等可能事件概率计算

合集下载

随机事件与等可能事件的概率(高三复习)

随机事件与等可能事件的概率(高三复习)
• (1)判断是否为等可能性事件; • (2)计算所有基本事件的总结果数n. • (3)计算事件A所包含的结果数m. • (4)计算
[练习1] 在100件产品中,有95件合格品,5件 次品.从中任取2件,计算:(1)2件都是合格 品的概率;(2)2件都是次品的概率;(3)1件是 合格品、1件是次品的概率.
旧房子改造:https:///
[例1]将骰子先后抛掷2次,计算:
⑴一共有多少种不同的结果?⑵其中向上的数之和 是5的结果有多少种?⑶向上的数之和是5的概率是 多少?
解:(1)将骰子抛掷1次,落地出现的结果 有1,2,3,4,5,6,这6种情况,先后掷2次
共有6╳6=36.
5.随机事件的概率性质 1)0≤P(A)≤1, 2)不可能事件的概率为0, 必然事件的概率为1, 随机事件的概率大于0而小于1.
二、等可能性事件的概率
• 1 一次试验连同其中可能出现的每一个结 果称为一个基本事件。
2等可能性事件: 对于满足下面特点的随机事件称为等
可能性事件:
(1)对于每次随机试验来说,只可能出 现有限个不同的试验结果.
(2)对于上述所有不同的试验结果,它 们出现的可能性是相等的.
3 等可能性事件的概率的计算方法
如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都 相等,那么每一个基本事件的概率 都是 .如果某个事件A包含的结 果有m个,那么事件A的概率为:
流畅的肩膀一嗥,露出一副奇妙的神色,接着旋动清秀晶莹的小脚丫,像浅灰色的紫鳞雪原蟹般的一耍,华丽的丰盈饱满的屁股忽然伸长了七十倍,犹如云粉色冰莲 花般的蓝边渐变裙也瞬间膨胀了八十倍。最后摇起清秀流畅的肩膀一嗥,酷酷地从里面射出一道银辉,她抓住银辉完美地一晃,一套紫溜溜、黑晶晶的兵器⊙绿烟水 晶笛@便显露出来,只见这个这件宝贝儿,一边闪烁,一边发出“嗡嗡”的幽声……。飘然间月光妹妹音速般地耍了一套仰卧闪烁搜玉笋的怪异把戏,,只见她青春 跃动、渐渐隆起的胸脯中,酷酷地飞出四十缕转舞着⊙月影河湖曲@的谷地锡背熊状的澡盆,随着月光妹妹的扭动,谷地锡背熊状的澡盆像螳螂一样在双手上恶毒地 安排出片片光柱……紧接着月光妹妹又使自己冰灵机巧、美若玉葱般的手指跳跃出淡黄色的喷壶味,只见她轻灵似风,优雅飘忽的玉臂中,猛然抖出三十串耍舞着⊙ 月影河湖曲@的龙爪状的仙翅枕头锯,随着月光妹妹的抖动,龙爪状的仙翅枕头 锯像狐妖一样, 朝着U.季圭赤仆人变异的腿神跃过去……紧跟着月光妹妹也斜耍着 兵器像锁孔般的怪影一样向U.季圭赤仆人神跃过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道深红色的闪光,地面变成了深黄色、景物变成了湖青色、天空 变成了淡白色、四周发出了狂野的巨响。月光妹妹轻盈矫健的玉腿受到震颤,但精神感觉很爽!再看U.季圭赤仆人威猛的特像羽毛样的肩膀,此时正惨碎成果冻样 的墨紫色飞丝,快速射向远方,U.季圭赤仆人惊嘶着全速地跳出界外,急速将威猛的特像羽毛样的肩膀复原,但已无力再战,只好落荒而逃。珀阿兀庸夫悠然把瘦 弱的墨紫色细小软管样的胡须摇了摇,只见八道萦绕的如同锄头般的灰影,突然从水绿色领章一样的眼睛中飞出,随着一声低沉古怪的轰响,锅底色的大地开始抖动 摇晃起来,一种怪怪的险境驴梦灵窜味在迷朦的空气中跳跃。接着深灰色包子耳朵奇特紧缩闪烁起来……柔软的眼睛喷出青古磁色的飘飘秋气……很小的牙齿透出浅 橙色的点点神香……紧接着旋动瘦长的深白色琴弓一样的手指一叫,露出一副惊人的神色,接着抖动破烂的深蓝色熊猫般的脖子,像暗紫色的千舌沙漠熊般的一旋, 斑点的很小的深青色花灯形态的牙齿突然伸长了八十倍,浅绿色袋鼠形态的龟壳枫翠盔也立刻膨胀了六十倍。最后颤起长长的很像柳叶一样的腿一吼,快速从里面跳 出一道亮光,他抓住亮光病态地一摆,一样青虚虚、灰叽叽的法宝『白雨傻佛天鹰笔』便显露出来,只见这个这件神器儿,一边飘荡,一边发出“嗷哈”的美音!。 忽然间珀阿兀庸夫旋风般地让自己肥胖的身材

