车辆路径问题的概述

合集下载

车辆路径问题

车辆路径问题
禁忌搜寻法的主要步骤
14.2 单中心非满载送货车辆路径问题启发式算法
14.2.1 禁忌搜寻法简介
5. 停止准则 停止准则是整个演算过程结束的条件,通常使用以下四种准则: (1)预设最大迭代次数; (2)目标函数值持续未改善的次数; (3)预设允许CPU最长的执行时间; (4)预设可接受的目标函数值。
禁忌搜寻法的主要步骤
14.2 单中心非满载送货车辆路径问题启发式算法
14.2.1 禁忌搜寻法简介
4. 免禁准则 当一个移步为禁忌,但是若此一移步被允许,可以使得目前所搜寻到的目标函数值得以改善时,则接受此一移步,免禁准则的目的就是用来释放原本禁忌的状态,在求解过程中能逃脱局部最优解的局限。
14.1 物流配送车辆优化调度的概述
目前有关VRP的研究已经可以表示为:给定一个或多个中心(中心车库)一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所载的货物不能超过它的容量。
地址特性包括:车场数目、需求类型、作业要求。 车辆特性包括:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束。 问题的其他特性。 目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。
14.2 单中心非满载送货车辆路径问题启发式算法
14.2.2 问题描述与符号表示
问题中的参数做以下定义: V:需求点集合 O:物流配送中心 K:货车的容量 qi:配送点i的需求量 cij:配送点i到配送点j的距离
添加标题
14.1 物流配送车辆优化调度的概述
旅行商问题
带容量约束的车辆路线问题
带时间窗的车辆路线问题
收集和分发问题
多车型车辆路线问题
优先约束车辆路线问题

车辆路径问题

车辆路径问题

车辆路径问题一、车辆路径问题描述和建模 1. 车辆路径问题车辆路径问题(Vehicle Routing Problem, VRP),主要研究满足约束条件的最优车辆使用方案以及最优化车辆路径方案。

定义:设G={V,E}是一个完备的无向图,其中V={0,1,2…n}为节点集,其中0表示车场。

V,={1,2,…n}表示顾客点集。

A={(i,j),I,j∈V,i≠j}为边集。

一对具有相同装载能力Q的车辆从车场点对顾客点进行配送服务。

每个顾客点有一个固定的需求qi和固定的服务时间δi。

每条边(i,j)赋有一个权重,表示旅行距离或者旅行费用cij。

标准车辆路径问题的优化目标为:确定一个具有最小车辆数和对应的最小旅行距离或者费用的路线集,其满足下列约束条件:⑴每一条车辆路线开始于车场点,并且于车场点约束;⑵每个顾客点仅能被一辆车服务一次⑶每一条车辆路线总的顾客点的需求不超过车辆的装载能力Q⑷每一条车辆路线满足一定的边约束,比如持续时间约束和时间窗约束等。

2.标准车辆路径的数学模型:对于车辆路径问题定义如下的符号:cij:表示顾客点或者顾客点和车场之间的旅行费用等 dij:车辆路径问题中,两个节点间的空间距离。

Q:车辆的最大装载能力 di:顾客点i的需求。

δi:顾客点i的车辆服务时间m:服务车辆数,标准车辆路径问题中假设所有的车辆都是同型的。

R:车辆集,R={1,2….,m}Ri:车辆路线,Ri={0,i1,…im,0},i1,…im?V,,i?R。

一般车辆路径问题具有层次目标函数,最小化车辆数和最小化车辆旅行费用,在文献中一般以车辆数作为首要优化目标函数,在此基础上使得对应的车辆旅行费用最小,下面给出标准车辆路径问题的数学模型。

