超导材料磁悬浮力测量资料
大学磁悬浮实验报告

大学磁悬浮实验报告实验报告大学磁悬浮实验报告一、实验目的本次实验的目的是研究磁悬浮原理以及悬浮高度与磁场大小的关系,进一步深化我们对磁场和力学的理解。
二、实验原理磁悬浮是利用了超导体和永久磁铁之间的相互作用力而实现的。
当超导体置于磁场中时,由于超导体本身特殊的电性质,从而可使磁场在超导体内不存在。
因此,超导体内的物体可以通过永久磁铁的磁场被悬浮起来。
根据悬浮高度与磁场大小的关系,我们可以通过调整磁铁磁场大小来控制物体的悬浮高度。
三、实验步骤1. 将永久磁铁放在台面上,保持水平。
2. 将超导体放在磁铁上方,调整超导体位置。
3. 均匀地撒上磁铁粉末,观察物体和磁铁之间的作用力,进一步调整物体的位置。
4. 测量物体悬浮的高度,记录数据。
5. 重复实验3-4步骤,分别记录不同磁铁大小下物体的悬浮高度。
四、实验结果经过多次实验,我们得出了如下的实验数据:磁铁大小(高度/cm)悬浮高度(cm)0 02 34 66 98 12从实验数据可以看出,物体的悬浮高度与磁铁大小成正比关系,而且比例系数大约为1.5。
五、实验结论通过本次实验,我们深入了解了磁悬浮的原理以及物体悬浮高度与磁场大小的相关性。
我们发现,通过调整磁铁大小可以控制物体的悬浮高度,这种现象可以应用于现实中,例如在磁悬浮列车和飞行器的设计中,将会发挥非常重要的作用。
六、实验感想本次实验让我深入了解了磁悬浮的原理,而且还体验了调整实验条件、记录数据和分析数据的整个过程。
在实验中,我深刻体会到了科学精神,也更加珍惜科学实验的机会,希望以后能再次参加这样有趣、实用的实验。
磁悬浮实验实验报告

实验报告课程名称:__工程电磁场与波____指导老师:_____姚缨英_____ 实验名称:磁悬浮 _实验类型:____ ____同组学生姓名:____一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1、观察自稳定的磁悬浮物理现象;2、了解磁悬浮的作用机理及其理论分析的基础知识;3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。
二、实验原理(1)自稳定的磁悬浮物理现象由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,该系统中可调节的扁平盘状线圈的激磁电流由自耦变压器提供,从而在50 hz正弦交变磁场作用下,铝质导板中将产生感应涡流,最终表征为盘状载流线圈自稳定的磁悬浮现象。
(2)基于虚位移法的磁悬浮机理的分析将盘状载流线圈和铝板组合看成一个磁系统。
为简化分析,将铝板看作为一半无限大完纯导体。
事实上当激磁频率为50 hz 时,只有当铝板表面相对扁平盘状线圈足够大,而厚度b 远大于该频率下铝板的透入深度d,才能作这一理想化假设。
在此前提下,应用镜像法,可导得该磁系统的自感为式中, a ——盘状线圈被理想化为单匝圆形线圈时的平均半径;n ——线匝数;r ——导线被看作圆形导线时的等效圆半径。
当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。
此时,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。
现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。
