(完整版)相控阵雷达

合集下载

第5章相控阵雷达要点

第5章相控阵雷达要点

6.脉冲压缩的实现:
发射脉冲应按一定规则编码,以获得较大带宽。 接收机中应有一个压缩网络,
脉冲压缩网络实际上是一个匹配滤波器。脉冲压缩常
用的四种
7.调制方式:
线性调频脉冲压缩 非线性调频 相位编码脉冲压缩 时间频率编码脉冲压缩
8.能够进行脉冲压缩的波形:
调制类型
带宽
伪随机二进制序列
比特率
线性调频扫描 非线性调频扫描
N 1
E() E e jk k 0
如果各阵元馈电相位差均为0,上式可用于研究阵列天线的方向图。 假设θ0为波束指向,利用等比级数求和公式,欧拉公式和(5-1),得归 一化天线方向图(p154):
Fa
sin
Nd
sin
N
sin
d
sin

Fa(θ)称为阵列因子或阵因子。如果天线阵元不是向空间所有角 度均匀辐射的,方向图为Fe(θ),阵列方向图变为:
F Fa Fe
Fe(θ)称为阵元因子。
关于阵列天线的栅瓣
阵列因子图: 主瓣
栅瓣
栅瓣
-π/2
0
π/2
π
3π/2 2π
图5-2阵列因子图
主瓣
栅瓣
栅瓣
-π/2
0
π/2
π
3π/2 2π
图5-2阵列因子图
由图5-2可以看出,主瓣是我们感兴趣的,所有栅瓣应去掉。
不出现栅瓣的条件:
πd λ
ht e T
t T 2
11.失配加权
线性调频信号的包络是一个矩形,其经过频谱滤波器输出信号 的包络为sinc函数。见p124图4.13。最大副瓣为-13分贝。在实际 应用中,要求副瓣电平低于-30dB至-45dB。

相控阵雷达的工作原理

相控阵雷达的工作原理

相控阵雷达的工作原理相控阵雷达是一种利用相位控制技术实现方向控制和波束形成的雷达系统。

它由一组发射和接收单元组成,每个单元都有一个发射/接收模块,能够实现相位控制和波束形成。

在工作时,相控阵雷达首先通过控制每个发射单元的发射时刻和相位,使得它们同时发射雷达信号。

这样可以形成一个相干的波前,并且具有较高的能量集中度。

接下来,通过控制每个接收单元的接收时刻和相位,使得它们对回波信号进行相干合成。

相控阵雷达的工作原理主要包括以下几个步骤:1. 相控天线阵列:相控阵雷达的关键是天线阵列,它由大量发射与接收单元组成,并排列成矩阵状。

每个单元有一个发射器和一个接收器,可以单独控制其相位和时延。

2. 发射信号时延:根据要检测的目标方向,计算出每个发射单元到目标的传播时间,并进行精确的时延控制。

通过使得每个发射单元的信号到达目标的时间相同,就可以形成一个合成波前。

3. 发射信号相位控制:除了时延控制外,每个发射单元还需要控制发射信号的相位。

根据目标方向的角度,计算出每个单元的发射信号相位,使得各个单元的发射信号形成相干叠加。

4. 回波信号接收:接收信号与发射信号相似,但经过目标的散射和传播后会发生相位和时延的变化。

接收单元首先对回波信号进行采样,并对每个接收单元的信号进行时延和相位调整,以保持相干性。

5. 相干合成:接收到的经过调整的回波信号通过相干合成,即对各个接收单元的信号进行加权和求和。

这样可以增强目标信号的能量,从而提高雷达的灵敏度和分辨率。

通过以上步骤,相控阵雷达实现了对目标的方向控制和波束形成。

它可以快速扫描、精确定位目标,并具有较高的抗干扰能力。

因此,在军事、航空、天文等领域得到广泛应用。

第4章-相控阵雷达

第4章-相控阵雷达

• 空域滤波及数字波束形成引论(续)
– 高分辨率测角 • 波束形成的局限:需大孔径 • 多目标阵列数据模型 • 数据协方差矩阵的特征分解及物理解释 • 信号子空间与噪声子空间 • 最大似然法、MUSIC法 • 相关目标的高分辨率测角
放大器
d
d
放大器
放大器
0+ 0 0- 0 0 0 0- 0 0+
移相法实 现多波束
相加 相加 相加 波束1 波束2 波束3
第3章 连续波雷达
相扫基本原理
• 相扫基本原理
– 通过移相器改变各阵元激励相位,实现扫描
– 假定所有阵元
• 无方向性
• 等幅同相馈


d sin
向波束宽度
d B (s)

