最新专题训练(十)角的计算word版本

合集下载

(完整word版)三角形中有关角度的计算

(完整word版)三角形中有关角度的计算

三角形中有关角度的计算一.直接求角度1.如图, 在锐角△ABC 中,CD 、BE 分别是AB 、AC 上的高,• 且CD 、BE 交于一点P , 若∠A=50°,求∠BPC的度数。

2。

所示,在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,∠ACB 的平分线交AD 于E ,•交AB 于F ,请猜测∠AEF 与∠AFE 之间有怎样的数量关系,并说明理由.3.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=_______度.4。

如图,在△ABC 中,∠B=66°,∠C=54°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E,则∠BDE=_________.5。

如图,△ABC 中,∠ABC=∠C=72°,BD 平分∠ABC,求∠ADB 的度数.EFDACB 45α30D CBA6。

如图,△ABC 中,∠A=80°,∠B 、∠C 的角平分线相交于点O,∠ACD=30°,•求∠DOB 的度数。

7。

△ABC 的两条高AD ,CE 相交于点M ,已知∠A=30°,∠C=75°,求∠AMC8。

(1)在△ABC 中,AB=AC ,∠BAC=100°,ME 和NF 分别垂直平分AB 和AC ,求∠MAN•的度数. (2)在(1)中,若无AB=AC 的条件,你还能求出∠MAN 的度数吗?若能,请求出;•若不能,请说明理由.9.如图,在△ABC 中,∠ABC 的角平分线BE 和 ∠ACD 的角平分线CE 相交于点E , (1)如果∠A=60°,∠ABC=50°,求∠E 的大小. (2)如果∠A=70°,∠ABC=40°,求∠E 的大小.(3)根据(1)和(2)的结论,试猜测一般情况下,∠E 和∠A 的大小关ODCBAME D CAEDCA系,并简要说明理由.二.设未知数求角度10.在△ABC 中,AB=AC ,CD 平分∠C ,∠ADC=150°,求∠B11.如图,△ABC 中,∠A=90°,∠C 的平分线交AB 于D ,已知∠DCB=2∠B 。

