六年级奥数6、整除及数字整除特征

合集下载

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。

由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。

账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。

应是__________元。

(注:微波炉单价为整数元)。

36792
例4、五位数能被12整除,这个五位数是____________。

42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。

713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。

39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。

48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。

数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。

”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。

小学奥数关于数的整除规律

小学奥数关于数的整除规律

数的整除规律1、一个数的个位上是2、4、6、8、0的数都能被2整除。

2、一个数的数字之和能被3或9整除,这个数就能被3或9整除。

3、这一个数的末两位如果能被4或者25整除,这个数就能被4或者25整除。

4、个位上是0或5的数都能被5整除。

5.这个数的末位数与末三位以前的数字所组成的数之差能被7,11或13整除,则原数能被7,11或13整除。

6.这个数的末三位如果能被8或者125整除,这个数就一定能被8或者125整除。

7.若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除能被6整除的数,各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,一个整数的末3位若能被8整除,则该数一定能被8整除。

(完整word版)小学数学解题方法解题技巧之整除及数字整除特征(word文档良心出品)

(完整word版)小学数学解题方法解题技巧之整除及数字整除特征(word文档良心出品)

第一章小学数学解题方法解题技巧之整除及数字整除特征【数字整除特征】例1 42□28□是99的倍数,这个数除以99所得的商是__。

(上海市第五届小学数学竞赛试题)讲析:能被99整除的数,一定能被9和11整除。

设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。

要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。

经验证,(b-a-8)是11的倍数不合。

所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。

(1993年全国小学数学奥林匹克初赛试题)讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。

而1993000÷2520=790余2200。

于是再加上(2520-2200)=320时,就可以了。

所以最后三位数字依次是3、2、0。

例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

(上海市第五届小学数学竞赛试题)讲析:设千位上和个位上的数字分别是a和b。

则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。

则有 b-a=8,或者a-b=3。

①当 b-a=8时,b可取9、8;②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

例4 下面这个四十一位数55......5□99 (9)(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。

