矩阵线性方程组共30页
第四章 矩阵·行列式·线性方程组

1, 2, , n 的一切排列求和,那么数 D 称为 n 阶方阵相应的行列式。例如,四阶行列式是 4! 个形为
(1)k a1k1 a2 k2 a3k3 a4 k4 的项的和,而其中 a13 a21a34 a42 相应于 k 3 ,即该项前端的符号应为 (1)3 。
(6)
2.1.5. 拉普拉斯恒等式
(7)
显然(2) , (3)分别是(6) , (7)的特例。
n 设 A (aij )mn , B (bij ) mn ( m n ) ,又设 l Cm ,A 的所有 n 阶子式为 U1 ,U 2 , ,U l ,B 的相应的 n
- 104 -
第四章
矩阵·行列式·线性方程组
§1 矩阵与行列式
第四章
矩阵·行列式·线性方程组
本章内容包括矩阵、行列式与线性代数方程组两部分. 在前一部分,叙述了矩阵和行列式的基本概念,重点介绍各种类型矩阵的性质、基本运算,此外, 还介绍了矩阵的特征值与特征矢量的求法,及有关的内容,如相似变换等;在线性方程组部分,着重介 绍含 n 个未知量的 n 个方程的方程组解法,也简单地讨论了解的结构。最后对整系数线性方程组和线性 不等式组也作了扼要说明。
若行列式中有两行(或列)对应的元素完全相同或成比例,则行列式为零。 若行列式中有一行(或列)元素是其他某些行(或列)对应元素的线性组合,则行列式为零。
7°若行列式中某一行(或列)的所有元素都可表示为两项之和,则该行列式可用两个同阶的行列式
之和来表达。例如
- 105 -
第四章
线性方程组的矩阵解

a1n ⎞ ⎛ 1 ⎟ ⎜ b2 n ⎟ ⎜ 0 → ⎟ ⎜ ⎟ ⎜ bmn ⎠ ⎝ 0
∗ ∗ 0 0 0 ∗ ∗ 1 0 0
b12 b22 bm 2 ∗ ∗ ∗ 0 0
b1n ⎞ ⎟ b2 n ⎟ ⎟ ⎟ bmn ⎠ ∗⎞ ⎟ ∗⎟ ⎟ ⎟ ∗⎟=B 0⎟ ⎟ ⎟ 0⎟ ⎠
1 0 0 0
b12 1 0 0
a1n a2 n amn
b1 ⎞ ⎟ b2 ⎟ ⎟ ⎟ bm ⎠
a11 a12 a1n a1n ⎞ ⎛ a11 a12 ⎜ ⎟ a21 a22 a2 n a21 a22 a2 n ⎟ 称为矩阵A 则 若 A=⎜ ⎜ ⎟ ⎜ ⎟ a n1 a n 2 ann ann ⎠ ⎝ an1 an 2 的行列式,记为 A 。注意行列式与矩阵在形式和本质的区别。
第三章 线性方程组
三、矩阵的规范形与线性方程组的解
对方程组进行初等变换其实质就是对方程组中未知量系 和常数项组成的增广矩阵 A 进行相应的初等变换。 由定理3.1.1知,对增广矩阵进行行初等变换所得矩阵, 对应的方程组与原方程组同 问题: 一个矩阵在行初等变换下可以化为怎样的简单形
第三章 线性方程组
道此时方程组是有解,还是无解。 当 m ≠ n 时, Cramer法则失效,我们也不知方程组有没 是解,更没有解此方程组(1)的有效方 因此有必要研究一般线性方程组(1)的 下面用加减消元法解三元一次线性方程
第三章 线性方程组
例3.1.1 解方程组: ⎧ 2 x1 − x2 + 3 x3 = 1 ⎪ ⎨4 x1 + 2 x2 + 5 x3 = 4 ⎪ 2x + 2 x3 = 6 ⎩ 1
−3 −6 7 0
3
2
0⎞ ⎟ 16 −12 1 ⎟ 0 0 5⎟ ⎠ 5
线性代数第四章线性方程组课件

