角的计算专题

合集下载

空间角计算专题典型题

空间角计算专题典型题

空间角计算专题典型题1、三棱锥P-ABC 中,PA=5,AB=3,BC=4,∠ABC=900,PA ⊥面ABC ,求:(1)PC 与平面ABC 所成角的大小的余弦值;(2)二面角P-BC-A 的大小的正切值。

2、三棱锥P-ABC 中,PA=6,AB=BC=AC=4,PA ⊥面ABC ,求:(1)PC 与平面ABC 所成角的大小余弦值;(2)二面角P-BC-A 的大小的正切值。

3、正三棱锥P-ABC 中,侧棱PA=6,底面AB=4,求:(1)PC 与平面ABC 所成角的大小余弦值;(2)侧面与底面所成二面角的大小的正切值。

4、四棱锥P-ABCD 中,PA=6,底面ABCD 是矩形,且AB=3,BC=4,PA ⊥面ABCD ,求:(1)PB 与CD 所成角的正切值;(2)PC 与平面ABC 所成角的大小的余弦值;(3)二面角P-BC-A 的大小的正切值。

5、正四棱锥P-ABCD 中,PA=6,底面BC=4,求:(1)PB 与CD 所成角的余弦值;(2)PC 与平面ABC所成角的大小的余弦值;(3)二面角P-BC-A 的大小的正切值。

AAA6、正四棱锥P-ABCD 中,每条棱长均为6,取棱PC 的中点E ,求:(1)AE 与BC 所成角的余弦值;(2)PB 与平面BDE 所成角的大小的余弦值;(3)二面角E-BD-C 的大小的正切值。

7、直三棱柱ABC-A 1B 1C 1中,底面AB=3,BC=4,∠ABC=900,侧棱长为5,求:(1)A 1B 与B 1C 1所成角大小的余弦值;(2)A 1C 与面ABB 1A 1所成角大小的余弦值;(3)二面角A-BC-A1的大小的正切值。

8、直三棱柱ABC-A 1B 1C 1中,底面AB=3,BC=4,∠ABC=900,侧棱长为5,取A 1C 1中点D 1,求:二面角A-BC-D 1的大小的正切值。

9、正三棱柱ABC-A 1B 1C 1中,底面AB=3,侧棱长为5,求:(1)A 1B与B 1C 1所成角大小的余弦值;(2)A 1C 与面ABB 1A 1所成角大小的余弦值;(3)二面角A-BC-A 1的大小的正切值。

角的计算专题

角的计算专题

角的计算专题例1.如图,已知∠AOB=90°,射线OC绕点O从OA位置开始,以每秒4°的速度顺时针方向旋转;同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针方向旋转.当OC与OA成180°时,OC与OD同时停止旋转.(1)当OC旋转10秒时,∠COD= °.(2)当OC与OD的夹角是30°时,求旋转的时间.(3)当OB平分∠COD时,求旋转的时间.例2.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,则∠AOC= __ ;若∠AOC=135°,则∠BOD= ____;(2)如图(2)若∠AOC=140°,则∠BOD= ___;(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由例3.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=_______ .(用含α与β的代数式表示)例4.如图1,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC .将一直角三角板AOB (∠OAB=30°)的直角顶点放在点O 处,一条直角边OA 在射线OD 上,另一边OB 在直线DE 上方.将直角三角板绕着点O 按每秒10⁰的速度逆时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到如图2的位置时,OA 恰好平分∠COD ,此时,∠BOC 与∠BOE 之间有何数量关系?并说明理由.(2)若射线OC 的位置保持不变,且∠COE=140°.①则当旋转时间t= 秒时,边AB 所在的直线与OC 平行?②在旋转的过程中,是否存在某个时刻,使得射线OA ,OC 与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t 的取值.若不存在,请说明理由. ③在旋转的过程中,当边AB 与射线OE 相交时(如图3),求∠AOC ﹣∠BOE 的值.课堂练习:1.如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD=14°,求∠DOE 、∠BOE 的度数.2.如图,直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠COF =34°,求∠BOD 的度数.E O C D BF E O C B A3.点O是直线AB上一点,∠COD是直角,∠AOC=140°,OE平分∠BOC,求∠DOE的度数.4.如图,BD平分∠ABC,∠ABE︰∠CBE=3︰4,∠DBE=8°,求∠ABC的度数.5.点O是直线AB上一点,∠COD是直角,∠AOC=40°,OE平分∠BOC,求∠DOE的度数.6.如图,O是直线AB上一点,OC平分∠AOD,∠DOE=13∠BOD,∠COE=72°,求∠BOE的度数.7.如图,已知∠AOB是∠AOC的余角,∠AOD是∠AOC的补角,且∠BOC=12∠BOD,求∠BOD、∠AOC的度数.EOCDB AECDBAEOC DB AEOCDAOCDBA8.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=40°,求∠2、∠3的度数.9.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,∠BOC —∠BOD =20°,求∠BOE 的度数.10.如图,从点O 引出6条射线OA 、OB 、OC 、OD 、OE 、OF ,且∠AOB =100°,OF 平分∠BOC ,∠AOE =∠DOE ,∠EOF =140°,求∠COD 的度数.11.已知,如图∠BOC 为∠AOC 内的一个锐角,射线OM 、ON 分别平分∠AOC 、∠BOC. (1)若∠AOB =90°,∠BOC =30°,求∠MON 的度数; (2)若∠AOB =α,∠BOC =30°,求∠MON 的度数;(3)若∠AOB =90°,∠BOC =β,还能否求出∠MON 的度数?若能,求出其值,若不能,说明理由. (4)从前三问的结果你发现了什么规律?N M O C BA。

七年级数学角度的计算(专题)(含答案)

七年级数学角度的计算(专题)(含答案)

