最新材料物理性能(20200807171704)

合集下载

材料的光学性能

材料的光学性能

散射系数与散射质点的大小、数量以及散射质点与基体的相对 折射率有关。
5.6.1 散射与其他光学现象的关系
根据散射前后光子能量(或光波波长)变化与否,分为弹性 散射与非弹性散射。非弹性散射要比弹性散射低几个数量级
• 弹性散射:散射前后光的波长(或光子能量)不发生变化, 只改变方向的散射。
• 非弹性散射:当光通过介质时,从侧向接受到的散射光主 要是波长(或频率)不发生变化的瑞利散射光,属于弹性散 射。当使用高灵敏度和高分辨率的光谱仪,可以发现散射光 中还有其它光谱成分,它们在频率坐标上对称地分布在弹性 散射光的低频和高频侧,强度一般比弹性散射微弱地多。这 些频率发生改变的光散射是入射光子与介质发生非弹性碰撞 的结果,称为非弹性散射。
5.5.3 折射率椭球
5.5.4 偏振元件 偏振片,四分之一波片,二分之一波片等实现
光束偏振状态的改变。
5.5.5 二向色性偏振片 晶体结构的各向异性不仅能产生折射率的各向
异性(双折射),而且能产生吸收率的各向异性, 这一性质被称为二向色性。
• 1、光吸收的物理机制? • 2、光色散的物理机制? • 3、双折射的物理机制?
sin
v1 v2
n2 n1
n21
v c n
• 材料的折射率反映了光在该材料中传播速度的快慢。
光密介质:在折射率大的介质中,光的传播速度慢;
光疏介质:在折射率小的介质中,光的传播速度快。
• 材料的折射率从本质上讲,反映了材料的电磁结构 (对非铁磁介质主要是电结构)在光波作用下的极 化性质或介电特性。
惠更斯原理: 光波波前(最前沿的
波面)上的每一点都可以 看做球面次波源。 Δt时 间后,无数个次波的包络 就是新的波前。
导出反射定律和折 射定律。

材料物理性能

材料物理性能


材料物理性能
测试弹性模数的必要性
材料物理性能
几种材料在常温下的弹性模数
材料物理性能
比弹性模数

定义:指材料的弹性模数与其单位体积质 量的比值。
陶瓷的比弹性模数一般都比金属材料的大。 在金属材料中,大多数金属的比弹性模数 相差不大。


材料物理性能
材料物理性能
2.3 影响弹性模数的因素

材料的弹性模数是构成材料的离子或分子 之间键合强度的主要标志。
材料物理性能
④ 微观结构

金属材料,在合金成分不变的情况下,显 微组织对弹性模数的影响较小,晶粒大小 对弹性模数无影响。
冷加工可以降低金属及合金的弹性模数 (5%以下),只有形成强的织构才有明显 的影响,并出现弹性各项异性。 作为金属材料刚度代表的弹性模数,是一 个组织不敏感的力学性能指标。


材料物理性能
材料物理性能
真应力—真应变曲线
工程设计和材料选用中一般以工程应力、工程应变为依据. 在材料科学研究中,真应力与真应变将具有重要意义.
材料物理性能
第二节 弹性变形及其性能指标
2.1 弹性变形的本质

材料产生弹性变形的本质,概括来说,都是构成 材料的原子(离子)或分子自平衡位置产生可逆 位置的反映。

材料物理性能
第一节 力-伸长曲线和应力-应变曲线
1.1 力—伸长曲线
材料物理性能
应力: P

FN
FN A
----胡克定律
Fl FN l l EA EA
其中:E----弹性模量,单位为Pa;
EA----杆的抗拉(压)刚度。 可得胡克定律 的另一种形式
l 规定线应变 l