下面给出标准车辆路径问题的数学模型。

对于每一条弧(I,j),定义如下变量:xijv=1 若车辆v从顾客i行驶到顾客点j0 否则yiv=1 顾客点i的需求由车辆v来完成0 否则mnnmminF x =M ni=1 i=1x0iv+ i=0 j=0 v=1xijv.cij (2.1)车辆路径问题的数学模型可以表述为:n, mv=1 i=0xijv≥1 ?j∈V (2.2)nni=0xipv? j=0xpjv=0 ?p∈V,v∈R (2.3) , mv=1yiv=1 ?i∈V (2.4) ni=1diyiv≤Q ?v∈R (2.5) ,yiv=ni=1xijv ?j∈V,v∈R (2.6)式中,F x 表示目标函数,M为一个无穷大的整数,通过在目标函数中引入参数M,能够保证算法在求解车辆路径问题时以车辆数为第一优化目标,以车辆旅行费用作为第二优化目标,也就是一个具有较少车辆数的解比一个具有较大车辆数但是较小车辆旅行距离的解好。

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在特定条件下,对车辆的路线进行规划,以达到最优或最优化的目标。

它是一种典型的组合优化问题,涉及到多个领域,如计算机科学、数学、人工智能、交通运输、物流管理等。

研究这些问题的主要目的是为了解决一系列实际应用问题,如物流配送、智能交通管理、货车配送等。

本文将从路线规划问题的定义、算法、应用等方面进行综述。

一、定义车辆路径规划问题可以分为两大类:静态路径规划问题和动态路径规划问题。

静态路径规划问题是指在已知起点和终点的情况下,寻找一条最优路线,使得路线具有一定的性质或满足一定的限制条件。

这些限制条件可以是时间限制、路程限制、交通流限制、成本限制等。

常见算法如Dijkstra算法、A*算法、Floyd算法等。

而动态路径规划问题则是指车辆在运行过程中,需要实时调整路线,以适应环境变化或路况变化。

动态规划问题相对于静态规划问题而言,难度更大,需要更加复杂的算法来求解。

常见算法如遗传算法、模拟退火算法、福尔摩斯算法等。

二、算法1.贪心算法贪心算法是一种基于局部最优原则作出选择的策略。

该算法对于寻找单个最优解十分有效,但在寻找多个最优解或全局最优解时,可能会产生局部最优解而不是全局最优解的问题。

2.动态规划算法动态规划算法是一种可解决具有重叠子问题和最优子结构的问题的算法。

它以自底向上、递推的方式求解问题,具有高效、简单的特点。

该算法可以使我们更加深入地理解问题,在计算机视觉、自然语言处理等领域有广泛的应用。

3.遗传算法遗传算法是一种仿生优化算法,通过模拟进化的过程求解最优解。

在车辆路径规划问题中,该算法一般用于实现路线的优化,通过对种群的遗传进化,不断优化路线,达到最优化的目标。

4.强化学习算法强化学习算法是一种在不断试错过程中学习,以最大化预期收益的方法。

在车辆路径规划问题中,该算法可以用于实现车辆的自主控制和智能驾驶,根据环境变化或路况变化,快速做出反应和调整。

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在给定的道路网络中,找到最佳的路径规划方案,使得车辆能够以最短的时间或最短的距离到达目的地,并且避免拥堵、交通事故等因素的影响。