角的计算专项练习60题(有答案)ok

角的计算专项练习60题(有答案)ok

角的计算专项练习60题(有答案)ok角的计算练习60题(附参考答案)1.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.2.已知∠1=35°,∠2= _________ .3.计算出下列各角的度数.4.算一算,下面是一个直角三角形.∠1= _________∠2= _________∠3= _________ .9.求下面各个三角形中∠A的度数10.如图中,已知∠1=43°,∠2= _________ ,∠3= _________ .11.计算三角形中角的度数.∠1= _________ ,∠2= _________ ,∠3=_________ .12.算一算:∠1= _________ ;∠2= _________ ;∠3=_________ .13.算一算,这些角各是多少度.已知∠2=40°求得:∠1= _________ °,∠3= _________ °,∠4= _________ °.14.求出如图所示各角的度数.15.如图,已知∠l=20°,∠2=46°,求∠3的度数.16.如图所示,∠BOC=110°,∠AOB=∠DOC,∠AOB是几度?17.如图:∠1=48°;∠2= _________ .18.算一算.已知∠1=65°,求出:∠2、∠3、∠4的度数.19.求下面各角的度数.图1,∠1= _________ ∠2= _________图2,∠1= _________ .20.求下面各角的度数.已知∠1=30°,∠2=90°.∠3= _________ ;∠4= _________ ;∠5= _________ .21.∠1=32゜,∠2=36゜,∠3= _________ .22.如图已知∠1=35°,∠2= _________ ,∠3=_________ ,∠4= _________ .23.如图所示,已知∠1=30°.求:∠2、∠3和∠4的度数.24.已知∠1=25°,∠2= _________ °,∠3= _________ °,∠4= _________ °.25.算一算:∠1= _________ ;∠2= _________ ;∠3=_________ .26.角的计算(1)如图1所示,已知:∠1=72°,∠2=45°,求:∠AOB= _________ ?(2)如图2所示,已知:∠1=35°,求∠2= _________ ?27.用量角器量出图中∠2的度数,再求∠1、∠3和∠4的度数.28.如图,已知∠1=130°,求∠2、∠3的度数.29.如图中,∠AOB=14°,∠COB=∠COD,求∠COD.30.在直角∠AOB内有射线OC、OD.∠AOC=∠BOD=60°,求∠COD的大小.31.求下面各角的度数.∠A= _________ ∠B= _________ ∠B=∠C=_________ ∠C= _________ .32.(1)如图1,已知:∠1=45°,求:∠2(2)如图2,已知:∠1=90°,∠2=30°求:∠3等于多少度?(3)如图3,已知:∠1=135°求:∠2、∠3、∠4各等于多少度?33.如图,已知∠1=70°,∠2=25°,∠3=50°,求∠5=?34.如图是一张长方形纸折起来以后的图形,已知么∠2是65°,∠1是多少度?35.已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?36.算一算∠1=65°∠2= _________ ∠3= _________ ∠4=_________ ∠1+∠2+∠3+∠4= _________ .37.求角的度数.(1)AB=AC(如图1)∠1= _________∠2= _________(2)三角形ABC是等腰三角形(如图2)∠1= _________∠2= _________ .38.如图中∠1=30°,∠2= _________ ,∠3=_________ ,∠4= _________ ,∠5= _________ .39.如图所示,∠1=55.,请分别求出∠2、∠3、∠4的度数.40.图中,已知∠1=37°∠2= _________ ;∠3= _________ ;∠4=_________ .41.如图,已知∠1=40°,∠2= _________ ,∠3=_________ ,∠4= _________ ,∠3+∠4= _________42.图中∠1= _________ ,∠2= _________ ,∠3= _________ ,∠1+∠2= _________ .43.已知∠1=50°,求∠2=?∠3=?44.算一算.已知∠1=36°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .45.图中,∠1=55°,∠2是直角,你能求∠3、∠4、∠5各是多少度吗?46.先量一量,再填空.①∠1= _________ ,是_________ 角;∠2=_________ ,是_________ 角;∠3= _________ ,是_________ 角.②画出∠1,使∠1=75°.47.算一算如图:已知∠1=35°∠3= _________ ∠4= _________∠2= _________ ∠1+∠2+∠3= _________ .48.如图1,已知∠1=40°,∠2= _________ ,∠3= _________ ,∠4= _________ .如图2,已知∠1=30°,∠2= _________ ,∠3=_________ ,∠4= _________ ,∠5=_________ .49.求各个角的度数.(1)图1中:已知∠1=60°∠2= _________∠3= _________∠4= _________∠5= _________(2)图2中:已知∠1=75°∠2= _________∠3= _________∠4= _________ .50.分别量出图中4个角的度数,再求出这4个角的和.∠1= _________ ;∠2= _________ ;∠3=_________ ;∠4= _________ ;∠1+∠2+∠3+∠4= _________ .51.∠1= _________ ;∠2= _________ ;∠3=_________ .52.∠1= _________ ;∠2= _________ ;∠3=_________ .53.已知∠1=90°,∠2=50°,求∠3、∠4和∠5的度数.54.如图,求∠1和∠2的度数.55.已知:∠1=∠3,∠2=40°求:∠ADE=?56.在下面三角形中,∠1=38°,∠2+∠3=90°,求∠3和∠4各是多少度?57.