粗心大意。 (3)调焦距时,应先转动粗调螺丝,使物镜尽量接近试样(目测) ,然后一边从目镜 中观察,一边调节粗调螺丝使物镜慢慢上升直到逐渐看到组织时,再用微调螺丝调至清晰 为止。 (4)显微镜的光学系统部分严禁用手或手帕等去擦,而必须用专用的驼毛刷或镜头纸 轻轻擦试。 (5)使用过程中,若发生故障,应立即报告老师,不得自行拆动。

光学显微镜法

光学显微镜法

光学显微镜法光学显微镜法是一种广泛应用于材料科学、物理学等领域的显微镜检测方法。

该方法利用透镜系统的成像能力,对样品进行观测和分析,常用于研究材料的微观组织结构和表面形貌。

一、光学显微镜原理1.光路结构光学显微镜主要由目镜、物镜、工作台、照明系统和调焦机构等组成。

样品置于工作台上,透过目镜和物镜的透镜组成像得到放大的图像。

2.放大倍数光学显微镜的放大倍数和物镜、目镜的焦距和屈光度有关。

可以通过更换物镜和目镜来改变显微镜的放大倍数。

3.成像原理当光线从空气或物品流入和退回透镜的表面时,会发生折射。

透镜会使光线聚集,从而形成一个实际的图像。

二、光学显微镜应用范围1.材料科学在材料科学领域,光学显微镜是研究材料组织结构和形貌的主要工具。

可以用于检测各种材料的微观结构、晶体结构、表面形貌等。

2.物理学在物理学中,光学显微镜是研究物质光学性质的重要手段。

可以通过光学显微镜观察样品在光学场中的行为,如折射、反射和光谱等。

3.生命科学在生命科学研究中,光学显微镜常用于显微解剖和细胞结构研究,例如观察细胞形态、器官结构和分布。

三、光学显微镜的特点1.放大倍数高:光学显微镜可以使用多种不同的物镜和目镜,从而实现不同的放大倍数。

可以放大细微结构,使其变得更加可见。

2.分辨率高:光学显微镜可以通过透镜组将光线聚集到样品上,从而使结构变得更加清晰明了。

有时可以分辨出直径为几百个纳米的微粒。

3.样品易于制备:相对于其他图片获取技术,光学显微镜所需要的样品制备技术较为简单,普及率也更高。

四、光学显微镜的发展1.数字显微镜:数字显微镜是利用数码相机或CMOS传感器的原理,将显微镜成像的图像数字化,从而实现数字化成像,方便图像处理和存储。

2.原子力显微镜:原子力显微镜可以更好地观察样品的表面细节和形貌,可以观察到尺寸微小的样品、薄膜和生物分子等。

3.荧光显微镜:荧光显微镜可以通过荧光探针来标记分子,从而使它们在显微镜下更加容易观察。

sem生物样品制备步骤

sem生物样品制备步骤

sem生物样品制备步骤
SEM(扫描电子显微镜)是一种高分辨率的显微镜,常用于观察生物样品的微观结构。

生物样品制备是SEM观察的关键步骤之一,以下是一般的生物样品制备步骤:
1. 固定样品,首先,生物样品需要被固定以保持其原始结构。

常用的固定剂包括乙醛、戊二醛或glutaraldehyde等。

固定样品的方法可以根据具体的样品类型而有所不同。

2. 脱水,固定后的样品需要被脱水以去除水分,通常使用酒精逐渐替代水分。

这个过程需要逐渐提高酒精浓度,最终将样品置于无水酒精中。

3. 干燥,脱水后的样品需要被干燥以去除残留的溶剂。

常用的干燥方法包括自然干燥、临界点干燥或者冻干等。

4. 样品制备,干燥后的样品需要被切割、切片或者表面处理以展示所需的结构。

这可能涉及到金属喷镀以增加导电性,或者使用特殊的切割技术。

以上是一般的SEM生物样品制备步骤,不同类型的生物样品可能需要特定的处理步骤。

在进行SEM观察之前,样品制备的质量对于最终观察结果至关重要。

希望这些信息能够帮助到你。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档