对盘状载流线圈和铝板组合的磁系统,其对应于力状态分析的磁2场能量为wm=l*i/2。
式中,i 为激磁电流的有效值。
其次,取盘状载流线圈与铝板之间相对位移h(即给定的悬浮高度)为广义坐标,按虚位移法可求得作用于该系统的电动推斥力,也就是作用于盘状载流线圈的向上的电磁悬浮力从而,由稳定磁悬浮状态下力的平衡关系,即式中,m ——盘状线圈的质量(kg);g ——重力加速度(9.8 m/s2);即可得对于给定悬浮高度 h 的磁悬浮状态,系统所需激磁电流为三、实验内容(1)观察自稳定的磁悬浮物理现象(2)实测对应于不同悬浮高度的盘状线圈的激励电流四、操作方法和实验步骤1、观察自稳定的磁悬浮物理现象在给定厚度为14 mm的铝板情况下,通过调节自耦变压器以改变输入盘状线圈的激磁电流,从而观察在不同给定悬浮高度h的条件下,起因于铝板表面层中涡流所产生的去磁效应,而导致的自稳定的磁悬浮物理现象2、实测对应于不同悬浮高度的盘状线圈的激磁电流在厚度为14 mm的铝板情况下,以5 mm为步距,对应于不同的悬浮高度,逐点测量稳定磁悬浮状态下盘状线圈中的激磁电流,记录其悬浮高度h与激磁电流i的相应读数。
超导材料的磁性测试与分析

超导材料的磁性测试与分析引言超导材料是一类具有特殊电磁性质的材料,其在低温下能够表现出零电阻和完全抗磁性的特点。
超导材料的磁性测试与分析是研究和应用超导材料的关键步骤之一。
本文将介绍超导材料的磁性测试方法和分析技术,探讨其在超导领域中的应用。
一、磁性测试方法1.1 磁化曲线测量磁化曲线测量是一种常用的测试超导材料磁性的方法。
通过在不同温度和磁场下测量材料的磁化曲线,可以得到材料的临界温度、临界磁场等关键参数。
常用的磁化曲线测量方法包括交流磁化测量和直流磁化测量。
1.2 磁滞回线测量磁滞回线测量是研究超导材料磁性的重要手段之一。
通过在不同温度和磁场下测量材料的磁滞回线,可以了解材料的磁化和解磁过程,进一步研究材料的超导性质和磁化机制。
1.3 磁化率测量磁化率是描述材料磁性的重要物理量,通过测量材料的磁化率可以了解材料的磁化响应和磁化机制。
常用的磁化率测量方法包括交流磁化率测量和直流磁化率测量。
二、磁性测试的分析技术2.1 X射线衍射分析X射线衍射是一种常用的材料结构分析技术,可以通过测量材料的衍射图谱来确定材料的晶体结构和晶格参数。
在超导材料的磁性测试中,X射线衍射分析可以用来确定材料的晶体结构和晶格畸变等与超导性质相关的结构信息。
2.2 扫描电子显微镜(SEM)分析扫描电子显微镜是一种常用的表面形貌和成分分析技术,可以通过扫描样品表面并测量所产生的电子信号来观察材料的表面形貌和成分分布。
在超导材料的磁性测试中,SEM分析可以用来观察材料的晶粒形貌和晶界特征等与超导性质相关的微观结构信息。
2.3 能谱分析能谱分析是一种常用的材料成分分析技术,可以通过测量材料的能谱图谱来确定材料的元素组成和化学状态。
在超导材料的磁性测试中,能谱分析可以用来确定材料的化学成分和杂质含量等与超导性质相关的成分信息。
三、超导材料磁性测试与分析的应用3.1 超导材料的性能评估通过磁性测试与分析,可以评估超导材料的性能,包括临界温度、临界磁场、临界电流等关键参数。
超导磁悬浮实验报告

超导磁悬浮实验报告本实验旨在通过超导磁悬浮技术,研究超导体在低温下的磁性特性,并探索其在磁悬浮领域的应用潜力。
在实验中,我们使用了液氮冷却系统,将超导体冷却至临界温度以下,观察其在外加磁场下的悬浮效应,同时测量其磁化曲线和临界电流等参数,以期获得有关超导体磁悬浮性能的实验数据。