在三角形ABC中,∠l=60°,∠3=50°,求∠2、∠4的度数.58.如图,已知:∠2=30°,∠3是直角,则∠2+∠3=_________ ,∠1+∠2+∠4= _________ ,∠1+∠2+∠3+∠4= _________ .59.求图中各角的度数.图1:∠2= _________ ∠3= _________ 图2:∠1= _________ ∠2= _________ ∠3= _________ .60.看图填数.①如图一,已知∠1=75°,那么∠2= _________ ∠3= _________ ∠4= _________ .②如图二,∠1= _________ ∠2= _________ ∠3= _________ .角的计算参考答案:1.设∠AOB=x,∠BOC=2x.则∠AOC=3x.又OD平分∠AOC,因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x ﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°2.∠2=180°﹣∠1,∠2=180°﹣35°,∠2=145°.故答案为:145°.3.(1)(180°﹣50°)÷2,=130°÷2,=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°4.∠2=90°﹣60°=30°;∠3=180°﹣50°=130°;∠1=180°﹣∠2﹣∠3=180°﹣30°﹣130°=20°.故答案为:20°;30°;130°5.在直角三角形ABD中,因为∠ADB=90°,所以∠2=180°﹣90°﹣42°,∠2=48°;在直角三角形ADC中,∠ADC=90°,所以∠3=180°﹣90°﹣36°,∠3=54°答:∠2和∠3分别是48°和54°.6.(1)∠1=180°﹣90°﹣25°=65°;(2)180°﹣25°﹣20°=135°;∠2=135°﹣90°=45°;(3)∠3=180°﹣∠1=180°﹣65°=115°.故答案为:65°,45°,115°7.∠1与∠2组成了一个平角,所以∠2=180°﹣30°=150°;∠1与∠3组成一个直角,所以∠3=90°﹣30°=60°;故答案为:150°;60°8.根据题干分析可得:∠1=180﹣90﹣45=45(度),∠3=180﹣45=135(度),∠2=180﹣135=45(度),故答案为:45°,45°,135°9.∠ABC=90°,∠ACB=60°.所以,∠BAC=90°﹣∠BAC=90°﹣60°=30°;∠A=180°﹣∠B﹣∠C=180°﹣135°﹣20°=25°10.(1)∠2=90°﹣∠1=90°﹣43°=47°;(2)∠3=180°﹣∠2=180°﹣47°=133°.故答案为:47°,133°11.(1)根据题干分析可得:∠2=65°;则∠1=180°﹣65°﹣65°=50°;(2)∠3=90°﹣41°=49°;故答案为:50°;65°;49°12.∠1=180°﹣45°﹣90°=45°;∠2=180°﹣45°=135°;∠3=180°﹣135°=45°.故答案为:45°;135°;45°.13.根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.14.∠A=180°﹣40°﹣85°=55°;∠B=180°﹣90°﹣35°=55°;∠C=180°﹣20°﹣47°=113°.如图所示:故答案为:55°、55°、113°15.∠4=180°﹣∠1﹣∠2,=180°﹣20°﹣46°,=114°,∠3=180°﹣∠4,=180°﹣114°,=66°.答:∠3是66°16.根据题干分析可得:(180﹣110)÷2,=70÷2,=35(度),答:∠AOB的度数是35度.17.∠2=90°﹣48°=42°,故答案为:42°18.∠1与∠3是对顶角,所以∠3也是65°;因为∠1与∠2组成了一个平角,∠2与∠4又是对顶角,所以∠2=∠4=180°﹣65°=115°,答:∠2=115°,∠3=65°,∠4=115°.19.(1)∠1=∠2=(180°﹣120°)÷2=30°;(2)90°﹣40°=50°;所以∠1=50°;故答案为:30°;30°;50°20.∠1和∠5组成了一个直角,所以∠5=90﹣30=60(度),∠5与∠4组成了一个平角,所以∠4=180﹣60=120(度);因为∠5与∠3是一组对顶角,所以∠3=∠5=60(度),故答案为:60°;120°;60°21.180°﹣32°﹣36°=112°;故答案为:112°22.∠2=90°﹣∠1=90°﹣35°=55°,∠3=180°﹣∠2=180°﹣55°=125°,∠4=180°﹣∠3=180°﹣125°=55°,故答案为:55°,125°,55°.23.∠2=90°﹣30°=60°,∠3=180°﹣60°=120°,∠4=180°﹣120°=60°.答:∠2的度数是60°,∠3的度数是120°,∠4的度数是60°24.∠2=180°﹣∠1=155°,∠3=180°﹣∠2=25°,∠4=180°﹣∠1=155°.故答案为:155,25,155.25.∠1=180°﹣35°=145°;∠2=180°﹣90°=90°;∠3=180°﹣125°=55°.故答案为:145°;90°;55°26.(1)∠AOB=∠1+∠2=72°+45°=117°;(2)∠2=180°﹣90°﹣∠1=55°.故答案为:117°;55°.27.经测量可得∠2=35°,则∠1=90°﹣35°=55°,∠3=180°﹣35°=145°,∠4=180°﹣145°=35°.答:∠1的度数是55°,∠3的度数是145°,∠4的度数是35°28.∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度,∠3是40度.29.(90°﹣14°)÷2,=76°÷2,=38°;答:∠COD=38°30.∠COD=∠AOC+∠BOD﹣∠AOB,=60°+60°﹣90°,=30°.答:∠COD的大小是30°.31.(1)∠A=90°﹣34°=56°;(2)∠C=180°﹣90°﹣18°=72°,∠B=180°﹣60°﹣72°=48°;(3)∠B=∠C=(180°﹣48°)÷2=66°;(4)∠A=180°﹣119°=61°,∠C=90°﹣61°=29°.故答案为:56°;48°;66°;29°32.(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°,∠4=180°﹣∠1=180°﹣135°=45°,∠2=180°﹣∠3=180°﹣45°=135°33.