角度的计算(专题)一、单选题(共10道,每道10分)1.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:∵∠AOB=150°,∠AOC=90°,∴∠BOC=∠AOB-∠AOC=150°-90°=60°.∵∠BOD=90°,∴∠DOC=∠BOD-∠BOC=90°-60°=30°.故选A.试题难度:三颗星知识点:余角2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,且∠EOC=110°,则∠AOC的度数为( )A.25°B.35°C.45°D.55°答案:D解题思路:.故选D.试题难度:三颗星知识点:角平分线3.如图,已知∠COD为平角,OA⊥OE,且,则∠DOE的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:∵∠COD为平角∴∠COD=180°,即∠AOC+∠AOE+∠DOE=180°.∵OA⊥OE∴∠AOE=90°.∴∠AOC+∠DOE=180°-∠AOE=180°-90°=90°.∴∠AOC=2∠DOE,∴2∠DOE+∠DOE=3∠DOE=90°,∴∠DOE=30°.故选A.试题难度:三颗星知识点:平角的定义4.如图,直线AB与EO相交于点O,∠EOB=90°,∠FOD=90°,如果∠AOD=140°,那么∠EOF 的度数为( )A.60°B.50°C.40°D.30°答案:C解题思路:∵∠AOD=140°∴∠BOD=40°∵∠EOB=90°∴∠EOD+∠BOD=90°∵∠FOD=90°∴∠FOE+∠EOD=90°∴∠FOE=∠BOD=40°故选C.试题难度:三颗星知识点:平角5.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42或98°D.82°答案:C解题思路:如图,当点C与点C1重合时,∠BOC=∠AOB-∠AOC=70°-28°=42°当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°故选C.试题难度:三颗星知识点:角度的计算6.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOC∠AOB,故需分以下两种情况:①射线OC在射线OA的右边,如图1,求∠BOC,设计方案:∠BOC=∠AOB+∠AOC=50°+30°=80°②射线OC在射线OA的左边,如图2,求∠BOC的度数,设计方案:∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算7.已知∠AOB为直角,∠AOC=40°,若OM平分∠AOB,则∠MOC的度数为( )A.65°或25°B.65°或85°C.5°或65°D.5°或85°答案:D解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOB∠AOC,故需分以下两种情况:①射线OC在射线OA的左边,如图1,求∠MOC的度数,设计方案:②射线OC在射线OA的右边,如图2,求∠MOC的度数,设计方案:综上,∠MOC的度数为5°或85°.故选D.试题难度:三颗星知识点:角平分线8.已知∠AOB=60°,∠AOC=4∠BOC,则∠AOC的度数为( )A.12°或20°B.12°或48°C.48°或80°D.20°或80°答案:C解题思路:由题意,射线OC的位置不确定,需要分类讨论.因为∠AOC=4∠BOC,所以∠AOC∠BOC,则射线OC只能在射线OA的右边,分以下两种情况.①当射线OC在∠AOB的内部时,如图1所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得x+4x=60°,解得x=12°,所以∠AOC=4×12°=48°.①当射线OC在∠AOB的外部时,如图2所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得4x-x=60°,解得x=20°,所以∠AOC=4×20°=80°.综上所述,∠AOC的度数为48°或80°.故选C.试题难度:三颗星知识点:角度的计算9.已知∠AOB=54°,∠AOC=2∠BOC,OM平分∠AOB,则∠MOC的度数为( )A.9°或81°B.72°或54°C.9°或18°D.81°或18°答案:A解题思路:由题意,射线OC的位置不确定,因此需要分类讨论.①当射线OC在∠AOB的内部时,如图1所示,由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=18°,所以.②当射线OC在∠AOB的外部时,如图2所示,求∠MOC的度数,设计方案:由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=54°,所以.综上所述,∠MOC的度数为9°或81°.故选A.试题难度:三颗星知识点:角度的计算10.已知∠AOB=20°,∠AOC=4∠AOB,且∠BOC∠AOC,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数为( )A.30°或50°B.20°或60°C.30°D.50°答案:C解题思路:分析知射线OC的位置不确定,需要分类讨论,又因为∠BOC∠AOC,所以符合题意的只有一种情况.如下图所示,由∠AOB=20°,∠AOC=4∠AOB,得∠AOC=80°,所以.综上所述,∠MOD的度数为30°.故选C.试题难度:三颗星知识点:角度的计算。

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。

1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。

解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。

又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。

2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。

1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。

2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。

解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。

所以 $\angle DAC=4\times18°=72°$。

因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。

2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。

角度计算的综合大题专项训练(30道)(含答案)

角度计算的综合大题专项训练(30道)(含答案)