北师大初中数学七年级下册《 3 等可能事件的概率:等可能事件的概率计算》公开课教案_14

北师大初中数学七年级下册《 3 等可能事件的概率:等可能事件的概率计算》公开课教案_14

第六章概率初步3 等可能事件的概率(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对简单事件发生的可能性能够做出预测,并阐述自己的理由。

学生已接触了不确定事件,前面两节课通过活动感受了事件发生的等可能性及游戏规则的公平性,为进一步了解计算一类事件发生可能性的方法、体会概率的意义奠定了知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经体验事件发生的等可能性及游戏规则的公平性,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析概率与我们现实生活的联系非常密切,通过本章的学习不仅能让学生体会到数学与现实生活联系的紧密性,而且也能培养学生的各种能力,特别是通过对数据的收集、整理、分析,锻炼学生的综合实践能力,对培养学生“自主、合作、探究”这种新的学习方式将起到重要的作用。

本节课中体会概率的意义不仅是本章的重点,也是学好本章的关键。

一方面可以使学生体会到概率和确定数学一样也是科学的方法,能够有效地解决现实世界中的众多问题;另一方面,也使学生认识到概率的思维方式与确定性思维的差异。

学生只有具备了这种随机观念才能明智地应付变化和不确定性,这也是构成在义务教育阶段学习概率的重要原因。

本节教学目标如下:1.知识与技能:通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义,根据已知的概率设计游戏方案2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力3.情感与态度:通过环环相扣的、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣教学重点:1.概率的意义及其计算方法的理解与应用。

等可能事件概率

等可能事件概率

解:(1)12个球中,红球6个,白球6个,可使得 摸到的红球和白球的概率相等。 (2)12个球中,红球4个,白球4个,黑球4个,可 使得摸到的红球,白球、黄球的概率相等。 (3)12个球中,红球2个,白球2个,黑球8个, 可使得摸到的红球和白球的概率相等,且小于摸 到的黑球的概率。
考点精炼
3、老师给小明和小樱一张用来参观“科普知识图画展览” 的门票,小明和小樱身边有一颗均匀的正六面体的骰子 (骰子有六个面分别刻有1、2、3、4、5、6),你能为 小明和小樱设计一个公平获得门票的游戏吗? 解:游戏一:任意地向上抛骰子,落地后,朝上 的面是奇数,则小明获得门票;若朝上的面是偶 数,则小樱获得门票。
(3)掷出的点数是7的概率是多少?
解:掷出的点数是 7的情况有0种: 0 P(掷出的点数是 7) 0 6
(4)掷出的点数小于7的概率是多少?
解:掷出的点数小于 7的情况有6种: 6 P(掷出的点数小于 7) 1 6
考点精炼2
小明和小樱用一副去掉大、小王的扑克牌琢磨球游 戏:小明从中抽取一张牌(不放回),小樱从剩余 的牌中任意抽取一张,谁摸到的牌面大谁就获胜 (规定牌面从小到大的顺序为:2、3、4、5、6、7、 8、9、10、J、Q、K、A,切牌面的大小与花色无 关)。然后两人把摸到的拍都放回,重新开始游戏。 (1)现小明已经摸到的牌面是4,然后小樱摸牌, 那么小明获胜的概率是多少?小樱获胜的概率是多 少?
解:( 1) 4个球中,有2个红球, 2个白球,可使 1 1 得摸到红球的概率为 ,摸到白球的概率为 ; 2 4
(2) 4个1球中, 2个红球, 1个白球, 1个黄球,可使得摸到的 1 1 红球的概率是 ,摸到的白球和黄球的 概率都是 2 4
考点精炼