在小三角形里最大的角=180°﹣∠2﹣∠3=105°,∠4=180°﹣105°=75°,∠5=180°﹣∠1﹣∠4,=180°﹣70°﹣75°,=35°.答:∠5是35°34.180°﹣65°×2=180°﹣130°=50°.答:∠1是50度.35.∠4=90°,∠5=90°﹣∠1=90°﹣28°=62°,∠2=180°﹣∠1=180°﹣28°=152°,∠3=180°﹣∠2=180°﹣152°=28°;答:∠2=152°,∠3=28°,∠4=90°,∠5=62°.36.(1))∠2=90°﹣∠1,=90°﹣65°,=25°;(2))∠3=180°﹣∠2,=180°﹣25°,=155°;(3))∠4=180°﹣∠3,=180°﹣155°,=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°,=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°37.(1)∠C=180°﹣120°=60°,∠1=90°﹣∠C=90°﹣60°=30°;∠2=180°﹣60°×2=60°;(2)∠1=90°﹣60°=30°;∠2=180°﹣∠1×2﹣90°,=180°﹣30°×2﹣90°,=30°.故答案为:(1)30°,60°;(2)30°,30°38.根据题干分析可得:∠3=90°;∠2=90°﹣30°=60°;∠4=∠1=30°;∠5=180°﹣30°=150°;故答案为:60°;90°;30°;15039.如图:∠4=90°﹣∠1,=90°﹣55°,=35°,∠3=180°﹣∠4﹣∠5,=180°﹣35°﹣90°,=55°,∠2=180°﹣∠3,=180°﹣55°,=125°,答:∠2是125°、∠3是55°、∠4是35°40.∠2=90°﹣∠1=90°﹣37°=53°,∠3=180°﹣∠2=180°﹣53°=127°,∠4=180°﹣∠3=180°﹣127°=53°故答案为:53°,127°,53°41.∠2=∠4=180°﹣40°=140°,∠3=180°﹣∠2=40°,∠3+∠4=180°.故答案为:140°,40°,140°,180°42.∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°43.∠2=180°﹣50°=130°,∠3=180°﹣90°=90°.答:∠2=130°,∠3=90°.44.根据题干分析可得:∠3是直角,是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°,故答案为:54°;90°;36°;144°45.∠3=90°﹣55°=35°,∠5=180°﹣55°=125°,∠4=180°﹣125°=55°.答:∠3=35°、∠4=55°、∠5=125°46.(1)经过测量可知∠1=50°,是锐角,∠2=40°,是锐角,∠3=120°,是钝角;(2)根据分析画图如下:故答案为:50°;锐;4°;锐;120°;钝47.∠2=180°﹣∠1=180°﹣35°=145°,∠3=180°﹣∠2=180°﹣145°=35°,∠4=90°,∠1+∠2+∠3=35°+145°+35°=215°.故答案为:35°,90°,145°,215°48.图一:因为,∠1=40°.所以,∠2=180°﹣40°=140°;∠3=180°﹣140°=40°;∠4=180°﹣40°=140°;图二:因为,∠1=30°.所以,∠2=90°﹣30°=60°;∠3=90°;∠4=180°﹣60°﹣90°=30°;∠5=180°﹣30°=150°;故答案为:140°,40°,140°,60°,90°,30°,150°49.(1)因为∠2=90°,平角=180°,所以,∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°,平角=180°,所以,∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°,30°,60°,120°,105°,75°,105°50.测量可得图中∠1=90°,∠2=45°,∠3=90°,∠4=135°.∠1+∠2+∠3+∠4=90°+45°+90°+135°=360°.故答案为:90°,45°,90°,135°.360°51.观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°52.因为∠1是等腰直角三角形底角,所以∠1=90°÷2=45°;因为正方形的两条对角线互相垂直,所以∠2=∠3=90°.故答案为:45°;90°;90°53.(1)∠3=180°﹣∠2=180°﹣50°=130°;(2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°,∠4=50°,∠5=40°54.∠1=180°﹣90°﹣65°=25°;∠2=180°﹣120°=60°.答:∠1的度数是25°;∠2的度数是60°.55.∠ADE=(180°﹣40°)÷2+40°,=140°÷2+40°,=70°+40°,=110°.答:∠ADE是110°.56.∠4=180°﹣∠1﹣(∠2+∠3),∠4=180°﹣38°﹣90°,∠4=52°;∠3=180°﹣90°﹣∠4,∠3=180°﹣90°﹣52°,∠3=38°.答:∠3是38°,∠4是52°57.因为∠1+∠3+∠4=180°,∠l=60°,∠3=50°,所以∠4=180°﹣60°﹣50°=70°;因为∠6=90°,所以∠2=90°﹣∠3,=90°﹣50°,=40°58.∠2+∠3=30°+90°=120°;∠1+∠2+∠3+∠4=360°;∠1+∠2+∠4=360°﹣90°=270°.故答案为:120°,270°,360°.59.(1)∠2=90°=50°=40°;∠3=180°﹣(40°+30°)=110°;(2)∠1=180°﹣120°=60°;∠2=180°﹣(60°+45°),=180°﹣105°,=75°;∠3=180°﹣75°=105°.故答案为:40°、110°;60°、75°、60.因为∠1+∠2=180°,∠1=75°,所以75°+∠2=180°,75°﹣75°+∠2=180°﹣75°,∠2=105°;因为∠1与∠3,∠2与∠4,分别是对顶角,所以∠1=∠3=75°,∠2=∠4=105°;(2)因为∠1+35°=180°,∠1+35°﹣35°=180°﹣35°,∠1=145°;因为∠2+30°=90°,∠2+30°﹣30°=90°﹣30°,∠2=60°;因为∠3是一个直角,所以∠3=90°;故答案为:(1)105°,75°,105°.(2)145°,60°,90°.。