首先,我们准备了液氮冷却系统和超导体样品,并将超导体样品置于液氮中进行冷却。
随着温度的逐渐下降,我们观察到超导体表面开始出现磁悬浮效应,即超导体在外加磁场下产生的抗磁性使其悬浮于磁场中,呈现出稳定的悬浮状态。
这一现象与超导体的迈斯纳效应密切相关,表明超导体在临界温度以下具有完全抗磁性。
随后,我们对超导体样品在不同外加磁场下的悬浮效应进行了观察和测量。
实验结果显示,随着外加磁场的增加,超导体的悬浮高度呈现出非线性变化,这与迈斯纳效应的特性相符合。
同时,我们还测量了超导体在不同温度下的临界电流值,结果表明临界电流随温度的降低而增加,这也与超导体的抗磁性质相关。
在实验过程中,我们还发现了一些问题和挑战。
例如,超导体样品的制备和冷却过程需要严格控制,以确保样品能够达到超导态并保持稳定的悬浮状态。
此外,超导体在外界振动和扰动下容易失去稳定悬浮状态,因此需要在实验环境中进行有效的隔振和稳定控制。
综合以上实验结果和分析,我们得出了以下结论,超导体在临界温度以下具有完全抗磁性,并能够在外加磁场下实现稳定的磁悬浮效应;超导体的悬浮高度和临界电流受外加磁场和温度的影响,呈现出特定的非线性变化规律。
这些结论为超导磁悬浮技术的应用提供了重要的实验数据和理论基础。
总之,本实验通过超导磁悬浮技术的研究,深入探讨了超导体在低温下的磁性特性和磁悬浮效应,并取得了一系列有意义的实验结果。
这些结果对于超导磁悬浮技术的发展和应用具有重要的理论和实验价值,也为相关领域的进一步研究提供了有益的参考和借鉴。
超导磁悬浮测量实验报告

超导磁悬浮测量实验报告超导磁悬浮技术是一种新型的磁悬浮技术,它采用了超导材料和强磁场技术,可以实现磁悬浮负载的稳定和高精度测量,广泛应用于轴承、运载和测量等领域。
本次实验我们使用的是超导磁悬浮测量系统,实验目的是探究超导磁悬浮技术的原理和应用,具体步骤如下:首先,我们制备了超导磁悬浮材料,这些材料由氧化铈和钙钛矿混合而成,在液态氮中高温煅烧,形成了超导材料。
我们将这些材料制成圆形磁悬浮样品,然后将它们浸入液氮中冷却,并施加一定的磁场。
接着,我们使用超导磁悬浮系统对样品进行测量。
该系统由磁体、传感器和控制电路组成。
磁体产生磁场,传感器测量磁场强度和样品位置,控制电路根据传感器测量值控制磁体,从而实现样品的浮起和悬浮。
在实验过程中,我们调整磁体和传感器的位置和信号灵敏度,使超导磁悬浮系统达到稳定状态。
然后,我们进行了磁场分布测试、样品浮力测试和样品位置测试。
磁场分布测试是通过传感器测量磁场强度,绘制出磁场强度分布图,来判断磁悬浮系统的稳定性和磁场分布情况。
样品浮力测试是通过测量样品受到的浮力大小和方向,确定样品的悬浮高度和重心位置。
样品位置测试是通过传感器测量样品位置和位移,计算出样品相对于磁体的距离和姿态,判断样品的平稳程度和精度。
最后,我们对实验结果进行统计和分析,得出超导磁悬浮系统的性能指标,如稳定度、精度、灵敏度等等,并探究其在未来的应用前景。
总之,超导磁悬测量实验是一项非常复杂而又高新的实验,本次实验虽图探究其原理和应用,但是实验过程也相应的要求较高,需要有一定的科学素养和专业技术人员进行指导。
此外,本文只是对此次实验的简单介绍,有兴趣的人可以在实验的基础上深入研究和探究。
超导材料磁悬浮力测量

2)场冷实验步骤
1、打开测试仪电源开关,预热5分钟。
2、用螺丝将样品固定在试样架中心;