整除的性质和特征

整除的性质和特征

整除的性质和特征整除问题是整数内容最基本的问题;理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感;一、整除的概念:如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b 整除或b能整除a,记作b/a,读作“b整除a”或“a能被b整除”;a叫做b的倍数,b叫做a 的约数或因数;整除属于除尽的一种特殊情况;二、整除的五条基本性质:1如果a与b都能被c整除,则a+b与a-b也能被c整除;2如果a能被b整除,c是任意整数,则积ac也能被b整除;3如果a能被b整除,b能被c整除,则积a也能被c整除;4如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;5任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数;三、一些特殊数的整除特征:根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便;1如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征;①若一个整数的个位数字是2的倍数0、2、4、6或8或5的倍数0、5,则这个数能被2或5整除;②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除;推理过程:2、5都是10的因数,根据整除的基本性质2,可知所有整十数都能被10、2、5整除;任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质1,则这个数能被2或5整除;又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质2,可知任意整百数都能被4、25整除,任意整千数都能被8、125整除;同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质1,可以推导出上面第②条、第③条整除特征;同理可证,若一个数的末四位数能被16或625整除,则这个数能被16或625整除,依此类推;2若一个整数各位上数字和能被3或9整除,则这个数能被3或9整除;推理过程:因为10、100、1000……除以9都余1,所以几十、几百、几千……除以9就余几;因此,对于任意整数ABCDE…_______________都可以写成下面的形式n为任意整数:9n+A+B+C+D+E+……9n一定能被3或9整除,根据整除的基本性质1,只要这个数各位上的数字和A+B +C+D+E+……能被3或9整除,这个数就能被3或9整除;3用“截尾法”判断整除性;①截尾减2法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的2倍,差是7的倍数,则原数能被7整除;②截尾减1法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的1倍,差是11的倍数,则原数能被11整除;③截尾加4法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的4倍,差是13的倍数,则原数能被13整除;④截尾减5法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的5倍,差是17的倍数,则原数能被17整除;⑤截尾加2法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的2倍,差是19的倍数,则原数能被19整除;根据整除的基本性质3,以上5条整除特征中,如果差太大,可以继续前面的“截尾翻倍相加”或“截尾翻倍相减”的过程,直到能直接判断为止;推理过程:设任意一个整数的个位数字为y,这个数可以表示成10x+y的形式,其中x为任意整数;一个数截尾减2后,所得数为x-2y;因为截去这个数的个位数字后,所得数x减去个位数字y的2倍,实际上是在原数的十位数字上减去2个y,即减去了20个y,截尾一个y,总共减去了21个y,剩下了x-2y个10;如下式:10x-20y+y-y﹦x-2y×10﹦10x +y-21y;根据整除的基本性质,如果x-2y能被7整除,则x-2y×10就能被7整除,即10x+y-21y能被7整除,21y是7的倍数,可以推出原数10x+y一定能被7整除;“截尾加4”就是原数截去1个y、加上40个y,总共加了39y13的倍数,得到x+4y 个10,“截尾加4”所得x+4y如果能被13整除,原数必能被13整除;同理,“截尾减1”就是原数减去了11个y11的倍数,原数剩下x-y个10,“截尾减1”所得x-y能被11整除,原数必能被11整除;“截尾减5”就是原数减去了51个y17的倍数,原数剩下x-5y个10,“截尾减5”所得x-5y能被17整除,原数必能被17整除;“截尾加2”就是原数加了19y19的倍数,得到x+2y个10,“截尾加2” 所得x+2y如果能被19整除,原数必能被19整除;依此类推,可以用“截尾加3”判断一个数能否被29整除,用“截尾减4”判断一个数能否被41整除等等;4 “截尾法”的推广使用;①若一个数的末三位数与末三位之前的数字组成的数相减之差大数减小数能被7、11或13整除,则这个数一定能被7、11或13整除;②若一个整数的末四位与之前数字组成数的5倍相减之差能被23或29整除,则这个数能被23或29整除;比较适合对五位数进行判断推理过程:①设任意一个整数的末三位数为y,则这个数可以表示成1000x+y的形式,其中x 为任意整数;当x大于y时,这个数末三位之前的数字组成的数减去末三位数得到x-y;这里x 减y实际上是在原数的千位上减去y,即减去了1000y,加上截去末三位数y,总共减去了1001y,原数剩下x-y个1000;如下式:1000x-1000y+y-y﹦1000x-y﹦1000x+y-1001y7×11×13﹦1001,7、11和13都是1001的因数;综上所述,如果这个数末三位之前的数字组成的数减去末三位数得到x-y能被7、11或13整除,即1000x+y-1001y能被7、11或13整除,则原数必能被7、11或13整除;当y大于x时,可得1000y-x﹦1001y-1000x+y,如果y-x能被7、11或13整除,则原数必能被7、11或13整除;②设任意一个整数的末四位数为y,则这个数可以表示成10000x+y的形式,其中x 为任意整数;末四位与之前数字组成数的5倍相减之差即y-5x;10000y-5x﹦1005y-510000x+y因为1005是23和29的公倍数,如果一个数末四位与之前数字组成数的5倍相减之差即y-5x能被23或29整除,即10000y-5x能被23或29整除,则原数必能被23或29整除;依此类推,如果一个数末两位数与之前数字相减之差能被101整除,则这个数必能被101整除等等;5若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除;推理过程:一个整数偶数位上每个计数单位除以11都余1,如1、100、10000……等,除以11都余1,因此每个偶数位上数字是几,它所表示的数值除以11就余几,所有偶数位上数字之和除以11余几,所有偶数位数字所表示的数值除以11就余几;一个整数奇数位上每个计数单位除以11都“缺1”余数为10,如10、1000、100000……等,除以11都“缺1”, 因此每个奇数位上数字是几,它所表示的数值要整除11就缺几,所有奇数位上数字之和除以11缺几,所有奇数位数字所表示的数值除以11就缺几;“移多补少”,只有一个整数所有奇位数字之和与偶位数字之和相减之差能被11整除,原数才能被11整除;。

六年下册奥数试题:数的整除特征(一)全国通用(含答案)

六年下册奥数试题:数的整除特征(一)全国通用(含答案)

第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除。

(8)个位上是0或者5的数都能被5整除。

(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。

(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。

重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。

要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。

学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。

三位。

我们可以综合推广成一条:我们可以综合推广成一条:我们可以综合推广成一条:末末n 位数能被(或)整除的数,整除的数,本身必能被本身必能被(或)整除;反过来,末n 位数不能被(或)整除的数,本身必不能被(或)整除。

例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。

学习这一讲知识要学会举一反三。

经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;的倍数;(3)末位数为0或5。

六年级下册奥数试题数的整除特征(二)全国通用(含答案)

六年级下册奥数试题数的整除特征(二)全国通用(含答案)

第2讲数的整除特征(二)知识网络上一章我们已经学习了被2、3、5、8、9、25、125等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。

(1)能被7、11和13整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、11或13整除,那么这个数就能被7、11或13整除。

(2)能被11整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

重点·难点同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被7、11、13整除的数为什么有上面的特征。

学法指导上面数的整除特征可以结合例子来理解。

例如:443716,判断它能否被7、11、13整除的方法是:716-443=273。

因为273能被7整除,所以443716能被7整除;因为273不能被11整除,所以443716不能被11整除;因为273能被13整除,所以443716能被13整除。

