高中数学 2.1.1曲线与方程(1)导学案 人教A版选修2-1

合集下载

人教A版选修2-1第二章第2课时导学案§2.1.2 求曲线的方程

人教A版选修2-1第二章第2课时导学案§2.1.2 求曲线的方程

§2.1.2 求曲线的方程学习目标1.学会根据条件,选择适当的坐标系求轨迹方程;2.掌握求轨迹方程的基本方法.学习过程一、课前准备(预习教材理P 35~ P 37,找出疑惑之处)复习1:已知曲线C 的方程为 22y x = ,曲线C 上有点(1,2)A ,A 的坐标是不是22y x = 的解?点(0.5,)t 在曲线C 上,则t =___ .复习2:曲线(包括直线)与其所对应的方程(,)0f x y =之间有哪些关系?复习3:求曲线方程的一般步骤是:(1) ;(2) ;(3) ;(4) ;(5) .二、新课导学※ 学习探究引入:圆心C 的坐标为(6,0),半径为4r =,求此圆的方程.问题:此圆有一半埋在地下,求其在地表面的部分的方程.探究:若4AB =,如何建立坐标系求AB 的垂直平分线的方程.【基础练习】1.已知点A(2,5)、B(3,一1),则线段AB 的方程是( ).(A)6x+y-17=0(B)6x+y-17=0(x ≥3)(C)6x+y-17=0(x ≤3)(D)6x+y-17=0(2≤x ≤3)2.直角坐标系内到两坐标轴距离之差等于1的点的轨迹方程是( ). (A) 1=-y x (B) 1=-y x (C)1=-y x (D) 1=±y x .3.设B A ,两点的坐标分别是()()7,3,1,1--,则线段AB 的垂直平分线的方程为: .4.已知等腰三角形三个顶点的坐标分别是()())0,2(,0,2,3,0C B A -,中线)(为原点O AO 所在直线的方程是 .5.已知方程222=+by ax 的曲线经过点⎪⎭⎫ ⎝⎛35,0A 和点(),1,1B 求b a ,的值.※ 典型例题例1(直接法)已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在直线l 的上方,它上面的每一个点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条直线的方程.例2 (相关点法) 动点M 在曲线x 2+y 2=1上移动,M 和定点B(3,O)连线的中点为P ,求P 点的轨迹方程,并指出点P 的轨迹.例3(定义法)已知直角三角形ABC, C ∠为直角,,求满足条件的点C 的轨迹方程.例4(参数法)在平面直角坐标系中,O 为坐标原点,已知两点())3,1(,1,3-B A 为,若点C 满足βα+=,其中R ∈βα,且1=+βα,求点C 的轨迹方程.三、总结提升※ 学习小结1. 求曲线的方程;2. 通过曲线的方程,研究曲线的性质.※ 知识拓展求曲线方程常用的方法有:直接法、代入法、参数法、定义法、相关点法、待定系数法、向量法等.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.方程[]2(3412)log (2)30x y x y --+-=的曲线经过点(0,3)A -,(0,4)B ,(4,0)C ,57(,)34D -中的( ). A .0个 B .1个 C .2个 D .3个2.已知(1,0)A ,(1,0)B -,动点满足2MA MB -=,则点M 的轨迹方程是( ).A .0(11)y x =-≤≤B .0(1)y x =≥C .0(1)y x =≤-D .0(1)y x =≥3.曲线y =与曲线0y x +=的交点个数一定是( ).A .0个B .2个C .4个D .3个4.若定点(1,2)A 与动点(,)P x y 满足4O PO A ∙=,则点P 的轨迹方程是 .5.由方程111x y -+-=确定的曲线所围成的图形的面积是 . 课后作业1.以O 为圆心,2为半径,上半圆弧的方程是什么?在第二象限的圆弧的方程是什么?2.已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B .设点M 是线段AB 的中点,求点M 的轨迹方程.。