(完整word版)数学小学四年级角的运算

(完整word版)数学小学四年级角的运算

一、填空题。

1.从一点引出两条()所构成的图形叫做角,这个点叫做角的() ,这两条射线叫做角的()。

2.角的两边在一条直线上,这样的角叫做()角,它有 ()度。

3.量角的大小,要用到()、计量角的单位是(),用符号()来表示。

把半圆均匀分红(
每一份所对的角的大小是(),记做(),五份表示()。

),
4.角的两条边在一条直线上,
5.1 周角 =()平角 =(
这样的角叫做()。

一条射线绕着它的端点旋转一周所成的角叫做
)直角 =()45°的角。

()。

6、3时整,钟面上的时针与分针成();6时整成(),钟面上()时,时针与分针所成的角度是150度的角。

7.∠ 1+ ∠ 2+∠3=180 °,此中∠1=52°,∠2=46°,那么∠3=()。

8.∠1 是∠ 2的 3 倍,∠ 1=120°,∠2=() 。

9、三角板上的角有()度、()度、()度、()度。

(word完整版)角的度量练习题 (1)

(word完整版)角的度量练习题 (1)

角的度量练习题一、填空1.从一点引出两条( )所组成的图形叫做角,这个点叫做角的(),这两条射线叫做角的( )。

2。

计量角的大小的单位是( )。

3.在一个直角三角形中,有两个相等的角,那么这两个角都是( )。

4.用一副三角尺中( )度和()度的角可以拼成105度的角。

二、精心挑选1.度量一个角,角的一条边对着量角器上内圈“0"的刻度,另一条边对着内圈刻度“60",这个角是().A。

60度 B.180度 C.20度2.一个5倍的放大镜看一个15度的角,这个角是( )。

A。

15度 B.20度 C.75度3。

度量一个角,角的一条边对着量角器上内圈“180"的刻度,另一条边对着内圈刻度“60",这个角是( ).A。

60度 B。

120度 C.无法确定三、量一量1.量出下面各角的度数。

()度 ( )度 ( )度()度 ( )度 ( )度2。

量出下面各图中角的度数。

三个角的度数和是( ) 三个角的度数和是( )四个角的度数和是( ) 四个角的度数和是( )1.下图中④是直线,①是射线,②是线段.⑦是锐角,⑧是平角,⑨是周角,⑥是钝角.2.从一点引出两条射线,所组成的图形叫作角.这两条射线叫作角的边,角通常用符号∠来表示..量角时,量角器的中心与重合,零刻度与重合,角的另一条边所对的量角器上的刻度,就是这个角的.重合,零刻度与重合,角的另一条边所对的量角器上的刻度,就是这个角的11.看图计算.①如图∠1=50°,求∠2、∠3、∠4的度数.②已知,图中∠1=30°,∠3=90°,求∠2、∠4、∠5、∠6各是多少度?③已知图中∠1=30°,∠3=40°,求∠2、∠4、∠5各是多少度?12.下图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进口、出口应分别设在什么地方?一、填空题(每空1分,共20分)1、角是从一点引出的两条( )所组成的图形,这一点是角的( ),两条射线是角的()。

