勾股定理复习课教学设计

合集下载

北师大版八年级上册第一章勾股定理复习(教案)

北师大版八年级上册第一章勾股定理复习(教案)
-数据分析能力的培养:在分析勾股数的过程中,学生可能不知道如何系统地分析和归纳数据,从而找出勾股数的规律。
举例:针对勾股定理证明的难点,教师可以通过以下方法帮助学生突破:
-使用直观的图形和动画演示面积法的证明过程,让学生看到面积转化的直观效果。
-分步骤讲解证明过程,强调每一步的逻辑关系和数学意义。
-组织学生进行小组讨论,鼓励他们用自己的语言解释证明过程,加深理解。
其次,在新课讲授环节,我注重理论与实践相结合,通过具体的案例分析和实验操作,帮助学生加深对勾股定理的理解。这种教学方法取得了较好的效果,但我也注意到部分学生在理解证明过程时仍存在困难。因此,在今后的教学中,我需要更加关注学生的个体差异,针对不同水平的学生进行有针对性的辅导。
在实践活动环节,分组讨论和实验操作使学生积极参与到课堂中,提高了他们的动手能力和团队协作能力。但同时,我也发现部分小组在讨论过程中存在时间分配不均的问题。为了提高课堂效率,我需要在今后的教学中加强对小组讨论的引导和监督,确保每个学生都能充分参与到讨论中来。
-对于勾股数的性质,教师可以设计一些探索性的活动,如让学生尝试找出一定范围内所有的勾股数,通过实践活动发现勾股数的规律。
-在解决实际问题时,教师应引导学生如何从问题中抽象出数学模型,如何将现实问题转化为数学问题,并通过示例来演示解题步骤。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”比如,测量一块三角形的草地面积。这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾勾股定理的奥秘。
-勾股定理的应用:学会将勾股定理应用于解决实际问题,如计算直角三角形的斜边长度或判断一组数是否为勾股数。

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

勾股定理单元复习教案

勾股定理单元复习教案

年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:专题勾股定理章节复习目标掌握勾股定理及其逆定理重难点勾股定理的应用常考点勾股定理的计算、勾股定理的应用勾股定理知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。

若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。

2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。

3.满足a²+b²=c²的三个正整数,称为勾股数。

若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。

常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。

4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。

5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。

6.拓展:特殊角的直角三角形相关性质定理。

精讲点拨考点1. 勾股定理【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为变式1 在Rt△ABC中,已知两边长为5、12,则第三边的长为变式2 等边三角形的边长为6,则它的高是________变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。

考点2. 勾股定理的证明【例2】如图:由四个全等直角三角形拼成如下大的正方形,求证:222a b c +=变式 如图:由四个全等直角三角形拼成如下大的正方形,求证:222a b c +=考点3 勾股定理的应用【例3】 如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. (1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?变式1 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?变式2 一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A沿墙下滑4m ,那么梯子底端B 也外移4m 吗?考点4. 直角三角形的判定【例4】三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c) D . a:b:c =13∶5∶12 变式1 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.变式2 已知,△ABC 中,17AB cm =,16BC cm =,BC 边上的中线15AD cm =,试说明△ABC是等腰三角形.变式3 如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC , 求证:AF ⊥EF .考点5. 勾股定理及其逆定理相关面积计算【例5】一个零件的形状如图,已知∠A=900,按规定这个零件中∠DBC 应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, BC = 12 , DC=13,问这个零件是否符合要求,并求四边形ABCD 的面积.变式1 如图示,有块绿地ABCD ,AD=12m ,CD=9m ,AB=39m ,BC=36m ,∠ADC=90°,求这块绿地的面积。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

沪科版八年级下册数学第18章勾股定理单元复习说课稿

沪科版八年级下册数学第18章勾股定理单元复习说课稿
2.生生互动:
(1)分组合作:将学生分成小组,进行探究式学习,共同解决勾股定理相关问题。
(2)讨论与分享:鼓励学生在小组内讨论,分享解题思路和方法,互相学习,共同提高。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一张著名的直角三角形图形,如埃及金字塔的截面图,引导学生思考直角三角形在建筑和生活中的应用。
1.提高课堂教学的趣味性和直观性,吸引学生的注意力。
2.帮助学生更好地理解和掌握勾股定理及其应用。
3.拓展教学时空,提高教学效率。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
师生互动:
(1)提问:在教学过程中,通过提问引导学生思考,检查学生的学习效果。
(2)反馈:针对学生的回答和表现,给予及时、积极的反馈,鼓励学生积极参与课堂讨论。
2.提出问题:提问学生:“同学们,你们知道直角三角形有什么特殊的性质吗?”、“在直角三角形中,三条边之间是否存在某种关系?”
3.数学故事:讲述古希腊数学家毕达哥拉斯发现勾股定理的传说,激发学生对勾股定理的好奇心和探索欲望。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.回顾直角三角形的定义和性质,为学习勾股定理做好铺垫。
3.情感态度与价值观目标:
(1)激发学生对数学学习的兴趣,提高学生的数学素养。
(2)通过勾股定理的学习,使学生认识到数学在现实生活中的应用价值,培养学生的科学态度和价值观。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
1.教学重点:
(1)勾股定理的定义、证明和应用。