专题11.7 角度计算的综合大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,渗透角度计算由一般到特殊的思想!1.(2021春•平顶山期末)如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=21度时,∠ADC=∠C.【解题思路】(1)利用三角形的内角和求出∠BAC,再利用内角与外角的关系先求出∠ADC,再求出∠DAE;(2)利用三角形的内角和定理及推论,用含∠C的代数式表示出∠BAC、∠ADC,根据∠C=∠ADC得到关于∠C的方程,先求出∠C,再求出∠DAE的度数.【解答过程】解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=12∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=12×64°=32°.∵∠ADC=∠B+∠BAD =44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=12×(153°﹣∠C)=76.5°−12∠C.∴∠ADC=∠B+∠BAD=27°+76.5°−12∠C=103.5°−12∠C.∵∠ADC=∠C,∴103.5°−12∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.2.(2021春•长春期末)如图,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.解决问题:(1)若∠OBA=80°,∠OAB=40°,则∠ACG=60°;(直接写出答案)(2)若∠MON=100°,求出∠ACG的度数.【解题思路】(1)由角平分线的定义可求出∠CBA和∠CAB的度数,再根据三角形外角的性质求出∠ACG的度数即可;(2)先根据三角形内角和定理求出∠OBA+∠OAB的度数,然后再根据角平分线的定义求出∠CBA+∠CAB的度数,最后根据三角形外角的性质求出结果即可.【解答过程】解:(1)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∵∠OBA=80°,∠OAB=40°,∴∠CBA=40°,∠CAB=20°,∴∠ACG=∠CBA+∠CAB=60°.故答案为:60°.(2)∵∠MON=100°,∴∠BAO+∠ABO=180°﹣100°=80°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=12×80°=40°,∴∠ACG=∠CBA+∠CAB=40°.3.(2021春•兴化市期末)如图,在△ABC中,∠ACB=90°,AE平分∠CAB,CD⊥AB,AE、CD相交于点F.(1)若∠DCB=50°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.【解题思路】(1)根据直角三角形的性质得到∠DCB+∠B=90°,∠CAB+∠B=90°,进而得到∠CAB =∠DCB,根据角平分线的定义计算即可;(2)根据角平分线的定义得到∠BAE=∠CAE,根据直角三角形的性质得到∠CEF=∠AFD,根据对顶角相等证明结论.【解答过程】(1)解:∵CD⊥AB,∴∠DCB+∠B=90°,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠CAB=∠DCB=50°,∵AE平分∠CAB,∴∠CAE=12∠CAB=25°,∴∠CEF=90°﹣∠CAE=65°;(2)证明:∵AE平分∠CAB,∴∠BAE=∠CAE,∵∠CAE+∠CEF=90°,∠BAE+∠AFD=90°,∴∠CEF=∠AFD,∵∠CFE=∠AFD,∴∠CEF=∠CFE.4.(2021春•海陵区期末)如图,CD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=45°,∠BDC=70°,求∠CED的度数;(2)若∠A﹣∠ACD=34°,∠EDB=97°,求∠A的度数.【解题思路】(1)利用三角形内角和定理求出∠ACB,再求出∠ECD,∠EDC,可得结论.(2)设∠A=x,则∠ACD=x﹣34°,根据∠EDB=∠A+∠AED,构建方程求解即可.【解答过程】解:(1)∵∠CDB=∠A+∠ACD,∴∠ACD=70°﹣45°=25°,∵CD平分∠ACB,∴∠DCB=∠ACB=25°,∵DE∥CB,∴∠EDC=∠BCD=25°,∴∠DEC=180°﹣25°﹣25°=130°.(2)设∠A=x,则∠ACD=x﹣34°,∵CD平分∠ACB,∴∠ACB=2x﹣68°,∵DE∥CB,∴∠AED=∠ACB=2x+68°,∵∠EDB=∠A+∠AED,∴97°=x+2x﹣68°,∴x=55°,∴∠A=55°.5.(2021春•宽城区期末)如图,在△ABC中,点E是边AC上一点,∠AEB=∠ABC.(1)如图1,作∠BAC的平分线交CB、BE于D、F两点.求证:∠EFD=∠ADC.(2)如图2,作△ABC的外角∠BAG的平分线,交CB的延长线于点D,延长BE、DA交于点F,试探究(1)中的结论是否成立?请说明理由.【解题思路】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD =∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠F AE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,进而得∠EFD=∠ADC.【解答过程】解:(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠F AE=∠GAD,∴∠F AE=∠BAD,∵∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.6.(2021春•镇江期中)如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.(1)求∠1﹣∠2的度数;(2)若保持△A′DE的一边与BC平行,求∠ADE的度数.【解题思路】(1)先求出∠B的度数,在根据四边形内角和求出∠1+∠BFD的度数,由∠BFD=∠A′FE和∠A’的度数可求出答案.(2)分EA'∥BC和DA'∥BC两种情况讨论.当DA'∥BC时,先求出∠A′DA=90°,再根据折叠可得出∠ADE=45°;当EA'∥BC时,根据平行线的性质求出∠2=∠ABC=60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE的度数.【解答过程】解:(1)由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°﹣∠A′﹣∠A′FE=150°﹣∠A′FE,在△ABC中,∠B=180°﹣∠C﹣∠A=60°,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°﹣∠C﹣∠B﹣∠BFD=210°﹣∠BFD,∵∠BFD=∠A′FE,∴∠1﹣∠2=210°﹣150°=60°;(2)当DA'∥BC时,如图,∠A′DA=∠ACB=90°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=45°,当EA'∥BC时,如图,∠2=∠ABC=60°.由(1)知,∠1﹣∠2=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=(180°﹣∠1)=30°.综上所述∠ADE的度数为:45°或30°.7.(2021春•常熟市期中)已知△ABC中,AD⊥BC于点D,AE平分∠BAC,过点A作直线GH∥BC,且∠GAB=60°,∠C=40°.(1)求△ABC的外角∠CAF的度数;(2)求∠DAE的度数.【解题思路】(1)根据平行线的性质、对顶角相等计算即可;(2)根据角平分线的定义得到∠BAE=40°,根据平行线的性质求出∠GAD=90°,结合图形计算,得到答案.【解答过程】解:(1)∵GH∥BC,∠C=40°,∴∠HAC=∠C=40°,∵∠F AH=∠GAB=60°,∴∠CAF=∠HAC+∠F AH=100°;(2)∵∠HAC=40°,∠GAB=60°,∴∠BAC=80°,∵AE平分∠BAC,∴∠BAE=40°,∵GH∥BC,AD⊥BC,∴∠GAD=90°,∴∠BAD=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=10°.8.(2020秋•红桥区期末)如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的大小.【解题思路】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答过程】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=12∠BAC=25°,∠ABO=12∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.9.(2020秋•涪城区期末)如图,在△ABC中,∠1=∠2=∠3.(1)证明:∠BAC=∠DEF;(2)∠BAC=70°,∠DFE=50°,求∠ABC的度数.【解题思路】(1)利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质解决问题即可.【解答过程】(1)证明:∵∠BAC=∠1+∠CAE,∠DEF=∠3+∠CAE,∠1=∠3,∴∠BAC=∠DEF.(2)∵∠ABC=∠2+∠ABD,∠1=∠2,∴∠ABC=∠1+∠ABD=∠EDF,由(1)可知∠DEF=∠BAC=70°,∴∠ABC=∠1+∠ABD=∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣70°﹣50°=60°,∴∠ABC=60°.10.(2021春•苏州期末)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.【解题思路】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE,进而得∠AEF=∠GFE,由平行线的判定得FG∥AC,再根据平行线的性质求得结果.【解答过程】解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.11.(2020秋•恩施市期末)已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.【解题思路】(1)根据三角形的外角性质即可得出结论;(2)根据三角形内角和和互余进行分析解答即可.【解答过程】解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.12.(2020秋•白银期末)(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.【解题思路】(1)作射线OA,由三角形外角的性质可知∠1+∠B=∠3,∠2+∠C=∠4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,两式相加即可得出结论.【解答过程】解:(1)作射线OA,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠A+∠C+∠D+∠F=230°.13.