新人教版七年级数学上册专题训练:角的计算(含答案).优选

新人教版七年级数学上册专题训练:角的计算(含答案).优选
因为∠AOB=2∠BOC, 所以∠BOC=2x°. 所以 3x+3x+2x+x=360. 解得 x=40. 所以∠AOB=40°,∠COD=120°.
类型 4 利用分类讨论思想求解 在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 2
8.已知∠AOB=75°,∠AOC=3∠AOB,OD 平分∠AOC,求∠BOD 的大小. 2
专题训练 角的计算
类型 1 利用角度的和、差关系 找出待求的角与已知角的和、差关系,根据角度和、差来计算.
1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD 的度数.
解:因为∠AOC=75°,∠BOC=30°, 所以∠AO B=∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°, 所以∠AOD=∠AOB+∠BOD=45°+75°=120°.
数,建立方程,通过解方程使问题得以解决. 2
5.一个角的余角比它的补角的3还少 40°,求这个角的度数. 解:设这个角的度数为 x°,根据题意,得 2 90-x=3(180-x)-40. 解得 x=30. 所以这个角的度数是 30°.
6.如图,已知∠AOE是平角 ,∠DOE=20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC的度数.
专题训练 整式的加减运算
计算 : (1)(钦南期末)a2b+3ab2-a2b; 解:原式=3ab2.
(2)2(a-1)-(2a-3)+3; 解:原式=4.
(3)2(2a2+9b)+3(-5a2-4b); 解:原式=-11a2+6b.
(4)3(x3+2x2-1)-(3x3+4x2-2); 解:原式=2x2- 1.
解:(1)因为 OC 是∠AOB 的平分线, 1