人教版高中数学选修2-1 教案目录

人教版高中数学选修2-1 教案目录

学科人教版高中数学选修2-1编写组责任人序号知识模块教案标题编写人1人教版 选修2-1第一章 常用逻辑语 同步复习教案1( 基础)小榄校区(关潮辉)2人教版 选修2-1第一章 常用逻辑语 同步复习教案1( 提高)小榄校区(关潮辉)7人教版 选修2-1第一章 常用逻辑语 同步复习教案2( 基础)小榄校区(温艺铭)8人教版 选修2-1第一章 常用逻辑语 同步复习教案2( 提高)小榄校区(温艺铭)9人教版 选修2-1第一章单元复习教案(基础)小榄校区(泰龙、马俊)10人教版 选修2-1第一章单元复习教案(提高)小榄校区(泰龙、马俊)11第一章单元测试卷(基础)小榄校区(泰龙、马俊)12第一章单元测试卷(提高)小榄校区(泰龙、马俊)13人教版 选修2-1 第二章 2.1曲线与方程 同步教案(基础)石岐(基础)贺丽春起湾(提高)郑狄苗14人教版 选修2-1 第二章 2.1曲线与方程同步教案(提高)石岐(基础)贺丽春起湾(提高)郑狄苗15人教版 选修2-1 第二章 2.1椭圆同步教案(基础)石岐(基础)何善庆起湾(提高)郑狄苗16人教版 选修2-1 第二章 2.1椭圆同步教案(提高)石岐(基础)何善庆起湾(提高)郑狄苗17人教版 选修2-1 第二章 2.2双曲线同步教案(基础)石岐(基础)刘冬有起湾(提高)郑狄苗18人教版 选修2-1 第二章 2.2双曲线同步教案(提高)石岐(基础)刘冬有起湾(提高)郑狄苗19人教版 选修2-1 第二章 2.3抛物线同步教案(基础)石岐(基础)肖爱 起湾(提高)郑狄苗20人教版 选修2-1 第二章 2.3抛物线同步教案(提高)石岐(基础)肖爱 起湾(提高)郑狄苗星火教育高中标准教案目录第一章常用逻辑用语单元复习单元测试卷第二章圆锥曲线与方程刘冬有。