记忆要理论联系实际。

经典例题[例1]用1、9、8、8这四个数字能排成几个被11除余8的四位数?思路剖析能被11整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被11整除。

一个数要能被11除余8,那么这样的数加上3后,就能被11整除了,于是得到被11除余8的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上3,得到另一个和数,如果这两个和数之差能被11整除,那么这个数就是被11除余8的数。

解答要把1、9、8、8排成被11除余8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作p,另外一组作为百位和个位数,它们之和加上3记作q,且p 和q的差能被11整除,满足要求的分组只可能是p=1+8=9,q=(9+8)+3=20,q-p=20-9=11,所以1988是被11除余8的四位数。

小学奥数 数论问题 第二讲 数的整除特性

小学奥数  数论问题  第二讲  数的整除特性

第二讲数的整除特性讲义(一)整除的定义:所谓“一个自然数a能被另一个自然数b整数”就是说“商a/b是一个整数”;或者换句话说:存在这第三个自然数c,使得a=b×c,这时候我们就说“b整除a”或者“a能被b整除”,其中b叫a的约数,a是b的倍数,记做“b︱a”(二)整除的性质:(传递性)若c︱b,b︱a,则c︱a(可加性)若c︱a,c︱b,则c︱(a+b)(可乘性)若c︱a,d︱b,则cd︱ab(三)常见的整除特征:尾数系:一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;数字和系:一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;分段做差系:如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.课后习题基础篇:【闯关1】493至少增加()才是3的倍数,至少减少()才有因数5,至少增加()才是2的倍数,至少增加()才是7的倍数。

【闯关2】如果六位数1992□□能被105整除,那么它的最后两位数是多少?提高篇:【闯关3】如果四位数x=6□□8能被236整除,那x除以236所得的商为________。

【闯关4】从50到100的这51个自然数的乘积的末尾有多少个连续的0?巅峰篇:【闯关5】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.)第二讲数的整除特性课后习题:基础篇:【闯关1】493至少增加()才是3的倍数,至少减少()才有因数5,至少增加()才是2的倍数,至少增加()才是7的倍数。

解析:一个位数数字和能被3整除,这个数就能被3整除;4+9+3=16,所以至少增加2就是3的倍数。

六年级奥数全教程

六年级奥数全教程

第一章 数与计算第一单元 同余问题1.知识前提。

(1) 整除:如果整数a 除以自然数b ,所得的商恰好是整数而没有余数(余数是0),我们就称a 能被b 整除或b 能整除a 。

(2) 乘方的意义:求n 个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。

n 个相同因数a 相乘,即n aa a a •L 14243个,记做n a 。

其中a 叫做底,n 叫做指数,na 读做a 的n 次方。

(3) 幂的运算法则:① 同底数的幂相乘,底数不变,指数相加。

即m n m n a a a +•=。

② 幂的乘方,底数不变,指数相乘。

即 ()mn nm a a =。

③ 积的乘方,等于把积的每一个因数分别乘方,再把所得的幂相乘。

即 ()nn n ab a b =•。

2.同余如果两个整数的a 、b 除以同一个自然数m 所得的余数相同,那么就说a 、b 对于m 是同余的,记为a =?h (mod m )。

我们把m 称为模。

如果a 、b 对于m 是同余的,那么a 与b 的差能被m 整除;反之,如果a 与b 的差能被M 整除,那么a 、b 对于m 是同余的。

3.规律、方法应用。

(1) 反身性规律:a 和a 对于m 同余。

(2) 对称性规律:a 和b 对于m 同余,那么b 和a 对于m 同余。

(3) 传递性规律:如果a 和b 对于m 同余,b 和c 对于m 同余,那么a 和c 对于m 同余。

(4) 同余的加减法、乘法规律:如果a 和b 对于m 同余,c 和d 对于m 同余,那么a +c ,和b +d ,a -c 和b -d ,a c 和bd 对于m 同余。

(5) 同余的乘方规律:如果a 和b 对于m 同余,那么n a 和n b 也对于m 同余。

(6) 同余的连加规律:1a 和1b 对于m 同余,2a 和2b 对于m 同余,3a 和3b 对于m 同余……na 和nb 对于m 同余,那么123n a a a a +++L 和123n b b b b +++L 也对于m 同余。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、整除及数字整除特征
【数字整除特征】
例1 42□28□是99的倍数,这个数除以99所得的商是__。

