矩阵分解与线性方程组求解

合集下载

线性方程组的几种求解方法

线性方程组的几种求解方法

甘肃政法学院本科学年论文(设计)题目浅议线性方程组的几种求解方法学号:姓名:指导教师:成绩:__________________完成时间: 2012 年 11 月目录第一章引言 (1)第二章线性方程组的几种解法 (1)2.1 斯消元法 (1)2.1.1 消元过程 (1)2.1.2 回代过程 (2)2.1.3 解的判断 (2)2.2 克莱姆法则 (3)2.3 LU分解法 (4)2.4 追赶法 (6)第三章结束语 (8)致谢 (8)参考文献 (9)摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.下面将综述几种不同类型的线性方程组的解法,如消元法、克莱姆法则、直接三角形法、、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,高斯消元法方法,具有表达式清晰,使用范围广的特点.另外,这些方法有利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合。

关键词:线性方程组;解法;应用Several methods of solving linear equation groupAbstract: The system of linear equations is one of linear algebra core contents, its solution research is in the algebra the classics also the important research topic. This article summarized several kind of different type system of linear equations solution, like the elimination, the Cramer principle, the generalized inverse matrix law, the direct triangle law, the square root method, pursue the law, and by concrete example introduction different solution application skill. In these solutions, the generalized inverse matrix method, has the expression to be clear, use scope broad characteristic. Moreover, these methods favor effectively solve the system of linear equations solution problem fast, provides a simple platform for the solution system of linear equations, promoted the theory and the actual union.Key word: Linear equations; Solution ; Example第一章 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.下面将介绍线性方程组的消元法、追赶法、直接三角形法等求解方法,为求解线性方程组提供一个平台。