全国高中青年数学教师优质课大赛一等奖《曲线与方程》教学设计

全国高中青年数学教师优质课大赛一等奖《曲线与方程》教学设计

课题:2.1.1曲线与方程(第1课时)(人教A版普通高中课程标准实验教科书数学选修2—1第二章第一节)一、内容和内容解析1.教学内容《曲线与方程》共分两小节,第一小节主要内容是曲线的方程、方程的曲线的概念;第二小节内容是如何求曲线的方程.本课时为第一小节内容.2.地位与作用本小节内容揭示了几何中的“形”与代数中的“数”相统一的关系,体现了解析几何这门课的基本思想——数形结合思想,对解析几何教学有着指导性的意义.其中,对曲线的方程和方程的曲线从概念上进行明确界定,是解析几何中数与形互化的理论基础和操作依据.《曲线与方程》作为《圆锥曲线与方程》的第一节,一方面,该部分内容是建立在学生学习了直线的方程和圆的方程的基础上对曲线与方程关系认识的一次飞跃;另一方面,它也为下一步学习圆锥曲线方程奠定了模型的基础.因此,它在高中解析几何学习中起着承前启后的关键作用.二、目标和目标解析本课时的教学目标是结合已学曲线及其方程的实例,了解曲线与方程的对应关系,进一步理解数形结合的基本思想.具体目标如下:1.通过探究“以方程的解为坐标的点”汇集的图形,感知并归纳概括曲线与方程的对应关系;2.初步理解方程的曲线与曲线的方程的含义;3.通过经历曲线与方程的对应关系的探究过程,发展抽象概括的能力;4.能使用曲线的方程(方程的曲线)的概念判断曲线与方程的对应关系,继续理解数形结合思想.三、教学问题诊断分析1.问题诊断学生已经对“用方程表示直线、圆”有着感性的认知基础,能够根据直线的方程、圆的方程作对应的图形,并对数形结合思想有初步的了解.但是从直线与方程、圆与方程到曲线与方程的对应关系是一次从感性认识到理性认识的“飞跃”,由于大多数学生对“生活中其他的曲线是否能用、如何使用方程表示”这些问题还未曾有过思考,加之曲线的方程(方程的曲线)这一组概念有着较高的抽象性,所以预计在本课的学习中,学生可能出现以下困难:(1)作图探究结束后,学生独立地归纳概括并写出曲线的方程(方程的曲线)的概念时不规范,不全面;(2)难以理解“曲线上的点的坐标都是方程的解”和“以方程的解为坐标的点都在曲线上”这两句话在揭示“曲线与方程”的关系时各自所起的作用.2.重难点重点:曲线的方程(方程的曲线)的概念难点:曲线的方程(方程的曲线)概念的生成和理解3.突出重点、突破难点的策略本节课的教学,根据“问题引导,任务驱动”的设计思路,遵循概念学习的规律,使学生在过程中感受数形结合,从特殊到一般,化归与转化的数学思想.具体表现在:(1)用蕴含数学文化的广告创设情境,并将“章头图”、“章导言”融入其中,产生认知冲突,感悟学习曲线与方程的必要性;(2)让学生经历“作图—存异—质疑—寻因”的探究过程,感知方程的变化带来曲线的变化,曲线的差异导致方程的差异,再通过“独立书写—交流讨论—互动修正”生成概念;(3)学生自主举例,辨析概念,联系已学知识,完成对概念的“结构化”.四、教学支持条件分析1.学情分析本课授课对象是成都石室中学高二理科实验班的学生,数学基础扎实,思维较活跃,具有较为丰富的探究活动经验,但在抽象概括能力和语言的规范表达上还有待进一步提升.2.教学策略与教法、学法本课采取“探究—发现”教学模式.教师的教法注重活动的安排和问题的引导,通过问题引导学生从特殊到一般进行探索发现,并归纳概括.学生的学法注重独立探究、合作交流、归纳建构.教具:多媒体PPT课件,平板电脑,三角板,彩色粉笔学具:教材、草稿本、三角板、圆规、铅笔五、教学过程设计结合教材知识内容和教学目标,本课的教学环节及时间分配如下:教学内容师生活动(预设)设计说明一、创设情景,引入概念师:不知大家有没有看过下面【阶段小结】教师引导下,学生交流自己对定义的认识.台上给大家讲解.生14:错误.两条都不满足.师:进一步分析不符合要求的点或者是方程的解,请你举例说明.生14:通过图象我们发现曲线是分布在第一、三象限,而方程的曲线在第一、二象限.师:能否用定义加以说明?生14:如点(-4,-1)在曲线上,但不是方程F的解;(-4,1)的坐标是方程的解,以它为坐标的点不在曲线上.师:其实,要解决曲线与方程的关系的判断,除了教材上定义之外,还有其他的一些表述,请你在学习定义的基础上谈谈自己对曲线与方程关系的判断方法.生15:(预设)检查曲线上的点和方程的解之间的关系.师:不错,但注意准确性.应该是曲线上的每一个点和方程的每一个解的关系.生16:(预设)看曲线上是否有不是方程的解为坐标的点,看曲线是否包括了方程的所有解为坐标的点.师:很好,这种判断方法相当于是看曲线是否纯粹地列出了方程的解为坐标的点,无多余的点,而方程的解是否完备地通过曲线体现了,没有漏掉解.通过对概念的应用,将学生对曲线的方程(方程的曲线)这一概念的多角度理解进行梳理,引导学生在说出自己对曲线与方程关系的理解的基础上对概念再认识.四、课堂检测,课外延伸【课堂检测】请将以下四个方程和右边的图形用连段连接起来:||0x y-=师:接下来请看课堂检测.