材料物理性能讲义

材料物理性能讲义

Ω Ω* = (2π)3
Rl • Kn = 2π(n1l1 + n2l2 + n3l3) = 2πm, m 为整数。
(2.5)
图 2.3 二维六角点阵的魏格纳-赛茨元胞(Wigner-Seitz 原胞)。
4
由于元胞是组成点阵的最小重复单元,根据点阵中每个格点附近环境的自相 似性即平移对称性我们可以推断, 只要在一个元胞内研究材料的物理特性就代表 研究了整个点阵结构的物理特性,为此我们定义一特殊的高对称元胞,它包含了 晶 格 点阵 点群 的 全部对 称 性。 这一 特 殊的高 对 称性 元胞 称 为魏格 纳 - 赛 茨
2π ( a 2 × a3 ) Ω 2π b2 = (a3 × a1 ) Ω 2π b3 = (a1 × a2 ) Ω b1 =
(2.3)
其中Ω = a1 • (a2 × a3)是正点阵元胞的体积。 在倒点阵中任一格点的位置矢可表示 为: Kn = n1b1 + n2b2 + n3b3
(2.4)
其中 n1, n2, n3 是整数,倒点阵元胞的体积为Ω* = b1 • (b2 × b3),且存在以下关系
图 2.4 从分立的原子轨道到固体能带结构的转变。
要理解固体的能带结构首先要从原子的电子轨道讲起,因为固体的能带归根 结底起源于原子的轨道能级。 根据量子力学,原子中带负电的电子绕带正电的原 子核运动,其轨道能量是不连续、分立的,如图 2.4 所示。在一定条件下如原子 间存在相互影响,同一原子中几个能量相近的不同类型的电子轨道(即波函数), 可以进行线性组合, 重新分配能量和确定空间方向, 组成数目相等的新电子轨道,
《材料物理化学性能》 物理性能部分
邓振炎 上海大学物理系 (电话:66134334,邮箱:zydeng@)

常用材料的物理性能(超详细-好经典)

常用材料的物理性能(超详细-好经典)