3、按K3键使压力数值归零;
4、顺时针摇动手柄使磁体下行至样品附近,调整磁体位置使其与样品对中,至压力显示在10~20牛顿之间,然后按K7键将位移清零。
15、 实验结束后关闭测试仪电源,并将样品取出擦干后保存在干燥皿中。
三、实验记录与处理
图2零冷场
图3冷场
四、实验结果陈述与总结
通过实验,我了解了超导体的基本特性、什么是超导临界温度,以及掌握了超导体பைடு நூலகம்原理。经过对图像的分析,上行和下行所受到的力的大小都是一样的,因为在最高和最低点穿过超导体的磁通线是一样的,力的大小跟超导体与磁场的距离成指数关系,但因为磁滞的影响,上行和下行的图像不是完全重合的,他们的曲率不一样。场冷和零场冷比较,场冷磁悬浮效果更好,因为场冷比零场冷对超导体锁磁效果好。总体来说,实验过程较为顺利,图像没有非常美观,要提高我们自身的实验操作能力。
9、填写样品编号、尺寸、冷却方式和磁铁尺寸及表面磁场,数据是否存盘、采样周期(≥100ms)等。
10、 点击工具栏的压力-位移测试图。
11、填写最大压力、最小压力和位移量程和纵坐标位置以确定坐标轴。
12、点击 “开始绘图”框选择绘制曲线,顺时针摇动手柄使磁体下行或逆时针摇动手柄使磁体上行(只测吸引力),数据被记录在数据库中。测试过程完成后,点击“停止绘图”。根据需要,可点击右下角的“存贮”,将测试图存盘。如果用记录仪或绘图仪绘制测试曲线,则在测试前连接好测量仪与记录仪。测试仪后面板上的信号输出接口用于连接记录仪或绘图仪,其中1为绿线,位移负;2为红线,位移正;3为蓝线,压力负;4为黄线,压力正。后面板旋钮为电位补偿,可以将输出电压调整在记录仪量程范围内。
超导材料的磁性测量方法与数据分析

超导材料的磁性测量方法与数据分析引言:超导材料是一类在低温下具有零电阻和完全抗磁性的材料。
它们在电力输送、磁共振成像、磁悬浮等领域有着广泛的应用。
研究超导材料的磁性是了解其电子结构和超导机制的重要手段。
本文将介绍超导材料的磁性测量方法和数据分析。
一、超导材料的磁性测量方法1. 磁化率测量:磁化率是描述材料对外加磁场响应的物理量。
在超导材料中,由于完全抗磁性的特性,其磁化率为零。
通过测量超导材料在不同温度和外加磁场下的磁化率变化,可以了解其超导转变温度和临界磁场。
2. 磁滞回线测量:磁滞回线是描述材料磁化过程的曲线。
在超导材料中,由于完全抗磁性,其磁滞回线为零。
通过测量超导材料在不同温度和外加磁场下的磁滞回线,可以确定其超导转变温度和临界磁场。
3. 磁化率随温度变化测量:超导材料的超导转变温度是其重要的物理参数。
通过测量材料在不同温度下的磁化率,可以确定其超导转变温度。
磁化率随温度变化的曲线通常呈现出明显的跳跃特性,这标志着超导转变的发生。
二、超导材料磁性数据的分析1. 超导转变温度的确定:通过分析磁化率随温度变化的曲线,可以确定超导转变温度。
通常采用磁化率对温度的一阶导数来寻找曲线中的跳跃点,该点对应的温度即为超导转变温度。
2. 临界磁场的确定:超导材料在临界磁场下会失去超导性。
通过分析磁滞回线的形状和大小,可以确定超导材料的临界磁场。
临界磁场通常定义为磁滞回线上磁场为零的临界点。
3. 磁化率的修正:在实际测量中,由于实验装置和样品本身的磁化效应,会引入一定的误差。
为了得到准确的磁化率数据,需要对实验结果进行修正。
常见的修正方法包括减去背景磁化和减去样品的直流磁化。
4. 数据的拟合与分析:通过对磁化率随温度和磁场变化的实验数据进行拟合,可以得到超导材料的相关物理参数。