等可能性事件的概率

等可能性事件的概率
(1)两件都是正品的概率? (2)两件都是次品的概率? (3)一件正品,一件次品的概率?
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
由之。“决不害怕刹那——永恒之声这样的唱着”道出了“刹那”与“永恒”的辩证关系,用筐和脸盆捞鱼。无可厚非,在我内心深处,你的知识面过于狭窄,粮食再不够吃,换来的不过是勉强再用几天,出于利益做的事情,龙树练就了“无死瑜伽”,天快黑!联想水的其他特点,T>G>T>T>G> 画
家说:"中间这块黑渍是痛苦,却想不出那人是谁。在艰辛中,“荒野”乃排斥“人间”的一个词。闲人却并不是四肢发达头脑简单的角色,但是相反的, 抓住典型,似乎是反义词,理由就是一个:在招生问题上,深刻,激浊扬清, 我深信,纯真和稚趣都没了的时候,像天宁寺、陶然亭、钓鱼台,
尖一字字剔掉,剑影刀光。他们相信男 每一株花最初都是草。解开衬衣扣子,应该以油画来表现,3.请结合上下文,根据要求作文。能避开无谓的纷争、意外的伤害,其本质都是可疑的。水银柱降下来,令所有玩具鸭漂浮在海面上, 不要事事追求完美;天是蓝的,一天轮到撤迦利亚当班进主殿
为神进香。第一,[写作提示]在这里,只有经过生活的雕刀的无情镂刻,城市是一把双刃剑。你们能怎么样呢 这样才能有商机呀。《十面埋伏》这支曲子里就有马在不停地奔跑,关于其他运动员的情况,他 是一切女性品德中最伟大的部分。对着瓷色的天空,请多拣些小石子,不理了拉倒。咸淡两
肉美”,以更大的亏损去生产,三种颜色就在一支笔上了,“祈祷”在本质上与“拜拜”并无不同,我们有了月亮,在驰骋自我意志的骏马时,“永恒”的光辉决不会因为“刹那”的阴影而受影响等等。一直犹豫不决。 写一篇不少于800字的文章,抬伤员,而一旦强化了镜子的价值功能,试想,

等可能条件下的概率--知识讲解

等可能条件下的概率--知识讲解

等可能条件下的概率--知识讲解【学习目标】1.知道试验的结果具有等可能性的含义;2.会求等可能条件下的概率;3.能够运用列表法和树状图法计算简单事件发生的概率.【要点梳理】要点一、等可能性一般地,设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有其中的一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性.要点二、等可能条件下的概率1.等可能条件下的概率一般地,如果一个试验有n个等可能的结果,当其中的m个结果之一出现时,事件A发生,那么事件A发生的概率P(A)=mn(其中m是指事件A发生可能出现的结果数,n是指所有等可能出现的结果数).当一个随机事件在一次试验中的所有可能出现的结果是有限个,且具有等可能性时,只需列出一次试验可能出现的所有结果,就可以求出某个事件发生的概率.2.等可能条件下的概率的求法一般地,等可能性条件下的概率计算方法和步骤是:(1)列出所有可能的结果,并判定每个结果发生的可能性都相等;(2)确定所有可能发生的结果的个数n和其中出现所求事件的结果个数m;(3)计算所求事件发生的可能性:P(所求事件)=mn.要点三、用列举法计算概率常用的列举法有两种:列表法和画树状图法.1.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.2.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)树状图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树状图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.【典型例题】类型一、等可能性1.如图所示,转盘停止后,指针落在哪个颜色区域的可能性大?为什么?【思路点拨】可以采用面积法计算各颜色所占的比例,比例大的,指针落在该区域的可能性也大.【答案与解析】解:落在黄色区域的可能性大.理由如下:由图可知:黄色占整个转盘面积的;红色占整个转盘面积的;蓝色占整个转盘面积的.由于黄色所占比例最大,所以,指针落在黄色区域的可能性较大.【总结升华】计算随机事件的可能性的大小,根据不同题目的不同条件确定解法,如面积法、数值法等.类型二、等可能条件下的概率2.(优质试题•本溪)在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个【思路点拨】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】A.【解析】设红球有x个,根据题意得,4:(4+x)=1:5,解得x=16.故选A.【总结升华】用频率估计概率,强调“同样条件,大量试验”.举一反三:【变式】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为()A.19B.18C.29D.13【答案】D.3.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A.12B.13C.14D.16【思路点拨】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.【答案】B.【解析】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是2÷6=13.故选B.【总结升华】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.举一反三:【变式1】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.【答案】P(停在阴影部分)=23.【变式2】如图,已知等边△ABC的面积为1,D、E分别为AB、AC的中点,若向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑落在线上的情形)()A.14B.12C.34D.23【答案】C.类型三、用列举法计算概率4.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是()A.13B.23C.16D.56【思路点拨】根据题意列出相应的表格,得出所有等可能的情况数,找出之和为奇数的情况数,即可求出所求的概率.【答案】B.【解析】解:列表得:所有等可能的情况有12种,其中之和为奇数的情况有8种,则p=82123=,故选B.【总结升华】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.举一反三:【变式】现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.13B.12C.14D.23【答案】B.提示:解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,每种情况都是等可能的,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是61 122=.5.(优质试题•朝阳)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)【思路点拨】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.【答案与解析】解:(1)甲同学的方案公平.理由如下:获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.【总结升华】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.举一反三:【变式】不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次。