材料的物理性能材料的物理性能:密度、相对密度、弹性、塑性、韧性、刚性、脆性、缺口敏感性、各向同性、各向异性、吸水率和模塑收缩率等。

•弹性:是材料在变形后部分或全部恢复到初始尺寸和形状的能力。

•塑性:是材料受力变形后保持变形的形状和尺寸的能力。

•韧性:是聚合物材料通过弹性变形或塑性变形吸收机械能而不发生破坏的能力。

•延展性:材料受到拉伸或压延而未受到破坏的延伸性称为延展性。

•脆性:是聚合物材料在吸收机械能时易发生断裂的性质。

•缺口敏感性:材料从已存在的缺口、裂纹或锐角部位发生开裂,裂纹很快贯穿整个材料的性质称为缺口敏感性。

•各向同性:各向同性的材料为在任何方向上物理性能相同的热塑性或热固性材料。

•各向异性:各向异性材料的性质与测试方向有关,增强塑料在纤维增强材料的排列方向上有较高的性能。

•吸水性:吸水性是材料吸水后质量增加的百分比表示。

模塑收缩性:模塑收缩性是指零件从模具中取出冷却至室温后,其尺寸相对于模具尺寸发生的收缩。

冲击性能:是材料承受高速冲击载荷而不被破坏的一种能力,反应了材料的韧性。

塑料材料在经受高冲击力而不被破坏,必须满足两个条件:①能迅速通过形变来分散和冲击能量;②材料内部产生的内应力不超过材料的断裂强度。

疲劳性能:塑料制品受到周期性反复作用的应力,包括拉伸、弯曲、压缩或扭曲等不同类型的应力,而发生交替变形的现象,称为疲劳。

抗撕裂性:抗撕裂性是薄膜、片材、带材一类薄型瓣重要力学性能。

蠕变性:指材料在恒定的外力(在弹性极限内,包括拉伸、压缩、弯曲等)作用下,变形随时间慢慢增加的现象。

应力松弛:指塑料制品维持恒定应变所需要的应力随时间延长而慢慢松弛的现象。

塑胶材料●塑胶材料可分为两大类:热塑性塑料、热固性塑料。

●热塑性塑料从构象(形态不同)可分为三种类型:无定型聚合物(PS、PC、PMMA)、半结晶聚合物(PE、PP、PA)、液晶聚合物(LCP)。

●热塑性塑料受热后会软化,并发生流动,冷却后凝固变硬,成为固态。

材料物理性能汇总

材料物理性能汇总

※ 材料的导电性能1、 霍尔效应电子电导的特征是具有霍尔效应。

置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势差,这种现象称霍尔效应。

形成的电场E H ,称为霍尔场。

表征霍尔场的物理参数称为霍尔系数,定义为:霍尔系数R H 有如下表达式:en R i H 1±= 表示霍尔效应的强弱。

霍尔系数只与金属中自由电子密度有关 2、 金属的导电机制只有在费密面附近能级的电子才能对导电做出贡献。

利用能带理论严格导出电导率表达式:式中: nef 表示单位体积内实际参加传导过程的电子数;m *为电子的有效质量,它是考虑晶体点阵对电场作用的结果。

此式不仅适用于金属,也适用于非金属。

能完整地反映晶体导电的物理本质。

量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时电阻为零。

只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。

由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。

这样,电子波在这些地方发生散射而产生电阻,降低导电性。

3、 马西森定律 (P94题11) 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时威慑年电阻测量要在低温下进行。

马西森(Matthissen )和沃格特(V ogt )早期根据对金属固溶体中的溶质原子的浓度较小,以致于可以略去它们之间的相互影响,把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρʹ组成,这就是马西森定律( Matthissen Rule ),用下式表示:ρʹ是与杂质的浓度、电缺陷和位错有关的电阻率。

ρL(T)是与温度有关的电阻率。

4、 电阻率与温度的关系金属的温度愈高,电阻也愈大。

若以ρ0和ρt 表示金属在0 ℃和T ℃温度下的电阻率,则电阻与温度关系为: 在t 温度下金属的电阻温度系数:5、 电阻率与压力的关系在流体静压压缩时,大多数金属的电阻率降低。

材料的物理性能与化学性能

材料的物理性能与化学性能

二、材料的物理性能与化学性能1、物理性能物理性能是指材料固有的属性,金属的物理性能包括密度、熔点、电性能、热性能、磁性能等。

(1)密度:密度是指在一定温度下单位体积物质的质量,密度表达式如下:ρ= m/V式中ρ——物质的密度(g/cm3);m ——物质的质量(g);V- ——物质的体积(cm3)。

常用材料的密度(20℃)密度意义:密度的大小很大程度上决定了工件的自重,对于要求质轻的工件宜采用密度较小的材料(如铝、钛、塑料、复合材料等);工程上对零件或计算毛坯的质量也要利用密度。

(2)熔点:是材料从固态转变为液态的温度,金属等晶体材料一般具有固定的熔点,而高分子材料等非晶体材料一般没有固定的熔点。

常用材料的熔点熔点意义:金属的熔点是热加工的重要工艺参数;对选材有影响,不同熔点的金属具有不同的应用场合:高的熔点金属(如钨、钼等)可用于制造耐高温的零件(如火箭、导弹、燃气轮机零件,电火花加工、焊接电极等),低的熔点金属(如铅、铋、锡等)可用于制造熔丝、焊接钎料等。