(2021春•新蔡县期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【解题思路】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答过程】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.14.(2020春•香坊区校级月考)如图,在△ABC中,∠C=40°,AE、BF分别为△ABC的角平分线,它们相交于点O.(1)求∠EOF的度数.(2)AD是△ABC的高,∠AFB=80°时,求∠DAE的度数.【解题思路】(1)先根据三角形内角和定理得∠C=180°﹣(∠BAC+∠ABC)的度数,由角平分线的定义和三角形内角和定理可得结论;(2)先根据垂直的定义及三角形内角和可得到∠CAD的度数,再求出∠1的度数,最后根据三角形内角和即可求解.【解答过程】解:(1)∵∠CAB+∠ABC=180°﹣∠C,∵AE、BF是角平分线,∴∠EAB=12∠BAC,∠FBA=12∠ABC,∴∠EAB+∠FBA=12(∠BAC+∠ABC)=12(180°﹣∠C)=90°−12∠C,∴∠AOB=180°﹣(90°−12∠C)=90°+12∠C,∵∠C=40°,∴∠AOB=110°,∴∠EOF=∠AOB=110°.(2)∵AD⊥BC,∠C=40°,∴∠CAD=50°,∵∠AFB=80°,∴∠1=180°﹣50°﹣80°=50°,∴∠DAE=180°﹣∠1﹣∠AOB=180°﹣50°﹣110°=20°.15.(2021春•海陵区校级月考)如图1,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)如图1,∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β(α<β),则∠CFE=12β−12α;(用α、β表示)(3)如图2,(2)中的结论还成立么?请说明理由.【解题思路】(1)求∠CFE的度数,求出∠DAE的度数即可,只要求出∠BAE﹣∠BAD的度数,由平分和垂直易得∠BAE和∠BAD的度数即可;(2)由(1)类推得出答案即可;(3)类比以上思路,把问题转换为∠CFE=90°﹣∠ECF即可解决问题.【解答过程】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∠B=α,∠ACB=β,∴∠CFE=∠DAE=20°;(2)∵∠BAE=90°﹣∠B,∠BAD=12∠BAC=12(180°﹣∠B﹣∠ACB),∵CF ∥AD ,∴∠CFE =∠DAE =∠BAE ﹣∠BAD =90°﹣∠B −12(180°﹣∠B ﹣∠BCA )=12(∠ACB ﹣∠B )=12β−12α, 故答案为:12β−12α; (3)(2)中的结论成立.∵∠B =α,∠ACB =β,∴∠BAC =180°﹣α﹣β,∵AD 平分∠BAC ,∴∠DAC =12∠BAC =90°−12α−12β,∵CF ∥AD ,∴∠ACF =∠DAC =90°−12α−12β,∴∠BCF =β+90°−12α−12β=90°−12α+12β,∴∠ECF =180°﹣∠BCF =90°+12α−12β,∵AE ⊥BC ,∴∠FEC =90°,∴∠CFE =90°﹣∠ECF =12β−12α.16.(2021春•市北区期末)阅读并填空将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图1所示,三角尺的两边PM 、PN 恰好经过点B 和点C .我们来探究:∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 90 度;∠ABP +∠ACP = 40 度;(2)类比探索:∠ABP、∠ACP、∠A的关系是∠ABP+∠ACP=90°﹣∠A;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是∠ACP﹣∠ABP=90°﹣∠A.【解题思路】(1)利用三角形内角和定理即可解决问题.(2)结论:∠ABP+∠ACP=90°﹣∠A.利用三角形内角和定理即可证明.(3)不成立;存在结论:∠ACP﹣∠ABP=90°﹣∠A.利用三角形内角和定理即可解决问题.【解答过程】解:(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=130°﹣90°=40°,故答案为:90,40;(2)结论:∠ABP+∠ACP=90°﹣∠A.证明:∵(∠PBC+∠PCB)+(∠ABP+∠ACP)+∠A=180°,∴90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°﹣∠A.故答案为:∠ABP+∠ACP=90°﹣∠A;(3)结论:∠ACP﹣∠ABP=90°﹣∠A,理由是:设AB交PC于O,如图2:∵∠AOC=∠POB,∴∠ACO+∠A=∠P+∠PBO,即∠ACP+∠A=90°+∠ABP,∴∠ACP﹣∠ABP=90°﹣∠A,故答案为:∠ACP﹣∠ABP=90°﹣∠A.17.(2021春•东海县期末)如图1.△ABC的外角平分线BF、CF交于点F.(1)若∠A=50°.则∠F的度数为65°;(2)如图2,过点F作直线MN∥BC,交AB,AC延长线于点M、N.若设∠MFB=α,∠NFC=β,则∠A与a+β满足的数量关系是α+β−12∠A=90°;(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间满足的数量关系,并说明理由;②当直线MN与线段BC有交点时,试问①中∠A与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出三者之间满足的数量关系.【解题思路】(1)根据三角形内角和定理以及角平分线的定义,即可得到∠F的度数;(2)根据三角形内角和定理以及角平分线的定义,即可得到∠BFC的度数,再根据平行线的性质,即可得到∠A与α+β的数量关系;(3)①根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系;②分两种情况进行讨论,根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系.【解答过程】解:(1)如图1,∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠DBC﹣∠ECB=360°﹣130°=230°,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECD)=12×230°=115°,∴△BCF中∠F=180°﹣115°=65°,故答案为65°;(2)如图2,∵∠ABC+∠ACB=180°﹣∠A,∴∠DBC+∠ECB=360°﹣(180°﹣∠A)=180°+∠A,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECB)=12×(180°+∠A)=90°+12∠A,∴△BCF中,∠BFC=180°﹣(90°+12∠A)=90°−12∠A,又∵∠MFB=α,∠NFC=β,MN∥BC,∴∠FBC=α,∠FCB=β,∵△BCF中,∠FBC+∠FCB+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,故答案为:α+β−12∠A=90°;(3)①α+β−12∠A=90°,理由如下:如图3,由(2)可得,∠BFC=90°−12∠A,∵∠MFB+∠NFC+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,②当直线MN与线段BC有交点时,①中∠A与α,β之间的数量关系不成立,分两种情况:如图4,当M在线段AB上,N在AC延长线上时,由(2)可得,∠BFC=90°−12∠A,∵∠BFC﹣∠MFB+∠NFC=180°,∴90°−12∠A﹣α+β=180°,即β﹣α−12∠A=90°;如图5,当M在AB的延长线上,N在线段AC上时,由(2)可得,∠BFC=90°−12∠A,∴∠BFC﹣∠NFC+∠MFB=180°,∴90°−12∠A﹣β+α=180°,即α﹣β−12∠A=90°;综上所述,∠A与α,β之间的数量关系为β﹣α−12∠A=90°或α﹣β−12∠A=90°.18.(2021春•宽城区期末)在△ABC中,∠ACB=90°,点D、E分别是边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)如图1,点P在斜边AB上运动.①若∠α=70°,则∠1+∠2=160度.②写出∠α、∠1、∠2之间的关系,并说明理由.(2)如图2,点P在斜边AB的延长线上运动(CE<CD),BE、PD交于点F,试说明∠1﹣∠2=90°+∠α.(3)如图3,点P在△ABC外运动(只需研究图③的情形),直接写出∠α、∠1、∠2之间的关系.【解题思路】(1)①求出∠CEP+∠CDP,可得结论.②结论:∠1+∠2=90°+∠α.连接PC,利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质以及三角形内角和定理证明即可.(3)利用基本结论∠C+∠3=∠P+∠4,构建关系式,可得结论.【解答过程】解:(1)①∵∠C=90°,α=70°,∴∠CEP+∠CDP=360°﹣(90°+70°)=200°,∴∠1+∠2=360°﹣200°=160°,故答案为:160.②结论:∠1+∠2=90°+∠α.理由:如图1中,连结CP.∵∠1=∠DCP+∠CPD,∠2=∠ECP+∠CPE,∴∠1+∠2=∠DCP+∠CPD+∠ECP+∠CPE,∵∠DCP+∠ECP=∠ACB=90°,∠CPD+∠CPE=∠DPE=∠α,∴∠1+∠2=90°+∠α.(2)如图2中,∵∠1=∠ACB+∠CFD,∠CFD=∠2+∠α,∴∠1=∠ACB+∠2+∠α.∵∠ACB=90°,∴∠1=90°+∠2+∠α.∴∠1﹣∠2=90°+∠α.(3)结论:∠2﹣∠1=90°﹣∠α.理由:如图3中,∵∠C+∠3=∠P+∠4,∠C=90°,∠P=α,∴90°+(180°﹣∠2)=α+(180°﹣∠1),∴∠2﹣∠1=90°﹣∠α.19.(2021春•延庆区期末)在三角形ABC中,点D在线段AC上,ED∥BC交AB于点E,点F在线段AB上(点F不与点A,E,B重合),连接DF,过点F作FG⊥FD交射线CB于点G.(1)如图1,点F在线段BE上,用等式表示∠EDF与∠BGF的数量关系,并证明;(2)如图2,点F在线段BE上,求证:∠ABC+∠BFG﹣∠EDF=90°;(3)当点F在线段AE上时,依题意,在图3中补全图形,请直接用等式表示∠EDF与∠BGF的数量关系,不需证明.【解题思路】(1)结论:∠EDF+∠BGF=90°.如图1中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(2)如图2中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(3)作出图形,利用平行线的性质求解即可.【解答过程】(1)解:结论:∠EDF+∠BGF=90°.理由:如图1中,过点F作FH∥BC交AC于点H.∵ED∥BC,∴ED∥FH.∴∠EDF=∠1.∵FH∥BC,∴∠BGF=∠2.∵FG⊥FD,∴∠DFG=90°.∴∠1+∠2=90°.∴∠EDF+∠BGF=90°.(2)证明:如图2中,过点F作FH∥BC交AC于点H.∴∠ABC=∠AFH.