请将以下四个方程和四个曲线配对,并简要说明理由.生17:观察方程中解的正负和曲线上点的坐标的正负,可以筛选答案.师:不错.如果我们要用概念检验曲线和方程之间的关系,该如何分析呢?比如第一个方程和第一幅图.课堂检测的作用是检测学生在对定义的理解是否深入,应用是否灵活.||0x y-=220x y-=x y-=【课外延伸】1.查阅资料了解数学家对圆锥曲线的研究历史,并了解笛卡尔在其中所做出的贡献.2.广告创意使用到的笛卡尔的爱情传说中,关于(1sin)r aθ=-与心形曲线的关系涉及到了极坐标系,我们将会在《选修4-4》中学习.生17:第一支曲线上的部分点的坐标不是第一个方程的解,所以方程不是曲线的方程.师:大家想知道本课之初视频背后的故事吗?生(齐):想.(播放视频)师:广告创意使用到的笛卡尔的爱情传说中,关于(1sin)r aθ=-与心形曲线的关系涉及到了极坐标系,我们将会在《选修4-4》中学习.学生根据范围直接进行配对,体现了其对曲线与方程关系掌握的灵活性.《曲线与方程》衔接了直线、圆与圆锥曲线,了解圆锥曲线的发展历史,更有利于激发学生使用方程研究圆锥曲线的兴趣,更加积极地学习解析几何一眼就问题的方法.对于笛卡尔的爱情传说,学生一定是很有兴趣的,其中涉及到的极坐标系作为本课最后的一个说明即拓展了学生视野,也将高中解析几何的直线与方程、圆与方程、圆锥曲线与方程、坐标系与参数方程四个部分都出现在了本课中.附:板书设计六、目标检测设计在本节课的教学中,为了达成教学目标,我注意了教学环节的设计与教学目标的达成相呼应,做到目标确定环节,在环节中实现目标,具体如下:本课的教学目标达成情况如下:此外,课堂中我还设计了以下目标检测环节: 1.课堂检测请将以下四个方程和图形用连段连接起来:||0x y -= ||0x y -= 220x y -=0x y -=2.课外延伸(1)查阅资料了解数学家对圆锥曲线的研究历史,并了解笛卡尔和坐标系在其中所做出的贡献.(2)广告创意使用到的笛卡尔的爱情传说中关于(1sin)=-与心形曲线的关r aθ系,便是曲线与方程对应关系的体现,它涉及到了极坐标系,我们将会在《选修4-4》坐标系与参数方程中学习.设计意图:课堂检测的目的是检测教学效果.再次感受方程的不同导致曲线的不同之间,曲线的差异对应方程的差异,理解数形结合思想.学会使用概念对曲线与方程的关系进行界定.《中国学生发展核心素养》总体框架中谈到,“文化是人存在的根和魂”,文化基础包括“人文底蕴”、“科学精神”,本课内容承载着这两个要素,曲线与方程的关系体现了解析几何核心思想,而解析几何是近代数学的里程碑.课外延伸旨在通过让学生自主查阅资料拓展视野,了解数学史,感受数学文化,发展数学核心素养.结尾部分让学生了解笛卡尔的信件便使用了“曲线与方程的对应关系”这一知识,激发学生兴趣,并不经意地提及了坐标系及参数方程这一解析几何的板块.《曲线与方程》教学设计说明本课时作为《圆锥曲线与方程》的第一节课,主要内容是曲线的方程(方程的曲线)的概念.学生已经对“用方程表示直线、圆”有着感性的认知基础,能够根据直线的方程、圆的方程作对应的图形,并对数形结合思想有初步的了解.结合以上情况,我制定了本堂课的目标就是结合实例了解曲线与方程的对应关系,感悟数形结合思想.对本课的设计,我作以下说明:1.关于设计定位.如果将曲线的方程(方程的曲线)这一概念直接呈现给学生,然后进行对应练习,学生很可能只会机械记忆判断曲线与方程对应关系的两个条件,无法理解他们在揭示这种关系时各自所起的作用.我在设计这堂课时始终坚持两条思路.一条是以曲线的方程(方程的曲线)这一组概念的知识技能为目标的“明线”,一条是以经历一个完整的“从典型事例中抽象出新的数学概念”体验过程为目标的“暗线”.让数学思想方法似甘露一样浸润学生心田.2.遵循概念学习的规律.曲线与方程的概念的获得应该符合学生的认知规律,在情景中认识到研究“曲线与方程的关系”的必要性,在对典型丰富的事例的探究过程中,归纳概括出特征、性质,并将自然语言逐步转化为数学语言.因此遵循概念教学的规律,设计了“感知概念——形成概念——辨析概念——应用概念”的教学过程.3.实现教材中本章“章头图”、“章导言”的教育价值和作用.作为《圆锥曲线与方程》的第一课时,适当对本章学习内容进行展望是很有必要的,本课的创设情境部分很好的整合了“章头图”、“章导言”与本节内容,产生认知冲动,很好的实现了“章头图”、“章导言”的教育价值和作用.4.浸润数学文化、渗透数学思想、鼓励数学阅读、发展核心素养.文化基础是核心素养的重要内容,包括“人文底蕴”和“科学精神”两个方面,如何在数学学习过程中根据恰当素材进行人文情怀的塑造,是每一位数学教育工作者应该重视的内容.本课的内容体现了解析几何的基本数学思想——数形结合思想,是解析几何的核心概念,课堂中适度安排数学史、数学文化相关内容能够让学生体会数学发展的过程,发展数学素养.5.关于多媒体技术的使用教学中平板电脑充当投影仪的作用,但较传统投影仪有着记录学生活动过程,节约展示时间的优势.因此,根据需要适当选择媒体辅助可以更好的实现教学目的.。