0.29
Ba (%)
B
s in 0
第3章 连续波雷达
相扫基本原理
• 相扫基本原理(续)
– 由于d B(s), 0 增大, 允许的带宽变小
– 天线孔径, 波束宽度B , 允许的Ba(%)
– 天线指向0时, 能量充填整个孔径所需时间为
T D sin0 / c
的收发(T/R)固态组件,即都是有源的 • 固态组件的功率源是低功率的 • 各阵元辐射功率在空间进行合成 • 各阵元辐射信号间相位关系固定,即相参 • 各阵元的相位和振幅分布可按要求控制
第3章 连续波雷达
相控阵雷达简介
• 相控阵雷达简介(续)
– 有源阵的优点:
• 功率源直接联在阵元后面,馈源和移相器的 损耗不影响雷达性能;接收机噪声系数由T/R 组件中的低噪声放大器决定
0
• 当 ( d /)(sin - sin0) = 0, …, ±n (n为整 数)时,分子分母同为0,F() = 1,即F()

有源相控阵雷达原理

有源相控阵雷达原理

有源相控阵雷达原理相控阵雷达是一种使用多个天线单元来产生波束扫描并形成方向图的新型雷达技术。

其中有源相控阵雷达利用天线单元中的光源、光电传感器和信号处理器来实现波束扫描和控制。

其原理基于两个主要的因素:相位控制和干涉。

本文将详细介绍有源相控阵雷达的原理。

一、原理概述相控阵雷达系统由许多小型天线组成。

它持续地改变每个天线单元的相位和振幅,以使扫描波束在空间中旋转和扇形地向外扩展。

系统中的所有天线单元按照确定的几何方式排列,就可以组成一个阵列。

通过改变每个天线的相位和振幅,可以在各个空间方向上创建一个梳状的波纹状的阵列,并通过将不同的相位和振幅施加到阵列的不同单元中,产生可控向某一方向的波束。

有源相控阵雷达包括天线单元和信号处理器两个主要部分。

天线单元中的光源负责产生微波信号,光电传感器用于接收信号,并将其转化为电信号。

信号处理器负责分析电信号,对波束进行扫描和控制。

通过不同的信号处理算法,相控阵雷达可以实现距离测量、距离速度特征提取、目标探测等功能。

相控阵雷达最重要的特征是其波束扫描能力。

基于天线阵列的干涉原理,相位差控制不同天线之间发射出的电磁波的相位,从而能够控制波束的方向和宽度,实现扫描。

二、原理详解1.波束扫描原理有源相控阵雷达发射电磁波是通过天线单元阵列中的各单元以不同的相位和振幅同时发射。

在到达目标处的反射波达到不同天线时,由于不同天线之间的时间和相位差别,因此反射波的相位和振幅也不同,这就产生了一种几何干涉的效应。

干涉的结果就是,在某个特定方向上的反射波的相位和振幅被放大,而在其他方向上的反射波则被相互抵消。

因此可以实现向某个特定方向上发射一定角度的电磁波,而其余方向则几乎没有发射。

由于天线组织成的阵列具有波束扫描能力,其能够跟随目标扫描方向,并在相应方向上发射束式波,从而获得高方位分辨率。

波束宽度是相控阵雷达的另一个重要原理。

较短的阵列长度具有较高的方向分辨率,但会导致波束宽度增大, 阵列长度较长,则会减小波束宽度,但相应的方向分辨率会变低。

相控阵雷达.ppt

相控阵雷达.ppt

• 空域滤波及数字波束形成引论
– 空域匹配滤波
• 阵列空间响应,阵列信号流型 • 多个信号模型 • 空域匹配滤波,同相相加 • 波束副瓣抑制 • 多波束形成
空域滤波及数字波束形成引论
空域滤波及数字波束形成引论
空域滤波及数字波束形成引论
空域滤波及数字波束形成引论
• 空域滤波及数字波束形成引论(续)
多波束形成技术
• 多波束形成技术(续)
定 向 耦 合 器
束2
l1 l2
d


波 束 1 相 加 波 导
波 束 1相 加 波 束 2相 加 波 束 1 接 收 机 波 束 选 择 器 高 度 计 算 机 显 示 器
射频延迟线多 波束形成系统
波 束 2 接 收 机
多波束形成技术
• 多波束形成技术(续)
- 0 + 0
• 多波束形成技术(续)
1 2 3
d 放 大 器 放 大 器
d 放 大 器
0+