∴∠ABC=∠1+∠3.∴∠3=∠ABC﹣∠1.∵∠EDF=∠1,∴∠3=∠ABC﹣∠EDF.∵FG⊥FD,∴∠DFG=90°.∴∠BFG+∠3=90°.∴∠3=90°﹣∠BFG.∴90°﹣∠BFG=∠ABC﹣∠EDF.∴∠ABC+∠BFG﹣∠EDF=90°.(3)解:结论:∠BGF﹣∠EDF=90°.理由:设DE 交FG 于J .∵DE ∥BC ,∴∠BGF =∠FJE ,∵∠FJE =∠DEJ +∠EDF ,∠DEJ =90°,∴∠BGF ﹣∠EDF =90°20.(2021春•中山市期末)同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC 的平分线与∠EGC 的平分线相交于点Q ,求∠FQG 的大小;(3)如图3,点P 是线段AD 上的动点(不与A ,D 重合),连接PF 、PG ,∠DFP+∠FPG ∠EGP 的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【解题思路】(1)如图1,延长AM 交EG 于M .由题意知:DF ∥EG ,∠ACB =90°,故∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°,得∠1=∠GNC ,∠CGN +∠GNC =90°,故∠1+∠CGN =90°.因为∠DFC 的平分线与∠EGC 的平分线相交于点Q ,所以∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1,∠GQC =90°−12∠CGN .那么,∠FQG =360°﹣∠QFC ﹣∠QGC﹣∠ACB =135°.(3)由题意知:DF ∥EG ,得∠FOG =∠EGO ,故∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1.【解答过程】解:(1)如图1,延长AM 交EG 于M .∠β+∠α=90°,理由如下:由题意知:DF ∥EG ,∠ACB =90°.∴∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.∵∠EGB 和∠CGM 是 对顶角,∴∠β=∠CGM .∴∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°.∴∠1=∠GNC ,∠CGN +∠GNC =90°.∴∠1+∠CGN =90°.∵QF 平分∠DFC ,∴∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1.同理可得:∠GQC =90°−12∠CGN .∵四边形QFCG 的内角和等于360°.∴∠FQG =360°﹣∠QFC ﹣∠QGC ﹣∠ACB =360°﹣(90°−12∠1)﹣(90°−12∠CGN )﹣90°. ∴∠FQG =135°.(3)如图3,由题意知:DF ∥EG .∴∠FOG =∠EGO .∴∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1. ∴∠DFP+∠FPG ∠EGP 的值不变.21.(2021春•禅城区期末)△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,求∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 与∠B 、∠C 的数量关系;(3)拓展:如图3,四边形ABDC 中,AE 是∠BAC 的角平分线,DA 是∠BDC 的角平分线,猜想:∠DAE 与∠B 、∠C 的数量关系是否改变.说明理由.【解题思路】(1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据角平分线的定义得到∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),求得∠MAD=∠ADN,根据角的和差即可得到结论.【解答过程】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=12∠BAC﹣(90°﹣∠C)=12(180°﹣∠B﹣∠C)﹣90°+∠C=12∠C−12∠B,即∠DAE=12∠C−12∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN=12(∠ACB﹣∠ABC)+12(∠BCD﹣∠CBD)=12(∠ACD﹣∠ABD).22.(2021春•侯马市期末)(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=90°+12(∠B+∠D);(4)如图(4),直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=180°−12(∠B+∠D).【解题思路】(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠P AD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解.【解答过程】解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)∵AP,CP分别平分∠BAD,∠BCD,∴∠BAP=∠P AD,∠BCP=∠PCD,由(1)的结论得,∠P+∠BCP=∠ABC+∠BAP,①,∠P+∠P AD=∠ADC+∠PCD②,①+②得,2∠P+∠BCP+∠P AD=∠BAP+∠PCD+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∵∠ABC=36°,∠ADC=16°,∴∠P=26°.(3)∵直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠P AB=∠P AD,∠PCB=∠PCE,∴2∠P AB+∠B=180°﹣2∠PCB+∠D,∴180°﹣2(∠P AB+∠PCB)+∠D=∠B,∵∠P+∠P AD=∠PCB+∠AOC=∠PCB+∠B+2∠P AD,∴∠P=∠P AD+∠B+∠PCB=∠P AB+∠B+∠PCB,∴∠P AB+∠PCB=∠P﹣∠B,∴180°﹣2(∠P﹣∠B)+∠D=∠B,即∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).(4)∵直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠F AP=∠P AO,∠PCE=∠PCB,在四边形APCB中,(180°﹣∠F AP)+∠P+∠PCB+∠B=360°①,在四边形APCD中,∠P AD+∠P+(180°﹣∠PCE)+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,∴∠P=180°−12(∠B+∠D).故答案为:∠P=180°−12(∠B+∠D).23.(2020春•西城区校级期末)在△ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN⊥BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2=20°,∠3﹣∠1=55°;(2)如图2,猜想∠3﹣∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3﹣∠1的度数.(直接写出结果即可)解:(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.(3)∠3﹣∠1=α+β3−30°.【解题思路】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠BEC﹣∠A,再根据角平分线的定义可得∠2=∠ACE;根据角平分线的定义求出∠ACB,再根据三角形的内角和定理求出∠ABC,然后求出∠1,根据直角三角形两锐角互余求出∠3,然后相减即可得解;(2)根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,再根据直角三角形两锐角互余表示出∠3,然后表示出∠3﹣∠1=90°−12∠ACB−12∠ABC,再根据三角形的内角和定理可得∠ACB+∠ABC=180°﹣∠A,然后代入整理即可得解;(3)在△BCE和△BCD中,根据三角形内角和定理列式整理得到∠1+∠2,再根据三角形的内角和定理和角平分线的定义用∠A表示出∠1+∠2,然后根据∠3﹣∠1=12∠A整理即可得解.【解答过程】(1)解:在△ACE中,∠ACE=∠BEC﹣∠A=130°﹣110°=20°,∵CE平分∠ACE,∴∠2=∠ACE=20°,∴∠ACB=2∠2=2×20°=40°,在△ABC中,∠ABC=180°﹣∠A﹣∠ACB=180°﹣110°﹣40°=30°,∵BD平分∠ABC,∴∠1=12∠ABC=12×30°=15°,∵MN⊥BC,∴∠3=90°﹣∠2=90°﹣20°=70°,∴∠3﹣∠1=70°﹣15°=55°,故答案为:20,55;(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.证明:在△ABC中,BD,CE是它的两条角平分线,∴∠1=12∠ABC,∠2=12∠ACB,∵MN⊥BC于点N,∴∠MNC=90°,在△MNC中,∠3=90°﹣∠2,∴∠3﹣∠1=90°﹣∠2﹣∠1,=90°−12∠ACB−12∠ABC,=90°−12(∠ACB+∠ABC),∵在△ABC中,∠ACB+∠ABC=180°﹣∠A,∴∠3﹣∠1=90°−12(180°﹣∠A)=12∠A;故答案为:∠3﹣∠1=12∠A ;(3)∵BD ,CE 是△ABC 的两条角平分线, ∴∠ABC =2∠1,∠ACB =2∠2,在△BCE 和△BCD 中,∠1+2∠2+β=180°, ∠2+2∠1+α=180°, ∴∠1+∠2=120°−α+β3,∵∠1+∠2=12(∠ACB +∠ABC )=12(180°﹣∠A ), ∴120°−α+β3=12(180°﹣∠A ), 整理得,12∠A =α+β3−30°,∴∠3﹣∠1=α+β3−30°. 故答案为:α+β3−30°.24.(2020春•福山区期中)直线在同一平面内有平行和相交两种位置关系,线段首尾连接可以变换出很多不同的图形,这些不同的角又有很多不同关系,今天我们就来探究一下这些奇妙的图形吧! 【问题探究】(1)如图1,请直接写出∠A +∠B +∠C +∠D +∠E = 180° ;(2)将图1变形为图2,∠A +∠DBE +∠C +∠D +∠E 的结果如何?请写出证明过程; (3)将图1变形为图3,则∠A +∠B +∠C +∠D +∠E 的结果如何?请写出证明过程. 【变式拓展】(4)将图3变形为图4,已知∠BGF =160°,那么∠A +∠B +∠C +∠D +∠E +∠F 的度数是 320° .【解题思路】(1)根据三角形外角的性质,得到∠2=∠C+∠E,∠1=∠A+∠2,根据三角形内角和等于180°即可求解.(2)根据三角形外角的性质,得到∠ABE=∠C+∠E,∠DBC=∠A+∠D,即可证明此结论.(3)根据三角形外角的性质,得到∠DFG=∠B+∠E,∠FGD=∠A+∠C,即可证明此结论;(4)根据三角形外角的性质,得到∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∠BGF=∠1+∠E=160°,∠1=∠A+∠C,即可得到结论.