【全程复习方略】2014-2015学年高中数学 2.1.1曲线与方程课件 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 2.1.1曲线与方程课件 新人教A版选修2-1

错因剖析
将方程转化变形时漏掉阴影处,即忽略了根式应有
意义
【防范措施】 合理进行转化 将方程变形时,前后应保持等价,否则,变形后的方程表示 的曲线不是原方程代表的曲线.另外当方程中含有根式时,要注 意根式必须有意义.如本例含有根式,在化简时就容易忽视根式 必须有意义而导致错误.
(3)方程x+y-2=0是以A(2,0),B(0,2)为端点的线段的方程.
(
)
【解析】(1)错误,曲线的方程必须满足两个条件. (2)正确,根据曲线的方程和方程的曲线的概念,不满足方程 F(x,y)=0的点,显然不在曲线C上. (3)错误,以方程的解为坐标的点不一定在线段AB上,如M(-4,6) 就不在线段AB上. 答案:(1)〓 (2)√ (3)〓
【拓展类型】曲线的交点问题 【备选例题】(1)若直线x-2y-2k=0与y=x+k的交点在曲线 x2+y2=25上,则k的值是( A.1 B.-1 )
C.1或-1
2
D.以上都不对
2
(2)求直线y=x+ 3 与曲线y= 1 x2的交点.
【解析】(1)选C.联立得方程组 (-4k,-3k),代入圆的方程中. 即(-4k)2+(-3k)2=25,所以k=〒1.
【微思考】 (1)是否所有曲线都有相应的方程? 提示:不一定,有的曲线有方程,有的曲线就没有方程.如图,随 意画一条曲线,则求不出方程与之对应.
(2)怎样判断方程是曲线的方程? 提示:判断方程是否是曲线的方程,要从两个方面着手,一是检 验曲线上点的坐标是否都适合方程,二是检验以方程的解为坐 标的点是否都在曲线上.
f (x 0,y0 ) 0, (1)若P(x0,y0)为C1,C2交点,则 g(x 0,y0 ) 0.