这个问题在现代交通管理、物流配送等领域中具有重要的应用价值,因此吸引了大量的研究者投入其中。

本文将对车辆路径规划问题的研究现状进行综述,探讨相关的算法、模型以及应用情况,以期为相关领域的研究者提供参考。

一、车辆路径规划问题的分类车辆路径规划问题可以根据不同的约束条件和目标函数进行分类。

根据约束条件的不同,可以将车辆路径规划问题分为静态路径规划问题和动态路径规划问题。

静态路径规划问题是指在起点和终点已知的情况下,通过对道路网络的分析和计算,找到最优的路径规划方案。

而动态路径规划问题则考虑了实时交通信息的影响,需要根据实时的道路状况对路径进行调整,以求得最优的行驶方案。

根据目标函数的不同,车辆路径规划问题可以分为最短路径问题、最小耗费路径问题、最短时间路径问题等。

最短路径问题是寻找两点之间的最短路径,即使得权重和最小的路径。

最小耗费路径问题是在考虑了车辆油耗、路费等因素的基础上,寻找最小耗费的路径。

最短时间路径问题则是在考虑了交通拥堵、限速等因素的基础上,寻找最短时间的路径。

车辆路径规划问题的解决需要借助于一系列的算法,常用的算法包括Dijkstra算法、A*算法、遗传算法、模拟退火算法、禁忌搜索算法等。

Dijkstra算法是一种经典的最短路径算法,通过不断更新起点到各个节点的最短距离来找到最短路径。

A*算法是一种启发式搜索算法,它结合了Dijkstra算法和启发式函数,能够更快的找到最短路径。

遗传算法、模拟退火算法、禁忌搜索算法等是一些元启发式算法,它们通过模拟生物进化、物理退火等过程来搜索最优解,适用于复杂的路径规划问题。

在动态路径规划问题中,常用的算法包括实时A*算法、实时Dijkstra算法、实时禁忌搜索算法等。

这些算法能够结合实时的交通信息,动态调整路径规划方案,以应对复杂的交通环境。

车辆路径问题的粒子群算法研究

车辆路径问题的粒子群算法研究

车辆路径问题(Vehicle Routing Problem,简称VRP)是指在满足一定条件下,一批需要送货的客户,使得送货车辆的路线总长度最小或者送达所有客户的总成本最小的问题。

VRP的研究在物流管理、智能交通系统等领域具有重要意义。

粒子群算法(Particle Swarm Optimization,简称PSO)是一种优化算法,它模拟鸟群或鱼群中个体之间的信息共享和合作,通过群体中个体的协作来寻找最优解。

本文将探讨如何利用粒子群算法解决车辆路径问题,并对其研究进行深入分析。

一、车辆路径问题的基本概念1.1 车辆路径问题的定义车辆路径问题是指在满足一定条件下,一批需要送货的客户,使得送货车辆的路线总长度最小或者送达所有客户的总成本最小的问题。

该问题最早由Dantzig和Ramser于1959年提出,随后在实际应用中得到了广泛的关注和研究。

1.2 车辆路径问题的分类车辆路径问题根据不同的约束条件和优化目标可分为多种类型,常见的包括基本车辆路径问题、时间窗车辆路径问题、多车型车辆路径问题等。

1.3 车辆路径问题的解决方法针对不同类型的车辆路径问题,可以采用不同的解决方法,常见的包括启发式算法、精确算法、元启发式算法等。

其中,粒子群算法作为一种元启发式算法,在解决VRP问题中具有一定优势。

二、粒子群算法的基本原理2.1 粒子群算法的发展历程粒子群算法是由Kennedy和Eberhart于1995年提出的一种优化算法,其灵感来源于鸟群或鱼群中个体之间的信息共享和合作。

该算法通过模拟群体中个体的协作来寻找最优解,在解决多种优化问题方面具有良好的性能。

2.2 粒子群算法的基本原理粒子群算法模拟了鸟群或鱼群中个体之间的信息共享和合作过程,其中每个个体被称为粒子,它们以一定的速度在搜索空间中移动,并通过个体最优和群体最优来不断调整自身的位置和速度,最终找到最优解。

2.3 粒子群算法的应用领域粒子群算法在函数优化、特征选择、神经网络训练等领域都得到了广泛的应用,并在一定程度上取得了较好的效果。

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在给定的网络中,确定车辆的路径和顺序,以最大化效率和减少成本。