角的计算题20道初一

角的计算题20道初一

角的计算题20道初一1.已知一个角的补角是它的余角的3倍,求这个角的度数。

2.已知一个角的余角比它的补角的31还小10°,求这个角。

3.一个角的补角比它的余角的2倍大90°,求这个角。

4.已知一个角的余角等于45∘,求这个角。

5.已知一个角的补角是130∘,求这个角。

6.一个角的补角与它的余角的和等于180∘,求这个角。

7.已知两个角的和是180∘,其中一个角比另一个角的3倍还多10∘,求这两个角的度数。

8.一个角的补角与它的余角的2倍的和等于270∘,求这个角的余角。

9.一个角的补角比它的余角的4倍少15∘,求这个角的度数。

10.一个角的余角比它的补角的61大10∘,求这个角的余角及补角。

11.一个角的补角与它的余角的3倍的和等于90∘,求这个角的度数。

12.两个角的和是90∘,其中一个角是另一个角的4倍,求这两个角的度数。

13.一个角的补角是它的3倍,求这个角的余角。

14.已知一个角的补角比它的余角的2倍多45∘,求这个角的度数。

15.一个角的余角比它的补角小54∘,求这个角的度数。

16.两个角的和是180∘,且它们的差是30∘,求这两个角的度数。

17.一个角的补角比它的余角的5倍还多20∘,求这个角的度数。

18.已知两个角的和是90∘,且其中一个角是另一个角的2倍多15∘,求这两个角的度数。

19.一个角的补角比它的余角的6倍小30∘,求这个角的度数。

20.一个角的补角是它的余角的7倍,求这个角的度数。

角的度量练习题带答案

角的度量练习题带答案

角的度量练习题带答案角的度量是数学中的一个重要概念,它涉及到角度的计算和度量单位。

以下是一些角的度量练习题及其答案,以帮助学生更好地理解和掌握这一概念。

练习题1:一个角的度数是30°,另一个角是它的两倍,求另一个角的度数。

答案:30° × 2 = 60°练习题2:如果一个角的度数是90°,它是一个直角。

那么一个角的度数是45°,它是什么角?答案:45°是一个锐角。

练习题3:一个角的度数是120°,它比直角大多少度?答案:120° - 90° = 30°练习题4:一个角的度数是360°,它是一个周角。

如果将它平均分成4个相等的角,每个角的度数是多少?答案:360° ÷ 4 = 90°练习题5:一个角的度数是180°,它是一个平角。

如果将它平均分成3个相等的角,每个角的度数是多少?答案:180° ÷ 3 = 60°练习题6:一个角的度数是15°,它是一个锐角。

如果将它扩大到原来的3倍,新的角的度数是多少?答案:15° × 3 = 45°练习题7:一个角的度数是150°,它是一个钝角。

如果将它缩小到原来的一半,新的角的度数是多少?答案:150° ÷ 2 = 75°练习题8:如果一个角的度数是75°,它是一个钝角。

那么一个角的度数是75°的三分之一,这个角的度数是多少?答案:75° ÷ 3 = 25°练习题9:一个角的度数是300°,它是一个周角的四分之三。

求这个周角的度数。

答案:300° ÷ (3/4) = 400°练习题10:一个角的度数是40°,另一个角的度数是它的补角。

求角的度数的练习题

求角的度数的练习题

求角的度数的练习题一、基础题1. 已知∠A = 30°,求∠A的补角。

2. 已知∠B = 135°,求∠B的余角。

3. 在等腰三角形ABC中,若∠A = 70°,求∠B的度数。

4. 已知平行线l1和l2,∠1 = 55°,求同旁内角∠2的度数。

5. 在直角三角形DEF中,若∠D = 90°,∠E = 35°,求∠F的度数。

二、进阶题1. 在四边形ABCD中,已知∠A + ∠B = 180°,∠C = 100°,求∠D的度数。

2. 已知等边三角形XYZ的边长为6cm,求∠X的度数。

3. 在梯形MNOP中,MN ∥ OP,∠M = 120°,求∠P的度数。

4. 已知圆的周角∠SOR = 50°,求圆心角∠SOT的度数。

5. 在五边形ABCDE中,已知∠A + ∠B + ∠C + ∠D + ∠E = 540°,且∠A = ∠B = ∠C,求∠A的度数。

三、综合题1. 在凸六边形ABCDEF中,已知∠A = 120°,∠B = 100°,∠C = 110°,∠D = 90°,求∠E和∠F的度数。

2. 已知等腰梯形GHJK中,GH ∥ KJ,∠G = 105°,求∠H和∠K 的度数。

3. 在正五边形ABCDE中,求一个内角的度数。

4. 已知圆的半径为r,圆心角∠AOB = 80°,求弧AB所对应的圆心角的度数。

5. 在平行四边形STUV中,已知∠S = 120°,求其他三个角的度数。

四、挑战题1. 在正七边形ABCDEF中,求一个外角的度数。

2. 已知凸多边形有10个内角,且所有内角之和为1440°,求该多边形一个内角的度数。

3. 在圆中,已知弧MN的长度是弧PQ长度的两倍,求弧MN所对应的圆心角的度数。

4. 在矩形WXYZ中,已知∠W = 90°,求其他三个角的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型二:方程思想 4.如图,已知∠AOE 是平角,∠DOE=20°,OB 平分∠AOC, 且∠COD∶∠BOC=2∶3,求∠BOC 的度数.
解:设∠COD=2x°,则∠BOC=3x°,∵OB 平分∠AOC,∴∠AOB =3x°.∴2x+3x+3x+20=180.解得 x=20.∴∠BOC=3×20°=60°
8.已知∠AOB=60°,从点 O 引射线 OC,使∠AOC=40°,作 ∠AOC 的角平分线 OD,
(1)依题意画出图形; (2)求∠BOD 的度数. 解:(1)分两种情况讨论:当∠AOC在∠AOB的外部时,如图①; 当∠AOC在∠AOB的内部时,如图②
(2)如图①,∵射线 OD 平分∠AOC,∴∠AOD=21∠AOC=20°, ∴∠BOD=∠AOB+∠AOD=80°;如图②,∵射线 OD 平分∠AOC, ∴∠COD=21∠AOC=20°,∴∠BOD=∠AOB-∠AOC+∠COD= 40°
2.如图,O 为直线 AB 上一点,∠AOC=46°,OD 平分∠AOC, ∠DOE=90°,
(1)求∠BOD 的度数. (2)通过计算判断 OE 是否平分∠BOC.
解 : (1)∵∠AOC = 46°, OD 平 分 ∠AOC , ∴∠AOD = 23°, ∴∠BOD=180°-23°=157° (2)OE 是∠BOC 的平分线.理由如下: ∵∠AOC=46°,∴∠BOC=134°.∵OD 平分∠AOC,∴∠DOC=12 ×46°=23°.∵∠DOE=90°,∴∠COE=90°-23°=67°,∴∠COE=∠ BOC,即 OE 是∠BOC 的平分线
(2)当∠AOB 小于∠BOC 时,如图②时,∠BOE=∠AOE=30°,∠BOD =20°,∴∠AOD=80°,∵∠COD=∠AOD=80°,∠BOD=20°, ∴∠BOC=100°,从而∠COF=12∠BOC=21×100°=50°.故∠COF 的 度数为 10°或 50°
类型五:角的旋转 10.已知,O 是直线 AB 上的一点,∠COD 是直角,OE 平分∠BOC. (1)如图 1. A:若∠AOC=60°,求∠DOE 的度数; B:若∠AOC=α,直接写出∠DOE 的度数(用含α的式子表示); (2)将图 1 中的∠DOC 绕点 O 顺时针旋转至图 2 的位置,试探究 ∠DOE 和∠AOC 的度数之间的关系,写出你的结论,并说明理由.
∠DOB=12(∠AOD+∠DOB)=21∠AOB=21×110°=55°
类型四:分类讨论思想 7.已知∠AOB=80°,∠BOC=30°,求∠AOC 的大小.
解:分两种情形讨论.(1)当∠BOC 在∠AOB 的内部时,∠AOC =∠AOB-∠BOC=80°-30°=50°
(2)当∠BOC 在∠AOB 的外部时,∠AOC=∠AOB+∠BOC=80° +30°=110°,故∠AOC 的度数为 50°或 110°
9.已知∠BOC 在∠AOB 的外部,OE 平分∠AOB,OF 平分∠BOC, OD 平分∠AOC,∠AOE=30°,∠BOD=20°,试求∠COF 的度数.
解:(1)当∠AOB 大于∠BOC 时,如图①所示∠BOE=∠AOE= 30°,∠BOD=20°,∴∠DOE=10°,∠AOD=40°,∵∠COD=∠AOD =40°,∠BOD=20°,∴∠BOC=20°,从而∠COF=12×20°=10°
(2)∠DOE=21∠AOC,理由如下:∵∠BOC=180°-∠AOC,OE