0
0-

0

0

0
0-

0
0+
移相法实 现多波束
相 加
相 加
相 加
波 束 1波 束 2波 束 3
相扫基本原理
• 相扫基本原理
– 通过移相器改变各阵元激励相位,实现扫描
– 移相器的种类:
• PIN二极管移相器、铁氧体移相器、数字式移 相器等
多波束形成技术
• 多波束形成技术
– 收发都用多波束
– 接收多波束,发射宽波束,收发覆盖相同空域 – 接收多波束用得较多,因为: • 功率弱,技术上易实现,控制和处理灵便 – 多波束形成方法 • 射频延迟线、中频延迟线、移相法、脉内频 扫、数字波束形成(DBF)

使用相控阵雷达进行目标探测的步骤和原理

使用相控阵雷达进行目标探测的步骤和原理

使用相控阵雷达进行目标探测的步骤和原理相控阵雷达是一种基于相控技术的雷达系统,它能够实现多波束的发射和接收,具有高分辨率、高精度和多目标探测等特点。

在现代军事和民用领域广泛应用。

本文将介绍使用相控阵雷达进行目标探测的步骤和原理。

一、相控阵雷达的基本原理相控阵雷达由许多天线组成,这些天线被组织成一个二维或三维阵列。

每个天线都可以独立进行发射和接收信号。

通过控制相位差,可以实现波束的相应调控。

相控阵雷达主要通过以下原理实现目标探测:1. 多波束形成:相控阵雷达可以同时形成多个波束,每个波束可以独立指向不同的方向。

通过调整每个波束的发射相位差,可以实现对不同方向的目标同时探测。

2. 自适应波束形成:相控阵雷达可以根据环境和目标的变化,实时调整波束形成参数,提高雷达的性能。

例如,可以通过自适应波束形成技术,抑制多径效应和杂波干扰,提高探测的信噪比。

3. 高精度测角:相控阵雷达可以利用相控阵的几何结构,实现高精度的目标测角。

通过测量每个波束的相位差,可以计算出目标相对于雷达的方位和俯仰角。

4. 捷联测量:相控阵雷达可以利用多波束的测量结果,实现对目标位置的捷联测量。

通过将多个波束的测量结果进行融合,可以提高目标位置的准确性和可靠性。

二、相控阵雷达目标探测的步骤相控阵雷达进行目标探测的步骤主要包括以下几个环节:1. 发射信号:相控阵雷达首先需要发射一组电磁波信号。

这些信号会经过射频与微波电路的处理,形成合适的脉冲信号。

2. 波束形成:发射的信号进入相控阵雷达的阵列天线,通过调控每个天线的发射相位和幅度,形成多个波束。

每个波束可以独立指向不同的方向。

3. 目标回波接收:当发射的信号遇到目标时,会被目标反射回来,形成回波。

相控阵雷达的阵列天线接收并采集回波信号,并将其传送到接收机。

4. 信号处理:接收机对接收到的回波信号进行放大、滤波和混频等处理。

然后,利用自适应波束形成技术,抑制干扰信号和杂波,提取目标信号。

2024版年度技术相控阵雷达入门到精通

2024版年度技术相控阵雷达入门到精通
技术相控阵雷达入门到精通
2024/2/3
1

CONTENCT

2024/2/3
• 相控阵雷达基本概念与原理 • 相控阵雷达系统组成与功能 • 相控阵雷达性能指标评价方法 • 先进相控阵雷达技术发展动态 • 实战化环境下相控阵雷达运用策略
探讨 • 仿真实验平台搭建与案例分析
2
01
相控阵雷达基本概念与原理
14
抗干扰性能和杂波抑制能力测试
抗干扰性能
指雷达在干扰环境下正常工作的能力, 包括抗有源干扰和无源干扰两种。
测试方法
通过模拟或实际环境测试,观察雷达 在干扰和杂波条件下的工作性能,以 评估其抗干扰性能和杂波抑制能力。
杂波抑制能力
指雷达在复杂环境下抑制杂波、提取 目标信息的能力。
2024/2/3
15
市场前景
随着科技的不断进步和应用领域的不断拓展,相控阵雷达的市场需求将会不断增长。未来,相控阵雷达将会在更 多领域得到应用,并且其性能和功能也将会得到进一步的提升和完善。同时,随着相关技术的不断发展和成本的 不断降低,相控阵雷达也将会更加普及和实用化。
2024/2/3
6
02
相控阵雷达系统组成与功能
针对仿真实验平台搭建过程中的关键技术和难点进行深入解析,如阵列天线建模、波束 形成算法实现等。
28
典型场景建模及参数设置方法
2024/2/3
典型场景选择及建模方法
根据实际需求选择典型的相控阵雷达应用场景,如机载火 控雷达、地面防空雷达等,并介绍相应的场景建模方法。
参数设置原则与技巧
详细阐述仿真实验中需要设置的参数及其原则,包括雷达 系统参数、环境参数、目标参数等,同时分享一些实用的 参数设置技巧。