矩阵的分解

矩阵的分解

矩阵的分解矩阵的分解是一种数学方法,它把复杂的矩阵拆分成几个简单的子矩阵,以便能更好地理解和解决特定矩阵问题。

矩阵分解也可以用来提高现有计算机算法的效率。

它是一种重要的数学工具,常用于机器学习,信号处理,图像处理,信息论,控制工程,统计学,优化,数值分析,科学计算等。

矩阵分解可以把大的矩阵分解成小的子矩阵,以便更容易理解特定的矩阵问题。

典型的矩阵分解方法包括LU 分解,QR分解,SVD分解,Cholesky分解,Schur分解,病态分解,矩阵分解等。

LU分解是将一个矩阵分解成一个下三角矩阵和一个上三角矩阵的过程。

这种分解可以用于解决特定的线性方程组,以及求解矩阵的逆。

一般来说,LU分解具有非常高的计算效率,而且它不需要很多内存来存储矩阵。

QR分解是把一个矩阵分解成一个正交矩阵和一个上三角矩阵的过程。

这种分解可以用来求解矩阵的特征值和特征向量,以及求解线性方程组。

QR分解是一种非常有用的分解形式,因为它可以使用稠密矩阵和稀疏矩阵的快速算法。

SVD(奇异值分解)是将一个矩阵分解成两个正交矩阵和一个对角矩阵的过程。

SVD分解可以用来解决矩阵的秩、特征值、特征向量以及正交正则化问题。

一般来说,SVD 分解是一种非常有效的矩阵分解方法,并且它可以用来提高现有的计算机算法的效率。

Cholesky分解是一种分解矩阵的方法,它可以将一个对称正定矩阵分解成一个下三角矩阵和一个上三角矩阵的乘积。

Cholesky分解可以用来解决线性方程组、估计最小二乘解、求解矩阵的特征值等。

Cholesky分解的计算效率很高,并且它可以用来提高现有的计算机算法的效率。

Schur分解则是将一个实矩阵分解成一个可逆矩阵和一个上三角矩阵的乘积。

Schur分解可以用来解决矩阵的特征值和特征向量问题,以及求解线性方程组。

Schur分解也可以用来提高现有计算机算法的效率。

病态分解是将一个矩阵分解成一个低秩的正交矩阵和一个正定矩阵的乘积的过程。

线性方程组的求解方法详解

线性方程组的求解方法详解

线性方程组的求解方法详解在数学中,线性方程组是求解多元一次方程组的一种重要方法。

它在各种科学领域中都有广泛的应用。

本文将详细介绍线性方程组的求解方法,包括高斯消元法、LU分解法和Jacobi迭代法。

一、高斯消元法高斯消元法是求解线性方程组最常用的方法之一。

它基于矩阵的基本变换,通过不断变形将线性方程组转化成行最简形式。

具体步骤如下:1. 将增广矩阵写为(A|B)的形式,其中A为系数矩阵,B为常数向量。

2. 先将系数矩阵化为上三角矩阵。

从第一行开始,每一行都使用该行的第一个元素除以它下面的元素,将其所在列下面的所有元素消为0。

这个过程称为消元。

3. 接着,再将上三角矩阵转化为行最简形式。

从最后一行开始,每一行都使用该行的第一个非零元素除以它上面的元素,将其所在列上面的所有元素都消为0。

4. 通过以上变换,线性方程组的解就可以直接读出。

具体来说,最后一行所对应的方程是一个单变量方程,规定该变量的解为该方程的解,再逐步回代到前面的方程中求解其他变量即可。

高斯消元法的优点是计算量比较小,而且对于系数矩阵满秩的情况,它的解决效率极高。

但是,当系数矩阵有多个零行或行向量是另一行向量的倍数时,高斯消元法就会出现退化的情况,此时需要通过其他方法进行求解。

二、LU分解法LU分解法是一种比高斯消元法更加高效的求解线性方程组的方法。

它基于矩阵的分解,将系数矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积形式。

具体步骤如下:1. 将增广矩阵写为(A|B)的形式,其中A为系数矩阵,B为常数向量。

2. 通过高斯消元法将系数矩阵化为一个上三角矩阵U和一个下三角矩阵L的乘积形式,即A=LU。

3. 将线性方程组转化为LY=B和UX=Y的两个方程组,其中L 和U是A的三角分解矩阵。

4. 先解LY=B,得到向量Y。

再解UX=Y,便得到线性方程组的解。

相对于高斯消元法,LU分解法的计算量更小,尤其是当多次求解同一个系数矩阵时,LU分解法可以提高计算效率。

第3章 矩阵的初等变换与线性方程组的解

第3章 矩阵的初等变换与线性方程组的解
1 0 A = 0 2 0 −2

1 0 B = 0 2 0 0
矩阵等价性具有如下性质: (1)反身性: A ↔ A (2)对称性:如果 A ↔ B ,那么 B ↔ A (3)传递性:如果 A ↔ B, B ↔ C ,那么 A ↔ C
第 i行
| E ( i , j ) |= −1,
第j行
E ( i , j ) −1 = E ( i , j )
第i列
第j列
-12-
2、倍乘初等矩阵
1 E ( i ( k )) = O 1 k 1 O
↑ 第i列
← 第 i行 1
r
Pl L P2 P1 A = E
问 A − 1 = Pl L P2 P1 作一次行变换 再作一次行变换 继续… 考虑对 ( A E ) 作行变换
P1 ( A E ) = ( P1 A P1 E )
P2 P1 ( A E ) =
( P2 P1 A
P2 P1 E )
Pl L P2 P1 ( A E ) = ( Pl L P2 P1 A Pl L P2 P1 E )
A ↔ B,
如何把它们用等号联系起来?
-11-
定义
对单位矩阵E做一次初等变换得到的矩阵称
为初等矩阵。 共有三种初等矩阵,分别为 1、交换初等矩阵
1 O 1 0 1 L ← 1 E ( i, j ) = M O M 1 1 L 0 ← 1 O 1 ↑ ↑
第三章 矩阵的初等变换与线性方程组的解
§3.1 矩阵的初等变换 §3.2 初等矩阵 §3.3 矩阵的秩 §3.4 线性方程组的解

矩阵初等变换的应用

矩阵初等变换的应用

矩阵初等变换的应用
矩阵初等变换在矩阵运算中有着广泛的应用,其中包括以下几种常见的应用:
1. 线性方程组求解:将系数矩阵经过矩阵初等变换变成一个上三角矩阵或行简化阶梯形矩阵,然后利用高斯-约旦消元法或高斯消元法求解线性方程组。