【解答过程】(1)解:如图1,∵∠2=∠C+∠E,∠1=∠A+∠2,∴∠A+∠B+∠C+∠D+∠E=∠1+∠B+∠D=180°,故答案为:180°;(2)证明:∵∠ABE=∠C+∠E,∠DBC=∠A+∠D,∠ABE+∠DBE+∠DBC=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°∴将图①变形成图②∠A+∠DBE+∠C+∠D+∠E仍然为180°;(3)证明:∵在△FGD中,∠DFG+∠FGD+∠D=180°,∠DFG=∠B+∠E,∠FGD=∠A+∠C,∴∠A+∠B+∠C+∠D+∠E=180°,∴将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°;(4)解:∵∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∴∠B+∠D+∠F=160°,∵∠BGF=∠1+∠E=160°,∠1=∠A+∠C,∴∠A+∠C+∠E=160°,∴∠A+∠B+∠C+∠D+∠E+∠F=320°,故答案为:320°.25.(2020春•蓬溪县期末)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=122°;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=119°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=29°.【解题思路】(1)根据三角形的内角和角平分线的定义;(2)由角平分线得出∠ECB=12∠ACB,∠EBD=12∠ABD.由三角形外角的性质知∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,根据∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB可得答案;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠QBC与∠QCB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答过程】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的定义),∵∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠EBD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论:∠BQC=90°−12∠A.理由如下:∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠QCB,=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB),=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.26.(2021春•鄂州期末)探究知:任何一个三角形都满足三角形三内角和等于180°,我们把这个结论称之为三角形三内角和定理.如图1,AB∥CD,且∠BED+∠CDE=120°,请根据题目条件,结合三角形三内角和定理,探究下列问题:(1)如图2,在图1基础上作:∠BEF=12∠DEF,∠CDE=3∠CDF,EF与DF交于点F,求∠EFD的度数;(2)如图3,在图1基础上作:过B作BG⊥AB,交CD于点F,且∠CDG=34∠CDE,求∠G∠E的值.【解题思路】(1)设∠BEF=α,∠CDF=β,根据角之间的比例关系可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,进而可得∠DEF+∠EDF=80°,所以可得答案;(2)根据垂直可得∠CDG =90°﹣∠G ,再根据∠E +∠CDE =120°经过整理得3∠E =4∠G ,进而可得答案.【解答过程】解:(1)∵∠BEF =12∠DEF , ∴∠DEF =2∠BEF , 又∵∠CDE =3∠CDF , ∴设∠BEF =α,∠CDF =β,∴∠DEF =2α,∠DEB =3α,∠CDE =3β,∠EDF =2β, ∵∠BED +∠CDE =120°, ∴3α+3β=120°, ∴α+β=40°, ∴2α+2β=80°,∴∠EFD =180°﹣∠DEF ﹣∠EDF =180°﹣(2α+2β)=180°﹣80°=100°, 答:∠EFD 的度数为100°; (2)∵BF ⊥AB , ∴∠ABG =90°, ∵AB ∥CD ,∴∠ABG +∠BFC =180°, ∴∠BFC =∠GFD =90°,在△GFD 中,∠GFD +∠CDG +∠G =180°, ∴∠CDG =90°﹣∠G ,∵∠E +∠CDE =120°,∠CDG =34∠CDE ,∴∠E +43∠CDG =120°,∠E +43(90°﹣∠G )=120°, 整理得:3∠E =4∠G , ∴∠G ∠E=34.27.(2020秋•南昌期中)【问题探究】将三角形ABC 纸片沿DE 折叠,使点A 落在点A ′处(1)如图1,当点A 落在四边形BCDE 的边CD 上时,直接写出∠A 与∠1之间的数量关系; (2)如图2,当点A 落在四边形BCDE 的内部时,求证:∠1+∠2=2∠A ;(3)如图3,当点A落在四边形BCDE的外部时,探索∠1,∠2,∠A之间的数量关系,并加以证明;【拓展延伸】(4)如图4,若把四边形ABCD纸片沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠1,∠2,∠A,∠D之间的数量关系,写出你发现的结论,并说明理由.【解题思路】(1)运用折叠原理及三角形的外角性质即可解决问题;(2)运用折叠原理及四边形的内角和定理即可解决问题;(3)运用三角形的外角性质即可解决问题;(4)根据三角形的内角和和四边形的内角和即可得到结论.【解答过程】解:(1)如图1,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A;(2)如图2,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2;(3)如图3,∠1﹣∠2=2∠A,理由:∵∠1+2∠AED=180°,2∠ADE﹣∠2=180°,∴∠1﹣∠2+2∠AED+2∠AED=360°,∵∠A+∠AED+∠ADE=180°,∴2∠A+2∠AED+2∠ADE=360°,∴∠1﹣∠2=2∠A;(4)∠1+∠2=2(∠A+∠D)﹣360°,理由:∵∠1+2∠AEF=180°,∠2+2∠DFE=180°,∴∠1+∠2+2∠AEF+2∠DFE=360°,∵∠A+∠D+∠AEF+∠DFE=360°,∴2∠A+2∠D+2∠AEF+2∠DFE=720°,∴∠1+∠2=2(∠A+∠D)﹣360°.28.(2021春•桥西区期末)请认真思考,完成下面的探究过程.已知在△ABC中,AE是∠BAC的角平分线,∠B=60°,∠C=40°.【解决问题】如图1,若AD⊥BC于点D,求∠DAE的度数;【变式探究】如图2,若F为AE上一个动点(F不与E重合),且FD⊥BC于点D时,则∠DFE=10°;【拓展延伸】如图2,△ABC中,∠B=x°,∠C=y°,(且∠B>∠C),若F为线段AE上一个动点(F不与E重合),且FD⊥BC于点D时,试用x,y表示∠DFE的度数,并说明理由.【解题思路】(1)由∠B=60°,∠C=40°,得∠BAC=180°﹣∠B﹣∠C=80°.由角平分线的定义,得∠EAC=40°.根据三角形外角的性质,得∠FED=80°.由FD⊥BC,根据三角形内角和定理,故可求得∠DFE.(2)与(1)同理.(3)与(1)同理.【解答过程】解:(1)解决问题:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=80°.又∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=40°.∴∠AED=∠C+∠EAC=40°+40°=80°.∵AD⊥BC,∴∠ADE=90°.∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣90°﹣80°=10°.(2)变式探究:由(1)知:∠AED=80°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣80°=10°.故答案为:10°.(3)拓展延伸:∠DFE=12x°−12y°,理由如下:∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°.又∵AE是∠BAC的角平分线,∴∠CAE=12∠BAC=12(180°−x°−y°)=90°−12x°−12y°.∴∠AED=∠C+∠CAE=y°+90°−12x°−12y°=90°−12x°+12y°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣(90°−12x°+12y°)=12x°−12y°.29.(2021春•庐江县期末)如图1,AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,则∠F的度数是45°(直接写出答案即可);(3)如图3,EH平分∠CED,EH的反向延长线交∠BAE的平分线AF于点G.求证:EG⊥AF.(提示:三角形内角和等于180°)【解题思路】(1)根据垂直得到直角三角形,由直角三角形两锐角互余利用等量代换证明结论;(2)通过作FM∥AB∥CD可证∠DF A=∠CDF+∠BAF,因为∠CDE+∠BAE=90°和角平分线的定义可得∠F=12(∠CDE+∠BAE),继而得到答案;(3)根据角平分线的定义得∠CEH=∠DEH=∠GEB=∠BAG=∠EAF,由于∠B=90°,∠BAE+∠BEA =90°,在△AEG中,可证得∠EAG+∠AEG=90°,从而证得结论.【解答过程】(1)证明:∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠CED=90°,∴∠BAE=∠CED.(2)解:答案为45°;过点F作FM∥AB,如图,∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴AB∥CD,∵∠C=90°,∴∠CED+∠CDE=90°,∵∠BAE=∠CED,∴∠BAE+∠CDE=90°,∵AF、DF分别平分∠BAE和∠CDE,∴∠CDF=12∠CDE,∠BAF=12∠BAE,∴∠CDF+∠BAF=12(∠BAE+∠CDE)=45°,∵FM∥AB∥CD,∴∠CDF=∠DFM,∠BAF=∠AFM,∴∠AFD=∠CDF+∠BAF=45°.(3)∵EH平分∠CED,∴∠CEH=12∠CED,∴∠BEG=12∠CED,∵AF平分∠BAE,∴∠BAG=12∠BAE,∵∠BAE=∠CED,∴∠BAG=∠BEG,∵∠BAE+∠BEA=90°,∴∠BAG+∠GAE+∠AEB=90°,即∠GAE+∠AEB+∠BEG=90°,∴∠AGE=90°,∴EG⊥AF.30.(2021春•崇川区期末)在△ABC中,BD是△ABC的角平分线,E为边AC上一点,EF⊥BC,垂足为F,EG平分∠AEF交BC于点G.(1)如图1,若∠BAC=90°,延长AB、EG交于点M,∠M=α.①用含α的式子表示∠AEF为180°﹣2α;②求证:BD∥ME;(2)如图2,∠BAC<90°,延长DB,EG交于点N,请用等式表示∠A与∠N的数量关系,并证明.。