专题复习:勾股定理(教案)

专题复习:勾股定理(教案)
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明方法这两个重点。对于难点部分,如定理的证明过程,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过制作直角三角形模型,演示勾股定理的基本原理。
1.数学抽象:通过勾股定理的学习,使学生能够从实际问题中抽象出数学模型,理解数学概念的本质,提高数学思维能力。
2.逻辑推理:培养学生运用不同的证明方法,理解和掌握勾股定理的推理过程,提高逻辑思维能力和解题技巧。
3.数学建模:学会将勾股定理应用于解决实际问题,建立数学模型,培养学生解决实际问题的能力。
五、教学反思
在今天《勾股定理》的复习课上,我发现学生们对于定理的概念和应用有了较好的掌握,但在证明过程中还存在一些困难。我尝试用生活中的实例引入勾股定理,让学生感受到数学与生活的紧密联系,这一点效果不错,大家都很感兴趣。但在教学过程中,我也注意到了几个问题。
首先,对于定理的证明方法,尤其是代数法的证明,部分学生感到难以理解。在今后的教学中,我需要更加耐心地引导他们,通过多举例、多解释,帮助他们突破这个难点。
-掌握至直角三角形的边长比例关系,如30°-60°-90°和45°-45°-90°直角三角形。
-例:通过实际例题,如计算墙壁上悬挂画框的合适位置,强调勾股定理在实际问题中的应用。
2.教学难点
-理解勾股定理的证明过程:学生需要理解并掌握从具体实例中抽象出定理的过程,以及不同证明方法背后的逻辑。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

八年级(下)第18章勾股定理复习教案

八年级(下)第18章勾股定理复习教案

(例四)(例五)
分析:搅拌棒在易拉罐中的位置可以有多种情形,如图中的
B
A
1、
B
A
2,但它们都不
是最长的,根据实际经验,当搅拌棒的一个端点在B点,另一个端点在A点时最长,此时可以把线段AB放在Rt△ABC
:已知单位长度为“1”,画一条线段,使它的长为
分析:29是无理数,用以前的方法不易准确画出表示长为
可知,两直角边分别为________
可作高利用其“三线合一”的性质来帮助建立方程.
的长方体纸箱的A点沿纸箱爬到B点,那么它所__________________________________.(分析:可以)
展开到同一平面内,由:“两点之间,
”再根据“勾股定理”求出最短路线。

=S为(
与点D重合,C落在C'处,Rt
C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

许镇中心初中电子备课教学设计
解析:同例题1一样,先将实物模型转化为数学模型,
∠ACD=90°,在Rt△ACD中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的
a,BF=a,那么在Rt
详细解题步骤如下:
解:设正方形ABCD的边长为4a,则BE=CE=2a,AF=3a,BF=a
在Rt△CDE中,DE2=CD2+CE2=(4a)2+(2a)2=20 a2
同理EF2=5a2, DF2=25a2
在△DEF中,EF2+ DE2=5a2+ 20a2=25a2=DF2
∴△DEF是直角三角形,且∠DEF=90°.
注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。

题型四:利用勾股定理求线段长度——
例题4 如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.
解析:解题之前先弄清楚折叠中的不变量。

合理设元是关键。

详细解题过程如下:
解:根据题意得Rt△ADE≌Rt△AEF
∴∠AFE=90°, AF=10cm, EF=DE
设CE=x cm,
则DE=EF=CD-CE=8-x
在Rt△ABF中由勾股定理得:
AB2+BF2=AF2,即82+BF2=102,
∴BF=6cm
∴CF=BC-BF=10-6=4(cm)
在Rt△ECF中由勾股定理可得:
EF2=CE2+CF2,即(8-x) 2=x2+42
∴64-16x+x2=2+16
∴x=3(cm),即CE=3 cm
注:本题接下来还可以折痕的长度和求重叠部分的面积。

题型五:利用勾股定理逆定理判断垂直——
例题5 如图5,王师傅想要检测桌子的表面AD边是否垂直与AB边和CD边,他测得AD= 80cm,AB=60cm,BD=100cm,AD边与AB边垂直吗?怎样去验证AD边与CD边是否垂直?
解析:由于实物一般比较大,长度不容易用直尺来方便测量。


们通常截取部分长度来验证。

如图4,矩形ABCD表示桌面形状,在A
B上截取AM=12cm,在AD上截取AN=9cm(想想为什么要设为这两个长
BC上一点,将矩形纸片
个小正方形,
点沿表
°的楼梯表面铺地毯,地毯的长至少需________米.
四、思维训练:
、如图所示是从长为40cm、宽为30cm
形后,剩下的一块下脚料。

工人师傅要将它做适当的切割,重新拼接后焊成一个面积与原下
附:板书设计。

相关文档
最新文档