(3)电阻率:电阻率用ρ表示,电阻率是单位长度、单位截面积的电阻值,其单位为Ω.m。

电阻率的意义:是设计导电材料和绝缘材料的主要依据。

材料的电阻率ρ越小,导电性能越好。

金属中银的导电性最好、铜与铝次之。

通常金属的纯度越高,其导电性越好,合金的导电性比纯金属差,高分子材料和陶瓷一般都是绝缘体。

导电器材常选用导电性良好的材料,以减少损耗;而加热元件、电阻丝则选用导电性差的材料制作,以提高功率。

(4)导热率:导热率用导热率λ表示,其含义是在单位厚度金属,温差为1℃时,每秒钟从单位断面通过的热量。

单位为w/(m.K)。

常用金属的热导率合金的成分越复杂,其导热性越差。

导热率的意义:是传热设备和元件应考虑的主要性能,对热加工工艺性能也有影响。

散热器等传热元件应采用导热性好的材料制造;保温器材应采用导热性差的材料制造。

热加工工艺与导热性有密切关系,在热处理、铸造、锻造、焊接过程中,若材料的导热性差,则会使工件内外产生大的温差而出现较大的内应力,导致工件变形或开裂。

材料物理性能热学性能省公开课金奖全国赛课一等奖微课获奖课件

材料物理性能热学性能省公开课金奖全国赛课一等奖微课获奖课件

无机材料物理性能
21/526 1
热传导宏观表征
热量从温度高地方向温度低地方传导 热力 学自发过程,这是热传导现象
Q dT st
dx
热传导方程, : 热传导系数
无机材料物理性能
22/526 2
热传导系数物理意义: 单位温度梯度下, 单位时间经过面积热量,单位: W/(m2k) 或者J/(m2sK)
Cp和Cv关系依据热力学第二定律得到:
Cp
Cv
2V0T
: 体膨胀系数, : 压缩系数,V0: 摩尔 容积
无机材料物理性能
6/56 6
晶态固体热容经验定律
元素热容定律-杜隆-珀替定律: 元素恒压 原子热容是25J/(K mol)
化合物热容定律--柯普定律: 化合物分子 热容是元素原子热容总和
方程是稳定过程方程
非稳定过程热传导方程是:
T t
C p
2T x 2
无机材料物理性能
23/526 3
热传导微观机理
本质: 晶格振动格波和自由电子运动 金属中有大量自由电子,所以金属热传导性
能好 其它结合键(共价键和离子键)主要是晶格振
动格波,而自由电子贡献非常小 晶格振动格波是晶格振动相互影响,到达平
抗热冲击断裂性能
第一热应力断裂抵抗因子R
R f (1 )
E
评定基础: 材料中热应力小于材料强度
不足: 将问题绝对化,没有考虑材料性能、应力分布、 产生速率和时间等
无机材料物理性能
48/546 8
第二热应力断裂抵抗因子R’
在第一因子基础上改进,考虑了其它原 因,详细见教材第155页 R' f (1 )
无机材料物理性能
15/516 5

材料物理性能课件-1.4材料的导热性

材料物理性能课件-1.4材料的导热性
continue
声子之间的相互“碰撞”
简谐近似:格波独立传播,即声子间没有相互作用, 不存在声子间的相互“碰撞”。那么格波也不可能达 到统计平衡。
非谐作用:不同格波势能间存在交叉项,即各格波间 有相互作用,声子可发生“碰撞”,保证不同格波间 可以交换能量,达到统计平衡。这种声子间的碰撞起 着限制声子平均自由程的作用。
continue
声子的扩散运动
E()
1 2
e / kT
1
1 2
n
平均声子数
n
1 e / kT
1
晶格中各处平均声子数不同,导致声子扩散
continue
声子平均自由程
1 cl
3
l 的大小由两种过程决定:
•声子之间的相互“碰撞” •固体中缺陷对声子的散射
continue
l 密切依赖于温度
高温情况
*一般纯金属的热导率都比合金的高。
continue
6、复相材料的热导率
当分散相均匀地分散在连续相中时,热导率为
1
c
2Vd
1
cdΒιβλιοθήκη /12c d
1 Vd
1
c
d
/1
2c
d
c和d分别为连续相和分散相的热导率,Vd为分散相的 体积分数。
若把陶瓷的晶粒当作分散相,晶界(玻璃相)当作连续相,
则可由上式计算陶瓷材料的热导率。
continue
杂质散射
中间一段温度范 围内看到了杂质 散射的所用
continue
合金的热导
合金的热导总 是低于任何一 种单纯晶体材 料的热导
continue
影响材料导热性能的因素
1、金属热导率与电导率之间的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档