该问题在很多领域都有应用,例如物流配送、交通管理和智能交通系统等。

在这篇文章中,我们将对车辆路径规划问题进行综述,包括问题的定义、解决方法和应用领域。

一、车辆路径规划问题的定义车辆路径规划问题是指在给定的网络中,确定一组车辆的路径和顺序,以最小化某种成本函数。

该问题通常包括以下几个要素:1.网络结构:表示车辆可以到达的位置和它们之间的连接关系。

通常用图论中的图来表示,节点表示位置,边表示路径。

2.车辆集合:表示可用的车辆,每辆车有一定的容量和最大行驶距离。

3.配送任务:表示需要在不同位置之间运输的货物,每个任务有一定的需求量。

问题的目标是找到一组车辆的路径和顺序,使得满足配送任务的需求,并且最小化成本函数,通常可以是总行驶距离、总时间或者总成本。

车辆路径规划问题是一个典型的组合优化问题,具有复杂的计算结构和多样的解决方法。

目前,主要的解决方法包括启发式算法、精确算法和元启发式算法。

1.启发式算法:如遗传算法、模拟退火算法、禁忌搜索等,这些算法能够在较短的时间内找到较好的解,但不能保证找到最优解。

2.精确算法:如分枝定界法、整数规划法等,这些算法能够保证找到最优解,但通常需要较长的计算时间。

3.元启发式算法:如粒子群算法、蚁群算法、人工鱼群算法等,这些算法结合了启发式算法和精确算法的优点,能够在较短的时间内找到较好的解,并且具有一定的全局搜索能力。

车辆路径规划问题在许多领域都有着重要的应用价值,其中包括物流配送、交通管理和智能交通系统等。

1.物流配送:在快递、邮政、零售等行业中,车辆路径规划可以帮助优化配送路径,减少行驶距离和时间,从而提高效率和降低成本。

2.交通管理:在城市交通管理中,车辆路径规划可以帮助优化交通信号配时、减少交通拥堵,提高道路通行效率。

3.智能交通系统:在智能交通系统中,车辆路径规划可以帮助导航系统优化路线规划,避开拥堵路段,提供更加智能的交通导航服务。

车辆路径问题专题—VehicleRoutingProblem

车辆路径问题专题—VehicleRoutingProblem

Periodic VRP (PVRP)
• In classical VRPs, typically the planning period is a single day. In the case of the Period Vehicle Routing Problem (PVRP), the classical VRP is generalized by extending the planning period to M days. • We define the problem as follows: Objective: The objective is to minimize the vehicle fleet and the sum of travel time needed to supply all customers. Feasibility: A solution is feasible if all constraints of VRP are satisfied. Furthermore a vehicle may not return to the depot in the same day it departs. Over the M-day period, each customer must be visited at least once.
Capacitated VRP (CPRV)
• CVRP is a VRP in which a fixed fleet of delivery vehicles of uniform capacity must service known customer demands for a single commodity from a common depot at minimum transit cost. That is, CVRP is like VRP with the additional constraint that every vehicles must have uniform capacity of a single commodity. We can find below a formal description for the CVRP: • Objective: The objective is to minimize the vehicle fleet and the sum of travel time, and the total demand of commodities for each route may not exceed the capacity of the vehicle which serves that route. • Feasibility: A solution is feasible if the total quantity assigned to each route does not exceed the capacity of the vehicle which services the route.

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在移动车辆的过程中,如何有效地规划车辆的路径以达到最优效果的问题。