系分别确定的解集合
S {k11 k22 ktt | k1, k2, 与 T {l11 l22 lt t | l1,l2,
是相等的,即 S T.
, kt是任意常数} , lt是任意常数}
定理5 设 A 是一个 m n矩阵,若齐次线性方程组
一个解.
定理8 设 1,2 是方程组 AX 的两个解,则 1 2 是 AX 导出组 AX 0 的一个解.
由这两个结果, 我们能够得到非齐次线性方程 组解的结构定理.
定理9 设矩阵 A 是一个 mn矩阵.若非齐次线性
方程组 AX 有解, 令 0是 AX 的某一个解
(通常称为特解).
k1, k2, , ks 是任意常数, 则
k11 k22 kss
也是方程组的解. 即齐次线性方程组解的线性组合
还是方程组的解.
记齐次线性方程组 AX 0的解集合为 S , 即
S { (c1,c2, ,cn)T | A 0}.
那么,上面的定理 3 就可以表述为:
对于任意的 1, 2 S , k1, k2是两个任意常数,有
1)当 R(A) R(A) n 时,0是 AX 唯一的解; 2)当 R(A) R(A) n 时,AX 的导出组 AX 0 存在无穷多解, 则 AX 的解集合为 S {0 k11 k22 kss | k1, k2, , ks是任意常数}, 其中 1,2, ,s是 AX 0 的一个基础解系.
是线性无关的.
1, 2, , n
定理2(齐次线性方程组有非零解的判别定理) 齐
次线性方程组 AX 0 有非零解的充分必要条件是
它的系数矩阵 A 的秩 R(A) n .
推论1 如果齐次线性方程组 AX 0 中的方程个数
矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组本章的重点是研究矩阵更深层的性质——秩,它是矩阵理论的核心概念,是由德国数学家佛洛本纽斯在1879年首先提出的。
为了研究矩阵秩的概念,首先要介绍一个重要的工具———矩阵的初等变换概念,它不仅解决了求矩阵秩的问题,还是帮助求解线性方程组、求逆阵、判定向量组相关性等的有力工具,然后我们将应用秩理论解决方程组的求解问题,最后还要将初等变换概念在理论层次上加以提炼,即介绍初等方阵的概念。
§1 矩阵的初等变换矩阵的初等变换是矩阵之间的一种十分重要的变换,是从实际问题的解决中抽象得到的。
一、引例求解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=+-+=+--979634226442224321432143214321x x x x x x x x x x x x x x x x(1)(1) )(1B )(2B)(3B ⎪⎪⎩⎪⎪⎨⎧=-==+-=+-+00304244324321x x x x x x x x )(4B 问题10共采取了几种变换将(1)变为)(4B 的?(三种:(ⅰ) 交换方程的次序;(ⅱ) 用数)0(≠k 乘某方程; (ⅲ) 将某方程的k 倍加到另一方程上。
且这三种变换都可以看成是只对方程组的系数和常数项进行的)20在这三种变换下,(1)与)(4B 是否同解?即这三种变换是否都可逆? (都可逆,即同解变换) 30采取这三种变换的目的是为了将(1)变为什么形状以便得到解? (阶梯形。
其寓意:方程④表明方程组有一个多余的方程; 将③代入②得32x x =,表明3x (或2x )可任意取值,称之为自由未知量,其余的未知量称为非自由未知量,当某层的阶宽多于一个未知量时,就必有自由未知量,一般我们取每层阶梯的第一个未知量为非自由未知量,由于一旦确定下自由未知量,任给自由未知量一组数值,就可得到方程组的一个解,所以我们特别重视自由未知量)40 由于(1)与其增广矩阵)(b A B =构成一一对应,那这三种变换在矩阵中对应的效果是什么?⎝⎛=B ⎪⎪⎪⎪⎭⎫ ⎝⎛------97963211322111241211 ⎪⎪⎪⎪⎭⎫⎝⎛-------34330635500222041211⎪⎪⎪⎪⎭⎫⎝⎛----310620000111041211 5000310000111041211B =⎪⎪⎪⎪⎭⎫ ⎝⎛---. 对于矩阵的行只作了三种变换,也就是说,为解线性方程组对方程组作变换,就相当于对其增广矩阵的行作同类变换,下面给出这三种对矩阵的行作的变换在矩阵中的正式定义:②-③ ③-2① ④-3① ①②③④①↔ ② ③ ÷③↔④ ④-2③ ③↔④ ④-2③ ①②③④②-③ ③-2①④-3① ②÷ 2③+5② ④-3②二、初等变换1、定义1 以下三种变换称为矩阵的初等行变换:(ⅰ) 对调两行(对调i 、j 两行记作:j i r r ↔);(ⅱ) 以数k ≠0乘某行中的所有元素(第i 行乘k 记作:k r i ⨯);(ⅲ) 将某行所有元素的倍加到另一行对应元素上去(将第j 行的k 倍加到第i 行记作:j i r k r +)。
矩阵初等变换与线性方程组