相控阵雷达入门到精通

相控阵雷达入门到精通

当前趋势
数字化、软件化、多功能化、网络化。
现代雷达
多种体制并存,功能多样化,探测性 能大幅提升。
相控阵雷达定义与特点
定义
通过改变阵列天线中每个辐射单元 的馈电相位来改变波束指向的雷达。
特点
波束指向灵活、可实现多目标跟踪、 抗干扰能力强、数据率高。
工作原理及关键技术
工作原理
通过移相器改变每个辐射单元的相位,实现波束的扫描和控制。
相控阵雷达入门到精通
目录
• 相控阵雷达基本概念与原理 • 相控阵雷达系统组成与功能 • 相控阵雷达关键技术分析 • 相控阵雷达在军事领域应用 • 相控阵雷达在民用领域拓展 • 未来发展趋势与挑战
01
相控阵雷达基本概念与原理
雷达发展历程及现状
早期雷达
简单脉冲体制,功能单一,探测距离 和精度有限。
信号处理与数据处理流程
1 2 3
信号处理流程 包括回波信号的预处理、杂波抑制、目标检测与 跟踪等步骤,提取目标信息并传递给数据处理模 块。
数据处理流程 对信号处理后的数据进行进一步处理和分析,包 括目标识别、态势感知、威胁评估等步骤,为指 挥决策提供支持。
算法与软件实现 采用先进的信号处理和数据处理算法,结合高性 能计算机和软件平台,实现雷达系统的自动化和 智能化。
渔业资源调查和评估
相控阵雷达可用于监测鱼群的位置、数量和迁移路径,为渔业部门提供科学的渔业资源评估 和合理捕捞建议。
无线通信网络优化辅助
信号覆盖和质量分析
相控阵雷达能够实时监测无线通 信网络的信号覆盖范围和信号质 量,帮助运营商了解网络性能瓶 颈和优化方向。
干扰源定位和排除
通过测量无线信号的回波特性, 相控阵雷达能够准确定位干扰源 并辅助排除干扰,提高通信网络 的稳定性和可靠性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放大器
d
d
放大器
放大器
0+ 0 0- 0 0 0 0- 0 0+
移相法实 现多波束
相加 相加 相加 波束1 波束2 波束3
第3章 连续波雷达
相扫基本原理
• 相扫基本原理
– 通过移相器改变各阵元激励相位,实现扫描
– 假定所有阵元
• 无方向性
• 等幅同相馈

d sin
• 相邻阵元激
励电流相位
差为
0
sin 1
• 波束域(空域频谱)混迭现象:栅瓣是主瓣 在其它方向上的再现,空间信号欠采样
栅瓣


主瓣
副瓣
0
栅瓣

πd
(sin
sin0 )
第3章 连续波雷达
相扫基本原理
• 相扫基本原理(续)
• 方向图函数
F( )
1
sinNd (sin sin0)
N
sin
d
(sin
s in 0 )
• 当 (Nd /)(sin - sin0) = 0, …, ±n (n为整 数)时,分子为0 ,若分母不为0 ,F() = 0
– 优点: • 相扫,无机械惯性,快速波束捷变 • 多目标、远距离、高数据率、高可靠性 • 多功能、多波束、自适应抗干扰
– 缺点: • 波束宽度随扫描方向变化
第3章 连续波雷达
相控阵雷达简介
• 相控阵雷达简介(续)
– 移相器控制波束的发射与接收 – 无源阵:收发共用一个或几个发射机和接收机 – 有源阵:每个阵元都连有可提供所需辐射功率
Nd
sin
• 得波束半功率(3dB)宽度
混频 中放
混频
中放 波束1