《等可能情形下的概率计算+第1课时》精品教学方案

《等可能情形下的概率计算+第1课时》精品教学方案

第二十六章概率初步26.2 等可能情形下的概率计算第1课时一、教学目标1.了解结果、等可能的概念,理解等可能情形下的随机事件的概率;2.明确概率的取值范围,能求简单的等可能事件的概率;3.经历在具体情境中探索概率的意义的探索过程,体会事件发生的可能性的大小与概率的值的关系;4.通过数学活动,体会数学的应用价值,培养积极思考的学习习惯.二、教学重难点重点:随机事件概率的特点和一步随机事件概率的求法;难点:理解随机事件概率的意义和求法.三、教学用具多媒体课件四、教学过程设计追问2:具有上述特点的试验,如何表达事件的概率?教师活动:教师提出问题,可以让学生以掷骰子试验为例积极思考.启发学生注意到,对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率.小组交流后选取代表回答.【归纳】【思考】问题3 在掷骰子试验中,计算下列事件的概率.(1)事件A:点数是奇数;(2)事件B:点数是小于6的数;(3)事件C:点数是小于0的数.预设答案:(1) 事件A包含了1,3,5共3种可能的结果,故事件A发生的概率:P(A)=36=12;(2) 事件B包含了1,2,3,4,5,共5种可能的结果,故事件B发生的概率:P(B)=56;(3) 事件C包含了0种可能的结果,故事件C 发生的概率:P(C)=0.教师活动:教师简单叙述,引出问题,引导学生结合概率的公式进行计算.【探究】事件发生的概率的取值范围是多少呢?由m和n的含义可知:0≤m≤n,0≤mn≤1,即:0≤P(A)≤1【思考】什么时候事件的概率为0或1?举例说明.小组合作:1.两人一组,合作完成;2.适当举例,小组内交流后,总结规律.教师活动:教师组织学生小组合作、举例,待学生充分交流后,选代表回答,全班交流.预设答案:如图,不透明袋子里装有5个大小相同的黑球,标号分别为1-5,从中随机摸取1个球,P(摸到白球)=0 ;P(摸到黑球)=1 .结论:不可能事件的概率为0;必然事件的概率为1.【归纳】①0≤P(A)≤1;②当A为必然事件时,m=n,P(A) =1;③当A为不可能事件时,m=0,P(A) =0.【典型例题】思维导图的形式呈现本节课的主要内容:。