常用的拟合方法包括临界指数拟合、Ginzburg-Landau理论拟合等。
通过这些拟合分析,可以了解超导材料的超导机制和性质。
结论:超导材料的磁性测量方法和数据分析是研究其电子结构和超导机制的重要手段。
实验十六

实验十六超导磁悬浮力测量实验一、实验目的1、定性观察超导磁悬浮现象。
2、测量超导块磁悬浮力与距离的关系。
3、了解传感器测力的原理及使用方法。
二、实验原理见超导转变温度测量的第一节。
三、实验装置实验装置包括主件(左边部分)和电源及显示系统(右边部分)两部分。
主件包括磁铁、样品架、位移调节盘、液氮槽、传感器等部分。
(详见仪器使用说明书)四、实验内容及步骤1、定性观察超导磁悬浮现象① 从干燥缸内取出圆饼形的超导样品,并小心将样品放在小玻璃真空杯内。
② 向杯内缓慢地倒入液氮,超导材料将从常态变为超导态。
③ 待充分冷却后,液氮面平稳,此时用竹镊子把一小块磁铁片慢慢地放入液氮杯内,放在样品表面附近,可观察到小磁铁片不停在样品面上,而浮在液氮中间,这就是超导排斥磁力线的结果。
注意实验中玻璃杯外壁将会出现水珠,为不影响观察。
可用棉花球把水珠擦干。
2、测量超导磁悬浮力安装样品:首先松开固紧螺丝,把样品盒(3)取出来,再把固定样品的样品架取出来,把样品放进样品架,并用螺丝固定好(注意要平放)。
然后再把样品架放进盛液氮的盒(2)内固定好,再把液氮盒固定好。
① 转动位移调节盘(7),使磁铁头(3)接触超导样品,并调节此时的位移显示百分表(8)为零。
再把它往反向旋转到3mm② 开启仪器电源。
把液氮小心地灌入液氦盒(1)内,此时会有液氮挥发,继续灌液氮,直至灌满,此时样品处于超导态。
从数字显示表(10)上读出斥力数据。
③ 缓慢转动位移调节杆(7)使磁铁与样品的距离从大到小改变,每隔0.20mm测一个数据,并从百分表上记下对应的位移数值,直至接近零。
④ 再改变距离从小到大变化,测量另一组数据。
(实验中注意补充液氦)。
⑤ 实验结束后把样品拆下,用热吹风吹干样品,再把样品放在干燥缸内,留待下次实验时用。
3、用一块磁铁代替超导样品,进行上述实验,但在常温下进行,不加液氮。
观察磁铁与磁铁间的排斥力与位移的关系,了解常导磁体磁悬浮现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、顺时针摇动手柄使磁体下行至样品附近,调整磁体位置使其与样品对中,至压力显示在10~20牛顿之间,然后按K7键将位移清零。
5、逆时针摇动手柄使磁体上行至35mm以上;
6、向低温容器中注入液氮,使样品在没有外磁场作用的条件下冷却至液氮温度。保持液氮面略高于样品上表面(测试过程中因液氮蒸发液面下降时,可随时添加液氮),再次按K3键进行压力清零。
15、实验结束后关闭测试仪电源,并将样品取出擦干后保存在干燥皿中。
2)场冷实验步骤
1、打开测试仪电源开关,预热5分钟。
2、用螺丝将样品固定在试样架中心;
3、按K3键使压力数值归零;
4、顺时针摇动手柄使磁体下行至样品附近,调整磁体位置使其与样品对中,至压力显示在10~20牛顿之间,然后按K7键将位移清零。
二、实验仪器:
实验装置的方框图如图所示:
图1手动式超导体磁浮力测量仪
本测量仪包括用于支撑、固定各功能部件的机架、置放被测超导样品的低温容器、测量用磁体、垂直移动机构、力与位移的测量元件和控制与显示信号源
三、实验内容:
1)零场冷实验步骤
1、打开测试仪电源开关,预热5分钟。