中频延迟多波

束形成系统
延 迟
线
波束2 波束3
第3章 连续波雷达
• 多波束形成技术(续)
多波束形成技术
1 23
本振
混频 中放
混频中放
混频
中放 波束1

中频延迟多波

束形成系统
延 迟
线
波束2 波束3
第3章 连续波雷达
-0
+0
• 多波束形成技术(续)
123
多波束形成技术
的收发(T/R)固态组件,即都是有源的 • 固态组件的功率源是低功率的 • 各阵元辐射功率在空间进行合成 • 各阵元辐射信号间相位关系固定,即相参 • 各阵元的相位和振幅分布可按要求控制
第3章 连续波雷达
相控阵雷达简介
• 相控阵雷达简介(续)
– 有源阵的优点:
• 功率源直接联在阵元后面,馈源和移相器的 损耗不影响雷达性能;接收机噪声系数由T/R 组件中的低噪声放大器决定
• 因 | sin - sin0 |≤1+| sin0 |,则无栅瓣条件
d 1 1 d
1 | sin0 | 2
2
第3章 连续波雷达
相扫基本原理
• 相扫基本原理(续)
– 波束宽度
• 波束指向法线方向,即0 = 0,方向性函数
F( )
1 N
sin
N
d sin
sin
d
sin
sinc
• 阵元馈源和移相器功率容量低,轻便廉价
• 大量低功率固态源取代易损坏的高电压、 大 功率发射机,系统可靠性提高
• 固态阵和数字波束形成及阵列信号处理技术 相结合,天线性能改善潜力大
第3章 连续波雷达
相控阵雷达简介
• 相控阵雷达简介(续)
– 移相器:实现相扫的关键器件
– 对移相器的要求:
• 移相精确、性能稳定、频带和功率容量大、 便于快速控制、激励功率和插入损耗小、体 积小、重量轻等
– 移相器的种类:
• PIN二极管移相器、铁氧体移相器、数字式移 相器等
第3章 连续波雷达
多波束形成技术
• 多波束形成技术
– 收发都用多波束 – 接收多波束,发射宽波束,收发覆盖相同空域 – 接收多波束用得较多,因为:
• 功率弱,技术上易实现,控制和处理灵便 – 多波束形成方法
• 射频延迟线、中频延迟线、移相法、脉内频 扫、数字波束形成(DBF)
现代雷达技术
第4章 相控阵雷达
第3章 连续波雷达
• 本章简介
– 相控阵雷达简介 – 多波束形成技术 – 相扫基本原理 – 空域滤波及数字波束形成引论
本章介绍
第3章 连续波雷达
相控阵雷达简介
• 相控阵雷达简介
– 相位控制阵列:多个天线单元排成,各阵元馈电 相位按一定程序灵活控制,完成特定的空间扫描
1
s
in
N 2
(
)
1
sin
Nd
(sin
s in 0
)
N
sin
1 2
(
)
N
sin
d
(sin
sin0 )
第3章 连续波雷达
相扫基本原理
• 相扫基本原理(续)
– 天线照射方向0由移相器的相移量 决定 – 在0方向,各阵元辐射场由波程差引起的相位差
正好抵消移相器引入的相位差,各分量同相相
加获最大值,F(0)=1 – 改变 值,就可改变波束指向角0 ,从而形成波
束扫描
– 方向图最大值方向同相波前垂直 – 由天线收发互易原理,接收天线,结论相同
第3章 连续波雷达
相扫基本原理
• 相扫基本原理(续)
– 栅瓣问题
• 在 -90o~90o 内线阵单值测角条件: d ≤ /2 • 当 d > /2 时,在 -90o~90o内将出现栅瓣
d
2
/
d
d
0
2
k
(N- 1)
0
12
k
N- 1
N元直线相控阵天线
第3章 连续波雷达
相扫基本原理
• 相扫基本原理(续)
– 各阵元在方向远区某点辐射场的场强矢量和为
E( ) E0 E1 Ei EN 1
– 等幅馈电时,各阵元在该点辐射场的振辐为E。 以0号阵元为相位基准,则
E( )
N 1
E e jk ( )
E
sin
N 2
(
)
ej
N 1( 2
)
k 0
sin
1 2
(
)
– 式中 2dsin / 为波程差引起的相邻阵元辐射场
相位差
第3章 连续波雷达
相扫基本原理
• 相扫基本原理(续)
– 当 = 时,各分量同相相加,场强幅值最大 | E( ) |max NE
– 定义归一化方向性函数为
F ( ) | E( ) | | E( ) |max
• 当 ( d /)(sin - sin0) = 0, …, ±n (n为整 数)时,分子分母同为0,F() = 1,即F()
可能出现多瓣
第3章 连续波雷达
相扫基本原理
• 相扫基本原理(续)
• 当=0时为主瓣,其余为栅瓣。只取一个周 期 - ~
d
(sin
sin 0 )
d
1
| sin sin 0 |
第3章 连续波雷达
• 多波束形成技术(续)
定 向 耦合 器
d l1
l2
相 加 波导
多波束形成技术
波束2 波束1
波 束 2相 加
射频延迟线多 波束形成系统
波 束 1相 加
波束1 接收机
波束2 接收机


高度

计算机

显示器

第3章 连续波雷达
• 多波束形成技术(续)
多波束形成技术
1 23
本振
混频 中放
相关文档
最新文档