这个问题所涉及到的领域十分广泛,涵盖了数学、运筹学、计算机科学、交通管理等多个领域。

本文将对车辆路径规划问题的研究现状进行综述,着重介绍其研究背景、现有的方法和正在进行的研究。

一、研究背景随着城市发展和交通流量的不断增加,车辆路径规划问题愈加重要。

对于个人车主、出租车司机等个体而言,找到最短时间或最短路程的路径对其节省时间和成本非常重要,并且还可以缓解城市拥堵的问题。

而对于大型物流企业、公交公司等,车辆路径规划问题更加复杂,需要考虑路线、载负量、油耗等多种因素。

二、现有的方法1.贪心算法贪心算法是一种简单且高效的方法,其核心思想是每一步都选择当前最优的解决方案,最终达到全局最优解。

在车辆路径规划问题中,贪心算法可以通过选择邻近最短路径、最大带宽路径等来进行路径规划。

但贪心算法容易陷入局部最优解,并且无法解决动态路径规划问题。

2.遗传算法遗传算法是一种模拟自然进化的计算方法。

它通过对染色体的交叉、变异等操作,模拟自然选择和遗传,最终得到问题的优化解。

在车辆路径规划问题中,遗传算法可以通过将路径表示成染色体,然后通过遗传算法搜索最优路径。

3.动态规划动态规划是一种以广度优先搜索为基础的算法,用于解决其他算法无法解决的最优化问题。

车辆路径规划问题可以通过动态规划的方法进行求解,其中最重要的问题是如何设计状态转移方程。

动态规划算法的缺点是计算量大,只适用于小规模的问题。

三、正在进行的研究目前,越来越多的研究者将深度学习技术应用于车辆路径规划问题中。

深度学习可以通过模拟人类的学习过程,不断优化得到更加精准的预测和规划结果。

例如,一些研究者通过构建智能交通系统,使用深度学习识别城市中的车辆和行人,在此基础上进行路径规划,取得了不错的效果。

另外,一些研究者也将多智能体强化学习算法引入车辆路径规划问题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
costs associated with utilization of the vehicle

1.2.5 Drivers
Drivers operating the vehicles must satisfy several constraints laid down by union contracts and company regulations (for instance, working periods during the day, number and duration of breaks during service, maximum duration of driving periods, overtime). In the following, the constraints imposed on drivers are imbedded in those associated with the corresponding vehicles.

1.1 What does VRP calls for
The distribution of goods concerns the service, in a given time period, of a set of customers by a set of vehicles, which are located in one or more depots, are operated by a set of crews , and perform their movements by using an appropriate road network. In particular, the solution of a VRP calls for the determination of a set of routes, each performed by a single vehicle that starts and ends at its owndepot, such that all the requirements of the customers are fulfilled, all the operational constraints are satisfied, and the global transportation cost is minimized.

1.3 The operational constraints
nature of the transported goods quality of the service level characteristics of the customers and the vehicles operational constraints of the routes

2 CVRP
each circuit visits the depot vertex
each customer vertex is visited by exactly one circuit
the sum of the demands of the vertices visited by a circuit does not exceed the vehicle capacity, C

1.2 The main components of VRP
road network customers
drivers
depots vehicles

1.2.1 Road network
The road network, used for the transportation of goods, is generally described through a graph, whose arcs represent the road sections and whose vertices correspond to the roadjunctions and to the depot and customer locations. The arcs (and consequently the corre-sponding graphs) can be directed or undirected, depending on whether they can be traversed in only one direction (for instance, because of the presence of oneway streets, typical ofurban or motorway networks) or in both directions, respectively. Each arc is associated witha cost, which generally represents its length, and a travel time, which is possibly dependenton the vehicle type or on the period during which the arc is traversed.

1.2.2 Typical characteristics of customers
1 2 3
vertex of the road graph in which the customer is located
amount of goods (demand), possibly of different types, which must be delivered or collected at the customer

1.2.4 Transportation
1
home depot of the vehicle, and the possibility to end service at a depot other than the home one capacity of the vehicle, expressed as the maximum weight, or volume, or number of pallets, the vehicle can load possible subdivision of the vehicle into compartments, each characterized by its ca-pacity and by the types of goods that can be carried
Sometimes, it is not possible to fully satisfy the demand of each customer. In these cases, the amounts to be delivered or collected can be reduced, or a subset of customers can be left unserved. To deal with these situations, different priorities, or penalties associated with the partial or total lack of service, can be assigned to the customers.
2
3

1.2.4 Transportation
4
devices available for the loading and unloading operations
5
subset of arcs of the road graph which can be traversed by the vehicle
subset of the available vehicles that can be used to serve the customer

1.2.3 Depots
The routes performed to serve customers start and end at one or more depots, located at the vertices of the road graph. Each depot is characterized by the number and types of vehicles associated with it and by the global amount of goods it can deal with. In some real-world applications, the customers are a priori partitioned among the depots, and the vehicles have to return to their home depot at the end of each route. In these cases, the overall VRP can be decomposed into several independent problems, each associated with a different depot.
An Overview of Vehicle Routing Problems
31309314
物流93
杨婷
COMPANY
LOGO
Contents
1 2 3 4 5
The introduction of VRP Capacitated and Distance-Constrained VRP VRP with Time Windows VRP with Backhauls VRP with Pickup and Delivery
periods of the day (time windows) during which the customer can be served
相关文档
最新文档