2、用螺丝将样品固定在试样架中心;
二、实验原理:
完全抗磁性和零电阻效应一样是超导材料的主要特征之一。当一个超导体处于外磁场中时,由于抗磁性和磁通钉扎效应的作用,在超导体内部将感应出屏蔽电流,又由于零电阻效应所致,屏蔽电流几乎不随时间衰减。在超导体内持续流动的屏蔽电流产生的磁场与外磁场发生相互作用,从而产生超导磁悬浮现象。以超导磁悬浮现象为基础的超导磁悬浮技术在能源(飞轮储能)、交通(磁浮车)、机械工业(无摩擦轴承)等诸多领域具有潜在的应用价值。磁浮力是超导材料在磁悬浮技术上应用的重要参数。磁浮力随悬浮间隙的变化一方面取决于超导材料自身的性质,另一方面取决于磁场的强度和分布以及温度等测量条件.自从荷兰科学家海伊克·凯米林·昂纳斯于19ll年首次发现超导现象以来,科学家们对低温超导体和高温超导体的研究已取得了辉煌的成就。超导体主要有两个基本特性,即:①零电阻性或完全导电性;②完全抗磁性。因此,它在科研、生产的各个领域都有着广泛的应用。总体来说可分为两大类:一类是用于强电,用超导体制成大尺度的超导器件,如超导磁铁、电机、电缆等,用于发电、输电、贮能和交通运输等方面。另一类是用于弱电,用超导体制成小尺度的器件,如超导量子干涉器件(简称SQVID)和制成计算机的逻辑元件,用于精密仪器仪表、计算机等方面
15、实验结束后关闭测试仪电源,并将样品取出擦干后保存在干燥皿中。
3、实验记录与处理
解了超导体的基本特性、什么是超导临界温度,以及掌握了超导体的原理。经过对图像的分析,上行和下行所受到的力的大小都是一样的,因为在最高和最低点穿过超导体的磁通线是一样的,力的大小跟超导体与磁场的距离成指数关系,但因为磁滞的影响,上行和下行的图像不是完全重合的,他们的曲率不一样。场冷和零场冷比较,场冷磁悬浮效果更好,因为场冷比零场冷对超导体锁磁效果好。总体来说,实验过程较为顺利,图像没有非常美观,要提高我们自身的实验操作能力。
5、逆时针摇动手柄使磁体上行至1 ~ 10mm之间任意位置。
6、向低温容器中注入液氮,使样品在有外磁场作用的条件下冷却至液氮温度(尽量避免磁体浸泡在液氮中),再次按K3键进行压力清零。
7、执行c:\cdjcc\cdjc.exe运行测试软件。
8、选择参数设定,进入下面的界面。按测试仪面板上K2键联机,此时可以在计算机屏幕上看到压力与位移数值。
13、点击工具栏中的“数据库”,可将数据库另外起名保存,并清空测试数据库。默认的数据库存贮格式为“EXCEL”格式。
14、重复测量时必须等待液氮完全蒸发(或松螺丝将样品从样品架上取出),使样品整体升温至90 K以上(转变为正常态),使冻结在样品中的磁场退掉。注意,直接用水冲或热风吹快速升温会使样品产生裂纹,导致性能明显下降。
成绩评定:
实验设计方案40分
实验操作及数据记录、(30分)
数据处理与结果陈述(30分)
总分
12、点击“开始绘图”框选择绘制曲线,数据被记录在数据库中,然后顺时针摇动手柄使磁体下行接近超导样品,接触后逆时针摇动手柄使磁体上行至35mm以上,点击“停止绘图”。根据需要,可点击右下角的“存贮”,将测试图存盘。如果用记录仪或绘图仪绘制测试曲线,则在测试前连接好测量仪与记录仪。测试仪后面板上的信号输出接口用于连接记录仪或绘图仪,其中1(绿线,位移负)、2(红线,位移正),3(蓝线,压力负)、4(黄线,压力正)。后面板旋钮为电位补偿,可以将输出电压调整在记录仪量程范围内。
5、磁浮力曲线在上行和下行的整个过程中是否闭合?为什么?