人教A版高中数学选修2-1《2.2椭圆》复习教案

人教A版高中数学选修2-1《2.2椭圆》复习教案

1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。

【数学】2.1.1《曲线与方程》课件(新人教A版选修2-1)

【数学】2.1.1《曲线与方程》课件(新人教A版选修2-1)

例子:(2)画出函数 y
y 8
= 2x
2
(-1≤x≤2) 的图象C.
y
y = 2x 2
y = 2x 2
(-1≤x≤2)
8
-1
O
2
x
-1
O
2
x
符合条件①不符合条件②
符合条件②不符合条件 ①
例子:(2)画出函数 的图象C.
y 8
y = 2x
2
(-1≤x≤2)
y = 2x 2
(-1≤x≤2)
-1
O
2
x
y 1 -1 0 x 1 y 1 -2 -1 0 1 2 x y 1 -2 -1 0 1 2 x
图3
例2 证明以坐标原点为圆心,半径等于5的圆的方程是x2 +y2 = 25,并判断点M1(3,-4),M2(-3,2)是否在这个圆 上.
证明:(1)设M(x0,y0)是圆上任意一点.因为点M到坐标原点 的距离等于5,所以 x 0 2 + y 0 2 = 5 , 也就是xo2 +yo2 = 25. 即 (x0,y0) 是方程x2 +y2 = 25的解.
即:曲线上所有点的集合与此曲线的方程的解集能够 一一对应
集合的 观点
3、如果曲线C的方程是f(x,y)=0,那么点 P( x0 , y0 ) 在曲线C上的充要条件 是 f ( x0 , y0 ) = 0
学习例题巩固定义
例1判断下列结论的正误并说明理由 对(1)过点A(3,0)且垂直于x轴的直线为x=3 错(2)到x轴距离为2的点的轨迹方程为y=2 错(3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 例2证明:圆心为坐标原点,半径为5的圆的方程是 y x2 + y2 = 25 5 M 1 (3,−4)、M( − 2 5, 是否在圆上 2) 并判断 2 变式训练: 变式训练:写出下列半圆的方程

2.1曲线方程-人教A版高中数学选修2-1课时练习

2.1曲线方程-人教A版高中数学选修2-1课时练习

高二年级(数学)学科习题卷曲线方程 一、选择题:1.已知命题“曲线C 上的点的坐标是方程f (x ,y )=0的解”是正确的,则下列命题中正确的是( ) A .满足方程f (x ,y )=0的点都在曲线C 上 B .方程f (x ,y )=0是曲线C 的方程 C .方程f (x ,y )=0所表示的曲线不一定是C D .以上说法都正确2.方程(x 2-4)(y 2-4)=0表示的图形是 ( )A .两条直线B .四条直线C .两个点D .四个点3.方程(x 2-4)2+(y 2-4)2=0表示的图形是A .两个点B .四个点C .两条直线D .四条直线4.已知A (-1,0),B (1,0),C 为平面内的一动点,且满足||2||AC BC =,则点C 的轨迹方程为 ( )A .22610x y x +++=B .22610x y x +-+=C .2210103x y x +-+= D .2210103x y x +++=5.方程x +|y -1|=0表示的曲线是 ( )6.已知A (1,0),B (-1,0),动点M 满足|MA |-|MB |=2,则点M 的轨迹方程是( ) A .011()y x =-≤≤ B .0(1)y x =≥ C .1)0(y x =≤- D .0(||1)y x =≥7.已知A (-2,0)、B (2,0),△ABC 的面积为10,则顶点C 的轨迹是( )A .一个点B .两个点C .一条直线D .两条直线二、填空题:8.等腰三角形底边的两个顶点是B (2,1),C (0,-3),则另一顶点A 的轨迹方程是______________. 9.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足:4OP OA ⋅=,则动点P 的轨迹方程为______________.10.已知O 为坐标原点,动点M 在椭圆C :2215x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足5NP NM =,则点P 的轨迹方程为______________.三、解答题:11.已知A 、B 分别是直线y x =和y x =上的两个动点,线段AB 的长为P 是AB 的中点,求动点P 的轨迹C 的方程.12.已知点P (2,2),圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及POM △的面积.13.两个定点(2,2),(0,2)P Q -,长为2的线段AB 在直线y x =上移动,求直线PA ,QB 的交点M 的轨迹方程。