角度的计算专题

角度的计算专题

角度的计算专题例1 、求7时8分两针夹角。

例2 、求2时52分两针夹角。

45?例3 时钟在4时与5时之间的什么时刻,两针夹角为160?例4 时钟在4时与5时之间的什么时刻,两针夹角为140?例5 时针在4时与5时之间的什么时刻,两针夹角为1.(1)48°39′+67°31′(2)180°﹣21°17′×52.18°36′12″+12°28′14″3.72°35′÷2+18°33′×4.4.(1)76°35′+69°65′(2)180°﹣23°17′57″(3)19°37′26″×95.48°39′+67°31′﹣21°17′×56.(1)22°18′×5;(2)90°﹣57°23′27″.7.90°﹣18°26′59″8.(1)51°37′11″﹣30°30′30″÷5;(2)13°53′×3﹣32°5′31″.9.(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.10.(1)48°39′+67°41′;(2)46°35′×311.(1)18°15′17″×4;1(2)109°24′÷8.12.(90°﹣21°31′24″)÷213.①28°32′46″+15°36′48″;②(30°﹣23°15′40″)×3;③108°18′36″﹣56.5°;(结果用度、分、秒表示)④123°24′﹣60°36′.(结果用度表示)14.(1)45.4°+34°6′;(2)38°24′×4;(3)150.6°﹣(30°26′+59°48′).15.90°﹣77°54′36″﹣1°23″16.180°﹣23°17′57″17.360°÷7(精确到分)18.32°16′×5﹣15°20′÷619.16°51′+38°27′×3﹣90°20.16°51′+38°27′×3﹣90°.21.计算:33°15′16″×5.22.19°37′26″×923.90°﹣(23°16′+17°23′)+19°40′÷6;24.计算:18°20′32″+30°15′22″.25.180°﹣(45°17′+52°57′).26.72°35′÷2+18°33′×427.(1)153°19′42″+26°40′28″;(2)90°3″﹣57°21′44″;(3)33°15′16″×5;(4)175°16′30″﹣47°30′÷6+4°12′50″×3.28.(1)48°39′+67°31′(2)21°17′×4+176°52′÷3.(3)32°45'38″+23°25′45″(4)(180°﹣90°32′)÷2+19°23′32″×3.230.计算:175°16′30″﹣47°30′÷6+4°12′50″×3.3例1 求7时8分两针夹角。

2020年人教版七下期末复习专题《角的计算》(含答案)

2020年人教版七下期末复习专题《角的计算》(含答案)

2020年人教版七下期末复习专题《角的计算》1.如图,已知直线AB、CD、EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.2.如图,OE为∠COA的平分线,∠AOE=60°,∠AOB=∠COD=16°.(1)求∠BOC的度数;(2)比较∠AOC与∠BOD的大小.3.如图1,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向,已知射线OB的方向是南偏东m°,射线OC的方向为北偏东n°,且m°的角与n°的角互余.(1)①若m=60,则射线OC的方向是.(直接填空)②请直接写出图中所有与∠BOE互余的角及与∠BOE互补的角.(2)如图2,若射线OA是∠BON的平分线,①若m=70,则∠AOC= .(直接填空)②若m为任意角度,求∠AOC的度数.(结果用含m的式子表示)4.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=_______;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠______,这个余角的度数等于______.5.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.6.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.7.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.8.如图所示,点A,O,B在同一条直线上,∠BOC=40°,射线OC⊥射线OD,射线OE平分∠AOC.求∠DOE的大小.9.如图,已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°.求∠AOC与∠EOD的度数.10.∠BOC=60°,OE平分∠AOC,OF平分∠BOC,若AO⊥BO,则∠EOF是多少度?11.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)已知:如图①,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数;(2)已知:∠AOB=90°,如图②,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n度得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,求n的值.12.如图,已知∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?13.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?14.如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC= .(用含α与β的代数式表示)15.如图(甲),∠AOC和∠DOB都是直角.(1)如果∠DOC=28°,那么∠AOB的度数是多少?(2)找出图(甲)中相等的角.如果∠DOC≠28°,他们还会相等吗?(3)若∠DOC越来越小,则∠AOB如何变化?若∠DOC越来越大,则∠AOB又如何变化?(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE相等的角.参考答案1.解:∵∠2=2∠1,∴∠1=0.5∠2.∵∠3=3∠2,∴∠1+∠2+∠3=0.5∠2+∠2+3∠2=180°,解得∠2=40°,∴∠3=3∠2=120°.∵∠3+∠COE=180°,∠DOE+∠COE=180°,∴∠DOE=∠3=120°.2.解:(1)因为OE平分∠AOC,所以∠COA=2∠AOE=120°,所以∠BOC=∠AOC-∠AOB=120°-16°=104°.(2)因为∠BOD=∠BOC+∠COD=104°+16°=120°,所以∠AOC=∠BOD.3.解:(1)①n=90°﹣60°=30°,则射线OC的方向是:北偏东30°,故答案是:北偏东30°;②与∠BOE互余的角有∠BOS,∠COE,与∠BOE互补的角有∠BOW,∠COS.(2)①∠BON=180°﹣70°=110°,∵OA是∠BON的平分线,∴∠AON=∠BON=55°,又∵∠CON=90°﹣70°=20°,∴∠AOC=∠AON﹣∠CON=55°﹣20°=35°.故答案是:35°;②∵∠BOS+∠BON=180°,∴∠BOS=180°﹣∠BON=180°﹣m°.∵OA是∠BON的平分线,∴∠AON=∠BON=(180°﹣m°)=90°﹣m°.∵∠BOS+∠CON=m°+n°=90°,∴∠CON=90°﹣m°,∴∠AOC=∠AON﹣∠CON=90°﹣m°﹣(90°﹣m°)=90°﹣m°﹣90°+m°=m°.4.解:(1)42°30′;(2)如图,AOD或COE,47°30′;5.解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.6.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°;(2)∠DOC=×∠BOC=×70°=35°∠AOE=×∠AOC=×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.7.解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD ﹣∠BOC=90°﹣45°=45°,∠BOD=3∠DOE ;∴∠DOE=15°,∴∠COE=∠COD ﹣∠DOE=90°﹣15°=75°;故答案为75°. 8.解:∵点A ,O ,B 在同一条直线上,∠BOC=40°,∴∠AOC=140°.∵射线OE 平分∠AOC , ∴∠EOC=70°.∵射线OC ⊥射线OD , ∴∠COD=90°,∴∠DOE=∠EOC+∠COD=160°.9.解:∵OF ⊥CD ,∴∠COF=90°,∴∠BOC=90°﹣∠BOF=65°,∴∠AOC=180°﹣65°=115°,∵OE ⊥AB ,∴∠BOE=90°,∴∠EOF=90°﹣25°=65°,∴∠EOD=90°﹣65°=25°. 10.解:由AO ⊥BO ,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°. 由OE 平分∠AOC ,OF 平分∠BOC ,得∠COE=∠AOC=×150°=75°, ∠COF=∠BOC=×60°=30°.由角的和差,得∠EOF=∠COE ﹣∠COF=75°﹣30°=45°. 11.解:(1)∵OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,∴∠AOC=13∠AOB=13×60°=20°.(2)①∵∠AOB=90°,OC ,OD 是∠AOB 的两条三分线, ∴∠BOC=∠AOD=13∠AOB=13×90°=30°,∴∠COD=∠AOB -∠BOC -∠AOD=90°-30°-30°=30°.②分两种情况:当OA 是∠C ′OD ′的三分线,且∠AOD ′>∠AOC ′时, 如图①,∠AOC ′=13∠C ′OD ′=10°,∴∠DOC ′=∠AOD -∠AOC ′=30°-10°=20°, ∴∠DOD ′=∠DOC ′+∠C ′OD ′=20°+30°=50°; 当OA 是∠C ′OD ′的三分线,且∠AOD ′<∠AOC ′时, 如图②,∠AOC ′=20°,∴∠DOC ′=∠AOD -∠AOC ′=30°-20°=10°, ∴∠DOD ′=∠DOC ′+∠C ′OD ′=10°+30°=40°. 综上所述,n=40或50.12.解:13.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC﹣∠FOC=∠AOC﹣∠BOC=(∠AOB+∠BOC)﹣∠BOC=∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC﹣∠FOC=∠AOC﹣∠BOC=(∠AOB+∠BOC)﹣∠BOC=∠AOB.即y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=x.联立解得y=52°.即∠EOF是52度.14.解:15.解:(1)因为∠AOC=∠DOB=90°,∠DOC=28°所以∠COB=90°﹣28°=62°所以∠AOB=90°+62°=152°(2)相等的角有:∠AOC=∠DOB,∠AOD=∠COB如果∠DOC≠28°,他们还会相等(3)若∠DOC越来越小,则∠AOB越来越大;若∠DOC越来越大,则∠AOB越来越小(4)如图,画∠GOE=∠HOF=90°,则∠HOG=∠FOE即,∠HOG为所画的角。