特别地,当B=b为列向量时,有
R A R A ,bR A 1
2 .R A B R A R B
3 .R A B m in R A ,R B
4 .若 A m n B n l 0若 R A R B n
C
k m
C
k n
个
(二)最高阶非零子式,矩阵的秩
如果矩,而所有 r 1 阶子式(如果存在的
话)的值全等于0,则称 D r 为矩阵A的一
个最高阶非零子式,其阶数 r 称为矩阵A
的秩,记作 R A .
例1、求矩阵A 和B的秩
其中
1
A
2
4
2 3 7
3
5
等行变换把它变成行阶梯形矩阵和行最 简形矩阵)
(三)矩阵A的等价标准形矩阵
特点:矩阵A的等价标准形矩阵的左上
角是一个单位矩阵,其余元素全为零,
对于mn矩阵A,总可经过初等变
换(行变换和列变换)把它化为等价标准
形
C
Er 0
0
0
mn
其中 r 是行阶梯形矩阵中非零行的
行数。
0 2 1
例1、设
阵E,即 A E
(三)推论: 可逆矩阵A可表示为有 限个初 等矩阵的乘积。
六、初等变换的应用
(一)求可逆矩阵A的逆矩阵 A 1
r
1 .若 A E E ,X , 则 A 可 逆 , 且 X A 1 行 变 换
2.若 E A 列 变 C 换 E X ,则 A 可 逆 ,且 XA 1
矩阵初等变换与线性方程组
§3-1矩阵的初等变换
一、矩阵的初等变换的定义
(一)初等行(列)变换
第2章 线性方程组与矩阵初等变换-郑成勇主编教材配套课件

11
−2
r3
−3r2
0
−10
11
−2
11 3
0
11
r2 r3
−3r1 −11r1
0
−30
33
0
0
0 0 6
最后一个矩阵所对应的线性方程组为
0
x1 + 3x2 x1 −10x2
− 3x3 = 1 +11x3 = −2
.
0x1 + 0x2 + 0x3 = 6
方程组最后一个方程显然矛盾,故方程组无解.
矩阵总可以经过若干次初等变换化为它标准形 F
=
Er O
O
O
mn
,
04 其中 r 为行阶梯形矩阵中非零行的行数.
OPTION
Linear Algebra
2.3 矩阵初等行变换解线性方程组
第2章 线性方程组与矩阵初等变换 14
定义2.1 矩阵的秩 将一个矩阵 A化成行阶梯阵后, 其非零行的行数称为矩阵的
a21
a22
阵
am1 am2
a1n
a2n
amn
x1
未 知
x
=
x2
变
量
xn
b1
常 数 列
b
=
b2
bm
Ax = b
a11 a12
增广矩阵
B =[A
b]
=
a21
a22
am1 am2
a1n b1
a2n
b2
amn bm
A = [a1, a2 , , an ] 其中 ai ( i = 1, 2, , n ) 为矩阵 A 的第i 列,则按分块矩阵乘法运算,
线性方程组解PPT课件

VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词
线性代数-线性方程组与矩阵PPT课件

k 1
k 1
k 1
s
aik bk1
c1
j
s
aikbk 2
c2
j
s
aikbkp
c
pj
p
s
aikbktctj .
k1
k1
k1
t1 k 1
ps
同理可以验证矩阵 Ams (BspC pn ) 中 (i, j) 元素也是 aikbktctj ,所以矩阵乘法的结合律成立. t1 k 1
aij bij
.
mn
2. 矩阵的数乘
第1章 线性方程组与矩阵 12
定义4 用一个数 k 乘矩阵 A (aij )mn 的所有元素得到的矩阵 kaij mn 称为矩阵的数乘,记为 kA 或者 Ak ,
即
kA Ak kaij mn .
矩阵的数乘运算满足如下的运算规律: 设 k,l 是任意两个数, A, B 是任意两个 m n 矩阵,
21 21 0 2
21 21 01
2 0 21 0 1
4 4
3 0
2
2
.
三、矩阵的乘法
例3
求矩阵
A
1 2
1 2
与
B
2 6
1 3
的乘积
AB
及
BA
.
解
AB
1 2
1 2
2
6
1 3
8 16
4 8
;
BA
2 6
1 1
3
2
1 2
0 0
0 0
.
第1章 线性方程组与矩阵 16
3
A Omn Omn A A .
1. 矩阵的加法
第1章 线性方程组与矩阵 11