2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程

2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程

第二章圆锥曲线与方程2.1 曲线与方程*2.1.1 曲线与方程2.1.2 求曲线的方程基础过关练题组一曲线与方程的概念1.已知曲线C的方程为x3+x+y-1=0,则下列各点中在曲线C上的点是( )A.(0,0)B.(-1,3)C.(1,1)D.(-1,1)2.(2018天津耀华中学高二上学期月考)直线x-y=0与曲线xy=1的交点坐标是( )A.(1,1)B.(-1,-1)C.(1,1),(-1,-1)D.(0,0)3.已知0≤α<2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,则α的值为( )A.π3 B.5π3C.π3或5π3D.π3或π64.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2√x”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件题组二 方程的曲线5.方程4x 2-y 2+6x-3y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y+3=0C.直线2x-y=0和直线2x+y+3=0D.直线2x+y=0和直线2x-y+3=06.下列四个选项中,方程与曲线相符合的是( )7.方程|x|+|y|=1表示的曲线所围成图形的面积为 .题组三 求曲线的方程8.设A 为圆(x-1)2+y 2=1上的动点,PA 是圆的切线,且|PA|=1,则点P 的轨迹方程是( )A.(x-1)2+y 2=2B.(x-1)2+y 2=4C.y 2=2xD.y 2=-2x9.在平面直角坐标系中,O 为坐标原点,点A(1,0),B(2,2).若点C 满足OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ ),其中t∈R ,则点C 的轨迹方程为 .10.(2018湖南岳阳一中高二上学期期末)已知M 为直线l:2x-y+3=0上的一动点,A(4,2)为一定点,点P 在直线AM 上运动,且AP ⃗⃗⃗⃗⃗ =3PM ⃗⃗⃗⃗⃗⃗ ,求动点P 的轨迹方程.11.已知△ABC 中,AB=2,AC=√2BC. (1)求点C 的轨迹方程; (2)求△ABC 的面积的最大值.能力提升练一、选择题1.(2018海南海口一中高二上学期月考,★★☆)方程xy 2+x 2y=1所表示的曲线( )A.关于x 轴对称B.关于y 轴对称C.关于原点中心对称D.关于直线y=x 对称 2.(2020鄂东南九校高二期中联考,★★☆)方程(3x-y+1)(y-√1-x 2)=0表示的曲线为( ) A.一条线段和半个圆 B.一条线段和一个圆 C.一条直线和半个圆 D.两条线段3.(2020北京朝阳高三期末,★★☆)笛卡儿、牛顿都研究过方程(x-1)(x-2)(x-3)=xy,关于这个方程的曲线有下列说法:①该曲线关于y 轴对称;②该曲线关于原点对称;③该曲线不经过第三象限;④该曲线上有且只有三个点的横、纵坐标都是整数.其中正确的是( ) A.②③ B.①④ C.③ D.③④4.(2019江西南昌高三开学摸底考试,★★☆)在平面直角坐标系xOy 中,已知M(-1,2),N(1,0),动点P 满足|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN ⃗⃗⃗⃗⃗⃗ |,则动点P 的轨迹方程是( )A.y 2=4xB.x 2=4yC.y 2=-4xD.x 2=-4y5.(★★☆)方程x 2+y 2=1(xy<0)表示的曲线形状是( )6.(2018吉林长春五县期末,★★★)已知定点M(-3,0),N(2,0),若动点P满足|PM|=2|PN|,则点P的轨迹所包围的图形的面积等于( )A.100π9 B.142π9C.10π3D.9π二、填空题7.(2020贵州贵阳高二期末,★★☆)以古希腊数学家阿波罗尼斯命名的阿波罗尼斯圆,是指到两定点的距离之比为常数λ(λ>0,λ≠1)的动点M的轨迹.已知A(-2,0),B(2,0),动点M满足|MA||MB|=√2,此时阿波罗尼斯圆的方程为.8.(2020北京房山高二期末,★★☆)已知曲线W的方程为|y|+x2-5x=0.①请写出曲线W的一条对称轴方程: ;②曲线W上的点的横坐标的取值范围是.三、解答题9.(2019贵州铜仁一中高二入学考试,★★☆)已知动点M到点A(-1,0)与点B(2,0)的距离之比为2∶1,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点P(5,-4)作曲线C的切线,求切线方程.10.(2019上海七宝中学高二期末,★★★)在平面直角坐标系xOy中,曲线Γ:x2+y2=1(y≥0).(1)如图1,点B为曲线Γ上的动点,点A(2,0),求线段AB的中点的轨迹方程;(2)如图2,点B为曲线Γ上的动点,点A(2,0),将△OAB绕点A顺时针旋转90°得到△DAC,求线段OC长度的最大值.答案全解全析 基础过关练1.B 点P(x 0,y 0)在曲线f(x,y)=0上⇔f(x 0,y 0)=0.经验证知点(-1,3)在曲线C 上.2.C 由{x -y =0,xy =1,得{x =1,y =1或{x =-1,y =-1.故选C.3.C 将点P 的坐标代入方程(x-2)2+y 2=3,得(cos α-2)2+sin 2α=3,解得cos α=12.又0≤α<2π,所以α=π3或5π3.4.B 设M(x 0,y 0),由点M 的坐标满足方程y=-2√x ,得y 0=-2√x 0,∴y 02=4x 0,∴点M 在曲线y 2=4x 上.反之不成立,故选B.5.C ∵4x 2-y 2+6x-3y=(2x+y)(2x-y)+3(2x-y)=(2x-y)(2x+y+3)=0, ∴原方程表示直线2x-y=0和2x+y+3=0.6.D 对于A,点(0,-1)满足方程,但不在曲线上,排除A;对于B,点(1,-1)满足方程,但不在曲线上,排除B;对于C,由于曲线上第三象限的点的横、纵坐标均小于0,不满足方程,排除C.故选D.7.答案 2解析 方程表示的图形是边长为√2的正方形(如图所示),其面积为(√2)2=2.8.A 设圆(x-1)2+y 2=1的圆心为C,半径为r,则C(1,0),r=1,依题意得|PC|2=r 2+|PA|2,即|PC|2=2,所以点P 的轨迹是以C 为圆心,√2为半径的圆,因此点P 的轨迹方程是(x-1)2+y 2=2. 9.答案 y=2x-2解析 设点C(x,y),则OC ⃗⃗⃗⃗⃗ =(x,y).因为点A(1,0),B(2,2),所以OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ )=(1+t,2t),所以{x =t +1,y =2t ,消去t,得点C 的轨迹方程为y=2x-2. 10.解析 设M(x 0,y 0),P(x,y), 则AP⃗⃗⃗⃗⃗ =(x-4,y-2),PM ⃗⃗⃗⃗⃗⃗ =(x 0-x,y 0-y), 由题意可得{x -4=3(x 0-x ),y -2=3(y 0-y ),所以{x 0=4x -43,y 0=4y -23.因为点M(x 0,y 0)在直线2x-y+3=0上, 所以2×4x -43-4y -23+3=0,即8x-4y+3=0,所以点P 的轨迹方程为8x-4y+3=0.11.解析 (1)以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则A(-1,0),B(1,0).