人教版四年级上册数学期末角的度数计算题专题训练

人教版四年级上册数学期末角的度数计算题专题训练

人教版四年级上册数学期末角的度数计算题专题训练1.下图中,已知130︒∠=,那么2∠、3∠的度数各是多少?2.如图,已知∠1=39°,求∠3、∠4的度数。

3.如图,已知∠1=39°,求∠2、∠3和∠4的度数。

4.求∠1的度数。

5.已知∠1=40°,∠5是直角,求∠2、∠3、∠4的度数。

6.下面是一张长方形纸折起来以后形成的图形,已知∠1=48°,∠2是多少度?7.如图,求∠1、∠2的度数。

8.如图,求12∠+∠的度数。

9.已知∠1=40°,求∠2、∠3、∠4的度数。

10.把一张长方形纸的一个角折过来(如图),已知∠1=50°,求∠2的度数。

11.如图,求∠1、∠2的度数。

12.如图,已知∠1=56°,求∠2、∠3和∠4的度数。

13.把两个三角尺叠放在一起,如图所示。

已知∠1=15°,求∠2和∠3的度数。

14.已知∠1=58°,∠2是直角,∠3是多少度?15.已知∠1=70°,求∠2,∠3,∠4的度数,16.已知∠1=∠2=20°,求∠3、∠4和∠5的度数。

17.如下图所示,已知245∠=︒,527∠=︒,求1∠、3∠、4∠的度数。

18.下图中∠1=50°,求∠2,∠4,∠5的度数。

19.已知∠1=25º,求∠2和∠3的度数。

20.如图,已知∠1=35°,求∠2、∠3、∠4的度数.21.已知∠1=20°,∠2=120°,求∠3的度数。

22.看图求∠1,∠2,∠3的度数。

23.已知∠1=20°,求∠2,∠3,∠4的度数。

24.已知∠3=40°,求∠1,∠2的度数。

25.如图,求出∠1和∠3。

参考答案:1.60°;120°2.∠3=51°;∠4=129°;3.∠2=141°;∠3=39°;∠4=141°4.58°5.∠2=50°;∠3=130°;∠4=50°6.66°7.∠1=113°;∠2=23°8.1409.∠2=50°;∠3=130°;∠4=50°10.80°11.∠1的度数是55°;∠2的度数是145°13.∠2=15°;∠3=75°14.∠3=32°15.110°;160°;20°16.∠3=140°;∠4=40°;∠5=140°17.190∠=︒;345∠=︒;4153∠=︒18.∠2=40°;∠5=130°;∠4=50°19.∠2=65° ∠3=115°20.∠2的度数是145°,∠3的度数是35°,∠4的度数是55° 21.∠3是40度22.∠1=30度,∠2=114度,∠3=66度23.20°;70°;160°24.∠1=40°;∠2=50°25.∠1是145°;∠3是60°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角的计算专题
例1.如图,已知∠AOB=90°,射线OC绕点O从OA位置开始,以每秒4°的速度顺时针方向旋转;同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针方向旋转.当OC与OA成180°时,OC与OD
同时停止旋转.
(1)当OC旋转10秒时,∠COD= °.
(2)当OC与OD的夹角是30°时,求旋转的时间.
(3)当OB平分∠COD时,求旋转的时间.
例2.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图(1)若∠BOD=35°,则∠AOC=??__??;若∠AOC=135°,则∠
BOD=????____;
(2)如图(2)若∠AOC=140°,则∠BOD=????___;
(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.
(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由
例3.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平
分∠AOC与∠BOC.求∠EOF的度数;
(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD
与∠BOC.求∠EOF的度数;
(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线
OC与射线OD的夹角为β,OE、OF分别平分∠AOD
与∠BOC.若α+β≤180°,α>β,则∠EOC=
_______ .(用含α与β的代数式
表示)
例4.如图1,直线DE上有一点O,过点O在直线DE
上方作射线OC.将一直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD 上,另一边OB在直线DE上方.将直角三角板绕着点O按每秒10?的速度逆时针旋转一周,设旋转时间为t秒.
(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC与∠BOE之间有何数量关系?并说明理由.
(2)若射线OC的位置保持不变,且∠COE=140°.
①则当旋转时间t= 秒时,边AB所在的直线与OC平行?
②在旋转的过程中,是否存在某个时刻,使得射线OA ,OC 与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t 的取值.若不存在,请说明理由.
③在旋转的过程中,当边AB 与射线OE 相交时(如图3),求∠AOC ﹣∠BOE 的值.
课堂练习:
1.如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD=14°,求∠DOE 、∠BOE 的度数.
2.如图,直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠
COF =34°,求∠BOD 的度数.
3.点O 是直线AB 上一点,∠COD 是直角,∠AOC =140°,OE 平分∠BOC ,
求∠DOE 的度数.
4.如图,BD 平分∠ABC ,∠ABE ︰∠CBE =3︰4,∠DBE =8°,求∠ABC
的度数.
5.点O 是直线AB 上一点,∠COD 是直角,∠AOC =40°,OE 平分∠BOC ,
求∠DOE 的度数.
6.如图,O 是直线AB 上一点,OC 平分∠AOD ,∠DOE =13
∠BOD ,∠COE =72°,求∠BOE 的度数. 7.如图,已知∠AOB 是∠AOC 的余角,∠AOD 是∠AOC 的补角,且∠BOC =12
∠BOD , 求∠BOD 、∠AOC 的度数.
8.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=40°,求∠2、∠3的度数.
9.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,∠BOC —∠BOD =20°,
求∠BOE 的度数. 10.如图,从点O 引出6条射线OA 、OB 、OC 、OD 、OE 、OF ,且∠AOB =
100°,OF 平分∠BOC ,∠AOE =∠DOE ,∠EOF =140°,求∠COD 的度数.
11.已知,如图∠BOC 为∠AOC 内的一个锐角,射线OM 、ON 分别平分∠AOC 、∠BOC. (1)若∠AOB =90°,∠BOC =30°,求∠MON 的度数;
(2)若∠AOB =α,∠BOC =30°,求∠MON 的度数; (3)若∠AOB =90°,∠BOC =β,还能否求出∠MON 的度数?若能,求出其值,若不能,说明理由.
(4)从前三问的结果你发现了什么规律? E O C D B A
N
M
O C B
A。

相关文档
最新文档