(上海市第五届小学数学竞赛试题)
讲析:能被99整除的数,一定能被9和11整除。

设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。

要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。

经验证,(b-a-8)是11的倍数不合。

所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。

(1993年全国小学数学奥林匹克初赛试题)
讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。

而1993000÷2520=790余2200。

于是再加上(2520-2200)=320时,就可以了。

所以最后三位数字依次是3、2、0。

例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

(上海市第五届小学数学竞赛试题)
讲析:设千位上和个位上的数字分别是a和b。

则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。

则有 b-a=8,或者a-b=3。

①当 b-a=8时,b可取9、8;
②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

例4 下面这个四十一位数
55......5□99 (9)
(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。

(1991年全国小学数学奥林匹克决赛试题)
讲析:注意到111111÷7=15873,所以555555与999999也能被7整除。

则18个5或18
个9组成的数,也能被7整除。

要使原四十一位数能被7整除,只需55□99这个五位数是7的倍数。

容易得出,中间方格内的数字是6。

【整除】
例1 一个数除以3余2,除以5余3,除以7余2,适合这些条件的最小数是______。

(天津市第一届“我爱数学”邀请赛试题)
讲析:所求这个数分别除以3和7时,余数相同。

3和7的最小公倍数为21。

所以这个数是23。

经检验,23除以5商4余3,23是本题的答案。

例2 一个整数在3600到3700之间,它被3除余2,被5除余1,被7除余3。

这个整数是__。

(《现代小学数学》邀请赛试题)
讲析:所求整数分别除以3、5、7以后,余数各不相同。

但仔细观察可发现,当把这个数加上4以后,它就能同时被3、5、7整除了。

因为3、5和7的最小公倍数是105。

3600÷105=34余30,105-30=75,
所以,当3600加上75时,就能被3、5和7整除了。

即所求这个整数是3675。

例3 在一个两位数中间插入一个数字,就变成了一个三位数。

如52中间插入4后变成542。

有些两位数中间插入某个数字后变成的三位数,是原两位数的9倍。

这样的两位数共有__个。

(中南地区小学数学竞赛试题)
讲析:因为插入一个数字后,所得的三位数是原两位数的9倍,且个位数字相同。

则原两位数的个位数字一定是0或5。

又插入的一个数字,必须小于个位数字,否则新三位数就不是原两位数的9倍了。

因此原二位数的个位不能为0,而一定是5。

结合被9整除的数字特征,不难找到符合要求的两位数有45、35、25和15共4个。

例4 a是一个自然数,已知a与a+1的各位数字之和都能被7整除,那么这样的自然数a 最小是__。

(1993年全国小学数学奥林匹克总决赛第一试试题)
讲析:a与a+1的各位数字之和都是7的倍数。

则a的个位数字一定是9。

因为如果个位上不是9时,若a的各位数字之和是7的倍数,则a+1的各位数字之和除以7以后,肯定余1。

只有当a的个位上是9时,a+1之后,个位上满十后向前一位进一,a+1的个位数字和才有可能是7的倍数。

联想到69,69+1=70,经适当调整可得,符合条件的最小数a是69999。

例5 一个自然数被8除余1,所得的商被8除也余1,再把第二次所得的商被8除后余7,最后得到的一个商是a[见图5.43(1)],又知这个自然数被17除余4,所得的商被17除余15,最后得到一个商是2a[见图5.43(2)],求这个自然数。

(北京市第九届“迎春杯”小学数学竞赛试题)
讲析:可从最后的商步步向前推算。

由图5.43(1)可得:第二次商是(8a+7);第一次商是8×(8a+7)+1=64a+57;所求的自然数是8×(64a+57)+1=512a+457
由图5.43(2)得,所求的自然数是578a+259
所以,512a+457=578a+259。

解得a=3。

故,这个自然数是512×3+457=1993。

例6 某住宅区有十二家住户。

他们的门牌号分别是1、2、3、……、12。

他们的电话号码依次是十二个连续的六位自然数,并且每户的电话号码都能被这户的门牌号整除。

已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除。

问这一家的电话号码是什么数?
(1993年全国小学数学奥林匹克总决赛第二试试题)
讲析:设这十二家住户的电话号码依次是a+1、a+2、a+3、……,a+12。

因为每户的电话号码都能被自己家的门牌号整除,所以数a能同时被1、2、3、……、12整除。

而1、2、3、......、12的最小公倍数是27720,所以六位数中,能同时被1、2、3、 (12)
整除的最小自然数是27720×4=110880
现在考虑第九户人家的电话号码能被13整除问题。

因为110880÷13,余数是12;27720÷13,余数是4。

也就是在110889的基础上,再加上n个27720之后的和,能被13整除的数,就是所求的数。

即12+4n,是13的倍数。

显然,当n=10时,12+4n是13的倍数。

所以,门牌号码是9的这家电话号码是:
110889+27720×10=388089。

相关文档
最新文档