2. 矩阵求逆:通过利用矩阵初等变换将待求逆的矩阵转换成单位矩阵,然后将初等变换应用到一个单位矩阵上得到该矩阵的逆。

3. 矩阵乘法:矩阵乘法可通过矩阵初等变换实现。

例如,通过在左侧乘一个初等矩阵将矩阵进行行变换、在右侧乘初等矩阵将矩阵进行列变换、以及在左右两侧同时乘同一个初等矩阵进行对称变换等等。

4. 特征值与特征向量求解:通过利用初等变换将待求特征值的矩阵转换成上三角矩阵或者特征分解形式,然后求解特征值与特征向量。

5. 矩阵分解:通过初等变换将一个矩阵分解成一个上三角矩阵和一个正交矩阵的乘积(QR分解)、或者将矩阵分解成一个对称矩阵和一个特殊矩阵的乘积(奇异值分解)等等。

总之,在矩阵运算中,矩阵初等变换是一种非常有用的工具,它可以简化计算过程、提高计算效率、为后续计算提供便利。

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。

线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。

线性方程组的解法包括直接解法和迭代解法两种方法。

一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。

这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。

1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。

这种方法可以减少计算量,提高计算效率。

1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。

它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。

Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。

二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。

Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。

2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。

它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。

Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。

2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。

它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。

SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。

三、总结线性方程组解法是数值分析中的一个重要内容。

直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。

线性方程组的解法例题线性方程组的解法

线性方程组的解法例题线性方程组的解法

线性方程组的解法例题线性方程组的解法第二章线性方程组的解法n阶线性方程组的一般形式为:a11x1,a12x2, ,a1nxn b1 ax,ax, ,ax b 2112222nn2(2.0.1)an1x1,an2x2, ,annxn bnAx b用矩阵表示为: 其中A称为系数矩阵,x称为解向量,b称为常数向量(简称方程组自由项),它们分别为:x1 b1 a11a12a1nx b aa2122a2n x 2 b 21,, Axn bn an1an2ann如果矩阵A非奇异,即A的行列式值det(A) 0,则根据克莱姆(Cramer)规则,方程组有唯一解:Di,i 1,2, ,n xi D其中D det(A),Di表示D中等i列换b后所得的行列式值。

但克莱姆规则不适用于求解线性代数方程组,因为计算工作量大得难以容忍。

实际用于求解线性代数方程组的计算方法主要有两种:一是消去法,它属于直接解法;二是迭代解法。

消去法的优点是可以预先估计计算工作量,并且根据消去法的基本原理,可以得到矩阵运算(如矩阵求逆等)的求解方法。

但是,由于实际计算过程总存在有误差,由消去法得到的结果并不是绝对精确的,存在数值计算的稳定性问题。

迭代解法的优点是简单,便于编制计算机程序。

在迭代解法中,必须考虑迭收敛速度快慢的问题。

?2.1 线性方程组的直接计算求解线性代数方程组的直接解法主要是消去法(或称消元2法)。

消去法的基本思想是通过初等行变换:将一个方程乘以某个常数,以及将两个方程相加或相减,减少方程中的未知数数目,最终使每个方程中含一个未知数,从而得到所需要的解。

2.1.1 三角形方程组的计算对下三角形方程组:a11x1 b1ax,ax b 2112222(2.1.1)an1x1,an2x2, ,annxn bn可以通过前代的方法求解:先从第1个方程求出x1,代入第2个方程求出x2,依次类推,可以逐次前代求出所有xi(i 1,2, ,n),计算公式如下:b1x1 a11i~1bi~ aij xj(2.1.2)j 13xi , i 2, 3, , n aii对上三角形方程组:a11x1,a12x2, ,a1nxn b1ax, ,ax b 2222nn2annxn bn(2.1.3)可以通过回代的方法求解:先从第n个方程求出xn,代入第n~1个方程求出xn~1,依次类推,可以逐次回代求出所有xi(i n,n~1, ,1),计算公式如下:bnxn annnbi~ aij xj(2.1.4)j i,1xi , i n~1, n~2, , 1 aii2n 前代法和回代法的计算量都是次四则运算。

matlab矩阵分解与线性方程组求解

matlab矩阵分解与线性方程组求解

格式
[Q, R] = rsf2csf(q, r) 例4-7
A=[1 1 1 3;1 2 1 1;1 1 3 1;-2 1 1 4]; [q, r]=schur (A) [Q, R]=rsf2csf(q, r)
4.2 秩与线性相关性
4.2.1
汪远征
矩阵和向量组的秩与向量组的线性相关性
矩阵 A 的秩是指矩阵 A 中最高阶非零子式的阶数,或
是矩阵线性无关的行数与列数;向量组的秩通常由该
向量组构成的矩阵来计算。 k = rank(A) 返回矩阵A的行(或列)向量中线性无关个数 k = rank(A,tol) tol为给定误差
在 MATLAB 中,求矩阵秩的函数是 rank 。其格式为:
4.2 秩与线性相关性
4.2.1
汪远征
矩阵和向量组的秩与向量组的线性相关性
4.2 秩与线性相关性
4.2.2
汪远征
求行阶梯矩阵及向量组的基
Matlab 将矩阵化成行最简形的命令是 rref或 rrefmovie 。
其格式为:
R = rref(A) R 是A的行最简行矩阵 [R,jb] = rref(A) jb 是一个向量,其含义为: r = length(jb) 为 A 的秩; A(:, jb)为A的列向量基;jb中元素表示基向量所在的 列。
阵。
4.1 矩阵分解
4.1.2
汪远征
Cholesky分解
例4-2
A=pascal(4) %产生4阶pascal矩阵 [R,p]=chol(A)
4.1 矩阵分解
4.1.3
汪远征QBiblioteka 分解将矩阵A分解成一个正交矩阵Q与一个上三角矩阵R的
乘积A=QR,称为QR分解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档