∠BOC

∴∠COE

1 2
∠BOC

1 2
(180°-
∠AOC)

90°-
1 2
∠AOC.∴∠DOE=90°-∠COE=90°-(90°-21∠AOC)=21∠AOC
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好! 谢谢!
类型三:整体思想 6.如图,已知∠AOB=110°,OD 为∠AOB 内一条射线,OE 平 分∠AOD,OF 平分∠BOD,求∠EOF 的度数.
解:∵OE 平分∠AOD,OF 平分∠BOD,∴∠EOD=12∠AOD,
∠DOF

1 2
∠DOB


∵∠EOF

∠EOD

∠DOF

1 2
∠OD

1 2
类型一:直接计算 1.如图,∠AOC=∠BOD,∠AOD=120°,∠BOC=70°,求∠AOB 的度数.
解:∵∠AOB=AOC-∠BOC,∠DOC=∠BOD-∠BOC,又 ∵∠AOC=∠BOD,∴∠AOB=∠COD,∵∠AOB+∠BOC+∠COD =∠AOD,∴∠AOB=12(∠AOD-∠BOC)=21(120°-70°)=25°
5.如图,已知 BC 平分∠DBE,BA 分∠DBE 成 3∶4 两部分, 若∠ABC=8°,求∠DBE 的度数.
解:设∠DBA=3x°,则∠ABE=4x°,∠DBE=7x°,∵BC 平分 ∠DBE,∴∠DBC=12∠DBE=72x,∴∠ABC=∠DBC-∠DBA=72x- 3x=21x,∵∠ABC=8°,∴12x=8,解得 x=16,∴∠DBE=7x=7×16° =112°
解:(1)A:∵∠AOC=60°,∴∠BOC=180°-∠AOC=180°-60°
= 120°.∵OE

分 ∠BOC

∴∠COE =
1 2
∠BOC
= 21
×120°=
60°. 又
∵∠COD=90°,∴∠DOE=∠COD-∠COE=90°-60°=30°.
B:∠DOE=90°-12(180°-α)=90°-90°+12α=12α
3.如图,∠AOB=∠COD=90°,OC 平分∠AOB,∠BOD= 3∠DOE.试求∠COE 的度数.
解:∵∠AOB=90°,OC 平分∠AOB,∴∠BOC=12∠AOB=45°, ∵∠BOD=∠COD-∠BOC=90°-45°=45°,∠BOD=3∠DOE, ∴∠DOE=15°,∴∠COE=∠COD-∠DOE=90°-15°=75°
相关文档
最新文档