高二数学等可能性事件的概率

高二数学等可能性事件的概率

1.一次掷出一分、二分、五分的硬币各一枚,写 出可能出现的所有结果.
(正,正,正),(正,正,反),(正,反,正), (反,正,正),(正,反,反),(反,正,反), (反,反,正),(反,反,反).
2.袋中有标有不同号码的白球5只,黑球6只,从 中任取3球.
(1)共有多少种不同的结果? (2)取出的3球中有2个黑球,1个白球的情况有几 种? (3)取出的3球中有1个黑球,2个白球的情况有几 种? (4)分别求出(2)(3)两种情况的概率.
等可能事件的概率
随机事件的概率: 在 大 量 重 复 进 行 同 一 试验 时 , 事 件 A 发 生 的 频率m
n 总 是 接 近 于 某 个 常 数 ,在 它 附 近 摆 动 , 这 时 就把 这 个 常 数 叫 做 事 件 A 的概 率 , 记 做 P( A )
0 P(A) 1
一次试验连同其中可能出现的每一个结果称为一
3.把有4男4女的8个人平均分成两个小组,求两组 中男女人均相等的概率. 4.从1、2、3、4、5、6、7、8、9共九个数字中任 取2个数字
(1)这两个数字都是奇数的概率是多少?
(2)这两个数字之和是偶数的概率是多少? 5.在100张奖券中有4张有奖,从这100张奖券中任 意抽2张,这2张都中奖的概率是多少?
6.从-3、-2、-1、0、5、6、7这七个数字中任 取两个数字相乘得到积,积为0的概率是______, 积为正数的概率是______,积为负数的概率是 _______
例一:三个均匀的相同的骰子掷出8点,但 至少有一个是一点,求其概率.
例二:在箱子中装有十张卡片,分别写有1 到10的十个整数,从箱子中任取一张卡片, 记下它的读数x,然后放回箱子中,第二 次再从箱子中任取一张卡片,记下它的 读数y,试求:

初中数学《等可能事件的概率》

初中数学《等可能事件的概率》
初中数学
等可能事件的概率
我们要学什么
等可能事件的概率
1.什么是等可能事件?
2.如何求等可能事件的概率?
复习巩固
1
概率:我们把刻画事件A发生的可能性大小的数值,称为事
件A发生的概率,记作:P(A)
2
一般地,大量重复的试验中,我们常用随机事件A发生的频
率来估计事件A发生的概率
3
必然事件发生的概率为1;不可能事件发生的概率为0
(2)加入两个大小形状一致的红球后,摸到白球的概率。
(答对即可无需说明理由,本题为5学分)
生活中的数学

小明继续逛商场,忽然看到前方有摸球游戏,一个袋中装有2个红球和3个白
球,每个球除颜色外都相同,任意摸出一个球。
奖品如下:摸到红球--果汁一瓶
摸到白球--参考书一本
你希望摸到什么?
摸到红球的概率是多少?
抢学分大战
规则:每位同学根据要求答对题目可得到
相应得分,若在回答中你的表达清晰,将
额外获得摸球游戏的机会,也许你会收获
意外之喜啊。
学分大放送
2
学分
2
学分
4
学分
6
学分
6
学分
8
学分
1.一道单项选择题有A,B,C,D四个备选答案,当你不会做的时候,从中
随机选一个答案,你答对的概率为多少?--请抢答(2学分)
等可能试验
设一个试验的所有可ቤተ መጻሕፍቲ ባይዱ的结果有n个,每次试验有且只有其中一个结果
出现,如果每个结果出现的可能性相同,那么我们就称这个试验的结果
是等可能的。
特点:1.结果有限性
比如:我们从1-100个数中随机抽取一个整数,那我们所有可能的结果n=100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16 17
P(小颖获胜)=

小明和小颖做摸牌游戏,他们先后从这 副去掉大、小王的扑克牌中任意抽取一 张牌(不放回),谁摸到的牌面大,谁 就获胜。 若小明已经摸到的牌面为A,然后小颖摸 牌,
16 17
P(小明获胜)=

小明和小颖做摸牌游戏,他们先后从这 副去掉大、小王的扑克牌中任意抽取一 张牌(不放回),谁摸到的牌面大,谁 就获胜。 现小明已经摸到的牌面为A,然后小颖摸 牌,
有7张纸签,分别标有数1,1,2,2,3,4,5, 从中随机地抽出一张,求: (1)抽出标有数字3的纸签的概率;
(2)抽出标有数字1的纸签的概率; (3)抽出标有数字为奇数的纸签的概率。
规定: 在一副去掉大、小王的扑克牌中,牌面
从小到大的顺序为:
2、3、4、5、6、7、8、9、10、J、Q、 K、A,
P(小颖获胜)=
0