设C(x,y),由AC=√2BC,得(x+1)2+y 2=2[(x-1)2+y 2],即(x-3)2+y 2=8,又在△ABC 中,y≠0,所以点C 的轨迹方程为(x-3)2+y 2=8(y≠0).(2)因为AB=2,所以S △ABC =12×2×|y|=|y|.因为(x-3)2+y 2=8(y≠0), 所以0<|y|≤2√2,所以S △ABC ≤2√2,即△ABC 的面积的最大值为2√2.能力提升练一、选择题1.D 设P(x 0,y 0)是曲线xy 2+x 2y=1上的任意一点,则x 0y 02+x 02y 0=1.设点P 关于直线y=x 的对称点为P',则P'(y 0,x 0),因为y 0x 02+y 02x 0=x 0y 02+x 02y 0=1,所以P'在曲线xy 2+x 2y=1上,故该曲线关于直线y=x 对称.2.A 由方程(3x-y+1)(y-√1-x 2)=0得y=√1-x 2(y≥0)或3x-y+1=0,且满足-1≤x≤1,即x 2+y 2=1(y≥0)或3x-y+1=0(-1≤x≤1),∴方程(3x-y+1)(y-√1-x 2)=0表示一条线段和半个圆.3.C 将x=-x 代入得到(x+1)(x+2)(x+3)=xy,方程改变,故该曲线不关于y 轴对称; 将x=-x,y=-y 代入得到(x+1)(x+2)(x+3)=-xy,方程改变,故该曲线不关于原点对称; 当x<0,y<0时,(x-1)(x-2)(x-3)<0,xy>0,显然方程不成立,∴该曲线不经过第三象限;令x=-1,易得y=24,即(-1,24)在曲线上,同理可得(1,0),(2,0),(3,0)也在曲线上,∴该曲线上有且只有三个点的横、纵坐标都是整数是错误的.4.A 设P(x,y),因为M(-1,2),N(1,0),所以PM ⃗⃗⃗⃗⃗⃗ =(-1-x,2-y),ON ⃗⃗⃗⃗⃗⃗ =(1,0),PN ⃗⃗⃗⃗⃗⃗ =(1-x,-y),因为|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN⃗⃗⃗⃗⃗⃗ |,所以|1+x|=√(1-x )2+(-y )2, 整理得y 2=4x.5.C 方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部分,故选C. 6.A 设P(x,y),则由|PM|=2|PN|,得(x+3)2+y 2=4[(x-2)2+y 2],化简,得3x 2+3y 2-22x+7=0, 即(x -113)2+y 2=1009,所以所求图形的面积S=100π9.二、填空题7.答案 x 2+y 2-12x+4=0 解析 设M(x,y),因为|MA ||MB |=√2, 所以√(x+2)2+y 2√(x -2)+y 2=√2,整理得x 2+y 2-12x+4=0.8.答案 ①y=0(或x =52) ②[0,5]解析 ①由W 的方程知,若(x,y)是曲线上的点,则(x,-y)也是曲线上的点,因此直线y=0是曲线W的一条对称轴.同理,点(52-x,y)与(52+x,y)也都是曲线上的点,因此直线x=52也是曲线W的一条对称轴.②由|y|+x2-5x=0得|y|=-x2+5x,因为|y|≥0,所以-x2+5x≥0,解得0≤x≤5.三、解答题9.解析(1)设动点M的坐标为(x,y),则|MA|=√(x+1)2+y2,|MB|=√(x-2)2+y2所以√(x+1)2+y2√(x-2)+y2=2,化简得(x-3)2+y2=4.因此,动点M的轨迹方程为(x-3)2+y2=4.(2)当过点P的直线斜率不存在时,直线方程为x-5=0,圆心C(3,0)到直线x-5=0的距离等于2,此时直线x-5=0与曲线C相切; 当过点P的切线斜率存在时,不妨设斜率为k,则切线方程为y+4=k(x-5),即kx-y-5k-4=0,由圆心到切线的距离等于半径,得√k2+1=2,解得k=-34.所以切线方程为3x+4y+1=0.综上所述,切线方程为x-5=0和3x+4y+1=0.10.解析(1)设点B的坐标为(x0,y0),则y0≥0,设线段AB的中点为M(x,y), 因为点B在曲线Γ上,所以x02+y02=1.①因为M为线段AB的中点,所以{x=x0+22,y=y02,则{x0=2x-2,y0=2y,代入①式得(2x-2)2+4y2=1,化简得(x-1)2+y2=14,其中y≥0.则线段AB的中点的轨迹方程为(x-1)2+y2=14(y≥0).(2)如图所示,将△OAB绕点A顺时针旋转90°得到△DAC,易知点D(2,2),结合图形可知,点C在曲线(x-2)2+(y-2)2=1(x≥2)上运动,则问题转化为求原点O到曲线(x-2)2+(y-2)2=1(x≥2)上一点C的距离的最大值,连接OD并延长交曲线(x-2)2+(y-2)2=1(x≥2)于点C',当点C与C'重合时,|OC|取得最大值,且|OC|max=|OD|+1=2√2+1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1 曲线与方程(1)
【学习目标】
1.理解曲线的方程、方程的曲线;
2.求曲线的方程.
【重点难点】
重点:曲线的方程、方程的曲线
难点:求曲线的方程.
【学习过程】
一、自主预习
(预习教材理P 34~ P 36,找出疑惑之处)
复习1:画出函数22y x = (12)x -≤≤的图象.
复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程.
二、合作探究 归纳展示
探究任务一:到两坐标轴距离相等的点的集合是什么?写出它的方程.
问题:能否写成y x =,为什么?
三、讨论交流 点拨提升
曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之
间,
如果具有以下两个关系:
1.曲线C 上的点的坐标,都是 的解;
2.以方程(,)0F x y =的解为坐标的点,都是 的点,
那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做这个方程(,)0F x y =的曲线. 注意:1︒ 如果……,那么……;
2︒ “点”与“解”的两个关系,缺一不可;
3︒ 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法; 4︒ 曲线与方程的这种对应关系,是通过坐标平面建立的.
试试:
1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ .
2.曲线220x xy by +-=上有点(1,2)Q ,则b = .
四、学能展示 课堂闯关
※ 典型例题
例1. 证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±.
变式:到x 轴距离等于5的点所组成的曲线的方程是50y -=吗?
例2.设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.
变式:已知等腰三角形三个顶点的坐标分别是(0,3)A ,(2,0)B -,(2,0)C .中线AO (O 为原点)所在直线的方程是0x =吗?为什么?
反思:BC 边的中线的方程是0x =吗?
练1.下列方程的曲线分别是什么? (1)
2x y x = (2) 222x y x x -=- (3) log a x y a =
练2.离原点距离为2的点的轨迹是什么?它的方程是什么?为什么?
五、学后反思
※ 学习小结
1.曲线的方程、方程的曲线;
2.求曲线的方程的步骤:
①建系,设点;
②写出点的集合; ③列出方程;
④化简方程;
1. 点(1,2)A -,(2,3)B -,(3,10)C 是否在方程2210x xy y -++=表示的曲线上?为什么?
2 求和点(0,0)O ,(,0)A c 距离的平方差为常数c 的点的轨迹方程.。

相关文档
最新文档