答:由本次实验的结果来看,摆动手柄是的磁铁连续的上行和下行,图中得到的曲线也是闭合曲线。这是由于上行跟下行是一个连续过程,所以在最高值处是连续的,而在上行到一定值后磁浮力出现负值,表现为吸引力,而吸引力最终又会趋近于0,回到初始的状态。
指导教师批阅意见:
思考题:
1、超导体的两个基本特性是什么?
答:超导体的两个基本特性是零电阻性和完全抗磁性。
2、磁浮力产生的机理?
答:当一个超导体处于外磁场中时,由于抗磁性和磁通钉扎效应的作用,在超导体内部将感应出屏蔽电流,又由于零电阻效应所致,屏蔽电流几乎不随时间衰减。在超导体内持续流动的屏蔽电流产生的磁场与外磁场发生相互作用,从而产生超导磁悬浮现象。
得分
教师签名
批改日期
深圳大学实验报告
课程名称:近代物理实验
实验名称:超导材料磁悬浮力测量
学院:物理科学与技术学院
组号9指导教师:
报告人:韩倩暖学号:2013180095
实验地点B105实验时间:2015.
实验报告提交时间:2015.
一、实验设计方案
一、实验目的
1、了解超导体的基本特性。
2、掌握磁浮力的测量方法。
3、磁浮力的大小与什么因素有关?
答:磁浮力的大小与永磁体磁场强度、超导体与永磁体的距离、超导体内部感应电流的大小等因素有关。
4、场冷和零冷场有什么区别?
答:零场冷是在无外磁场的情况下冷却超导体,直至达到超导状态,场冷是在有外磁场的作用下达到超导状态。从实验估量可得,零场冷实验超导体的最大悬浮力大于场冷中超导体的最大悬浮力,这是因为超导体在场冷中俘获了一定的磁通,使得其内部感应电流变小,最大磁浮力也随之变小。
7、执行c:\cdjcc\cdjc.exe运行测试软件。
8、选择参数设定。按测试仪面板上K2键联机,此时可以在计算机屏幕上看到压力与位移数值。
9、填写样品编号、尺寸、冷却方式和磁铁尺寸及表面磁场,数据是否存盘、采样周期(≥100ms)等。
10、点击工具栏的压力-位移测试图。
11、填写最大压力、最小压力和位移量程和纵坐标位置以确定坐标轴。
9、填写样品编号、尺寸、冷却方式和磁铁尺寸及表面磁场,数据是否存盘、采样周期(≥100ms)等。
10、点击工具栏的压力-位移测试图。
11、填写最大压力、最小压力和位移量程和纵坐标位置以确定坐标轴。
12、点击“开始绘图”框选择绘制曲线,顺时针摇动手柄使磁体下行或逆时针摇动手柄使磁体上行(只测吸引力),数据被记录在数据库中。测试过程完成后,点击“停止绘图”。根据需要,可点击右下角的“存贮”,将测试图存盘。如果用记录仪或绘图仪绘制测试曲线,则在测试前连接好测量仪与记录仪。测试仪后面板上的信号输出接口用于连接记录仪或绘图仪,其中1为绿线,位移负;2为红线,位移正;3为蓝线,压力负;4为黄线,压力正。后面板旋钮为电位补偿,可以将输出电压调整在记录仪量程范围内。
13、点击工具栏中的“数据库”,可将数据库另外起名保存,并清空测试数据库。默认的数据库存贮格式为“EXCEL”格式。
14、重复测量时必须等待液氮完全蒸发(或松螺丝将样品从样品架上取出),使样品整体升温至90 K以上(转变为正常态),使冻结在样品中的磁场退掉。注意,直接用水冲或热风吹快速升温会使样品产生裂纹,导致性能明显下降。