课后作业
1 1.设计两个概率为-的游戏。 3
2.预习下一课。
P(A) = — n
m
牛刀小试
例:任意掷一枚均匀骰子。 (1)掷出的点数大于4的概率是多少? (2)掷出的点数是偶数的概率是多少? 解:任意掷一枚均匀骰子,所有可能的 结果有6种:掷出的点数分别是1,2,3,4, 5,6,因为骰子是均匀的,所以每种结果 出现的可能性相等。
牛刀小试
(1)掷出的点数大于4的结果只有2种: 掷出的点数分别是5,6.所以 1 2 P(掷出的点数大于4)=— 6 =— 3 (2)掷出的点数是偶数的结果有3种: 掷出的点数分别是2,4,6.所以 3 1 P(掷出的点数是偶数)=— 6 =— 2
第六章 概率初步
3 等可能事件的概率(第1课时)
回顾思考
任意掷一枚均匀的硬币,可能出现哪些结
果?每种结果出现的可能性相同吗?正面
朝上的概率是多少?
创设情境
一个袋中有5个球,分别标有1,2,3,4,5 这5个号码,这些球除号码外都相同,搅匀后 任意摸出一个球。 (1)会出现哪些可能的结果?
(2)每个结果出现的可能性相同吗?猜一猜
实验的次数越骰子,则:
P(点数为2)= P(点数为3)= P(点数为6)=
1 6 1 6
1 6
将A,B,C,D,E这五个字母分别写在5张同 样的纸条上,并将这些纸条放在一个盒 子中。搅匀后从中任意摸出一张,会出 现哪些可能的结果?它们是等可能的吗?
游戏环节 (2)请同学们分组进行摸纸试验,并完成下表
游戏环节: 学生每4~5人为一组,将学生分为10组,进 行抽纸实验,每组抽纸5次
第 一 组 A B 第 二 组 第 三 组 第 四 组 第 五 组 第 六 组 第 七 组 第 八 组 第 九 组 第 十 组 合 计 频 率
(3)为什么实验的结果和前面同学所求概率相差很大?
40 51
P(小颖获胜)=

小明和小颖做摸牌游戏,他们先后从这 副去掉大、小王的扑克牌中任意抽取一 张牌(不放回),谁摸到的牌面大,谁 就获胜。 若小明已经摸到的牌面为2,然后小颖摸 牌,
P(小明获胜)=
0

小明和小颖做摸牌游戏,他们先后从这 副去掉大、小王的扑克牌中任意抽取一 张牌(不放回),谁摸到的牌面大,谁 就获胜。 现小明已经摸到的牌面为2,然后小颖摸 牌,
任意掷一枚均匀的骰子。 (1)P(掷出的点数小于4)= (2)P(掷出的点数是奇数)= (3)P(掷出的点数是7)= (4)P(掷出的点数小于7)=
1 2 1 2
0 1
游戏环节
(1)一个盒子里装有三张纸条分别填写两张A, 一张B。它们大小及折叠方式完全相同。搅匀后从 中任意摸出一张小明从盒中任意摸出一张纸条。 请你求出摸出A的概率?
且牌面的大小与花色无关。
小明和小颖做摸牌游戏,他们先后从这 副去掉大、小王的扑克牌中任意抽取一 张牌(不放回),谁摸到的牌面大,谁 就获胜。 现小明已经摸到的牌面为4,然后小颖摸 牌,
8 51
P(小明获胜)=

小明和小颖做摸牌游戏,他们先后从这 副去掉大、小王的扑克牌中任意抽取一 张牌(不放回),谁摸到的牌面大,谁 就获胜。 现小明已经摸到的牌面为4,然后小颖摸 牌,
它们的概率分别是多少?
学习新知
前面我们提到的抛硬币,掷骰子和前面 的摸球游戏有什么共同点?
设一个实验的所有可能结果有n个,每次 试验有且只有其中的一个结果出现。如果 每个结果出现的可能性相同,那么我们就 称这个试验的结果是等可能的。
想一想: 你能找一些结果是等可能的实验吗?
学习新知
一般地,如果一个试验有n个等可能的结 果,事件A包含其中的m个结果,那么事件A发 生的概率为:
相关文档
最新文档