8086汇编指令手册
8086汇编语言宏指令语句

Source listing[NUL.LST]: (源列表文件名)
列表文件名(缺省:无列 表文件)
Cross reference[NUL.CRF]: 交叉参考文件用的文件名 (缺省:无交叉参考文件) (交叉参考文件名)
第5章 汇编语言程序设计
5.2.3 用连接程序生成可执行程序文件(EXE 文件) 经汇编后产生的目标程序文件(OBJ文件)并不 是可执行程序文件,必须经连接后才能成为可执行文件 (EXE文件)。连接程序并不是专门为汇编语言程序设 计的,如果一个程序是由若干个模块组成的,也可以通 过连接程序把它们连接在一起。这些模块可以是汇编程 序产生的目标程序文件,也可以是高级语言编译程序产 生的目标程序文件。 完成连接功能的程序是LINK程序。连接过程如下 表所示:
第5章 汇编语言程序设计
⑵ 从程序的执行时间来分析,每调用一次子程序 都要保护和恢复返回地址(断点)及寄存器内容(现场) 等,要消耗较多的时间。宏指令调用时不需要这个过程, 执行时间较短。因此,从执行时间来分析,宏指令又优 于子程序。 综上所述,当某一需多次访问的程序段较长,访 问次数又不是太多时,选用子程序结构较好。当某一需 多次访问的程序段较短,访问次数又很频繁时,选用宏 指令结构显然要更好些。
库文件名表(各文件之间 用+号隔开)
第5章 汇编语言程序设计
DATA SEGMENT … DATA ENDS CODE SEGMENT ASSUME CS:CODE, DS:DATA, ES:DATA START: MOV AX, DATA MOV DS, AX MOV ES, AX … MOV AH, 4CH INT 21H CODE ENDS END START
第5章 汇编语言程序设计
5.5.1 用编辑程序建立汇编语言源程序文件
第6章 8086指令系统与汇编基础

第13页
2013年8月1日星期四
第6章
8086指令系统与汇编基础 3.段地址寄存器
有 CS、DS、ES、SS 四 个 , 分 别 表 示 程 序 码 ( code segment register)、 数 据 ( data segment register)、附加(extra segment register)、堆栈 (stack segment register)段地址用。在 DOS 系统 中,每一个段地址容量只有 64KBytes。 当数据段地址不够用时,就可以用附加数据段地址 来补足,例如想要将一个段地址的某些内容复制到 另一段地址中,就可以同时指定 DS、ES 分别表示 这两个段地址。
第17页 2013年8月1日星期四
第6章
6.2.4
8086指令系统与汇编基础
寄存器间接寻址(Register Indirect Addressing) 寄存器间接寻址方式中,操作数存放在存储器 中,但操作数的有效地址EA在基址寄存器BX、BP或 变址寄存器SI、DI中。操作数的物理地址为: 物理地址=16(段寄存器)+(寄存器)
执行结果为:(AX)=8060H 指令中也可指定段跨越前缀以取得其它段中的 数据。如:MOV AX,ES:[BX]指令,则从附加段中 取得数据。
操作码
DS 3000 0 BX + 200 0
代 码
段
30000 32000 AH AL
60 80
3200 0
数 据
段
图 6- 2- 2
例 6 - 5 的执行过程
第3页 2013年8月1日星期四
第6章
8086指令系统与汇编基础
计算机只能识别二进制代码,因此计算机能执行 的指令必须以二进制代码的形式表示,这种以二进制 代码形式表示的指令称为指令的机器码(Machine Code)。 2.汇编指令格式 一条指令一般包含操作码和操作数两部分。
汇编语言上机实验一DEBUG常用命令及8086指令使用

汇编语⾔上机实验⼀DEBUG常⽤命令及8086指令使⽤实验⼀DEBUG常⽤命令及8086指令使⽤实验⽬的:通过实验掌握下列知识:1、8086指令: M OV,ADD,SUB,XCHG等2、DEBUG命令: A,D,E,F,H,R,T,U。
3、ASCII码及⽤16进制数表⽰⼆进制码的⽅法。
内容及步骤:⼀、DEBUG 命令使⽤:1、打 DEBUG 进⼊ DEBUG 控制,显⽰提⽰符 '_ '。
2、⽤命令 F100 10F 'A' 将'A'的ASCII码填⼊内存。
3、⽤命令 D100 10F 观察内存中的16进制码及屏幕右边的ASCII字符。
4、⽤命令F110 11F 41 重复上⼆项实验,观察结果并⽐较。
5、⽤命令 E100 30 31 32 …… 3F将30H-3FH写⼊地址为100开始的内存单元中,再⽤D命令观察结果,看键⼊的16进制数是什么字符的ASCII码?6、⽤H命令检查下列各组16进制数加减结果并和你的⼿算结果⽐较:(1)34H,22H (2)56H,78H (3)A5,79H (4)1284H,5678H (5)A758,347FH7、⽤R 命令检查各寄存器内容,特别注意AX,BX,CX,DX,IP及标志位中ZF,CF和AF的内容。
8、⽤R命令将AX,BX内容改写为1050H及23A8H。
⼆、8086常⽤指令练习1、传送指令1)⽤A命令在内存100H处键⼊下列内容: MOV AX,1234MOV BX,5678XCHG A X,BXMOV AH,35MOV AL,48MOV DX,75ABXCHG A X,DX2)⽤U命令检查键⼊的程序并记录,特别注意左边的机器码。
3)⽤T命令逐条运⾏这些指令,每运⾏⼀⾏检查并记录有关寄存器及IP的变化情况。
并注意标志位有⽆变化。
2、加减法指令:1)⽤A命令在内存100H处键⼊下列内容:MOV AH,34MOV AL,22ADD AL,AHSUB AL,78MOV CX,1284MOV DX,5678ADD CX,DXSUB CX,AXSUB CX,CX图略。
8086汇编指令大全.

不允许寄存器或存储单元到除CS外的段寄存器
2入栈(出栈指令PUSH (POP
注意:
PUSH操作数不能是“立即数” POP操作数不能是段寄存器
CS
不影响标志位
先进后出
单操作符
3交换指令XCHG
注意:
只允许寄存器与存储单元之间的交换
不影响标志位
4换码指令XLAT
5地址传送指令LEA :偏移地址
ZF=0
SF符号标志位
OF溢出标志位
DF方向标志位
IF中断允许位IF=1时响应外部中断
TF跟踪标志位
操作数:[目的操作数(OPD ,源操作数(OPS ] ;立即操作数,寄存器操作数,存储器操作数。寻址方式:
1寄存器寻址例:INC AX ; MOV AX , BX
2寄存器间接寻址(寄存器只能是BX , DI , SI , BP ; [PA=(BX、DI、SI +DS》4或BP+SS》4]
6数据段指针送寄存器LDS :低地址的字送指定的通用寄存器(SI、高地址的字
送DS
7附加段指针送寄存器指令LES :与LDS相似,低地址的字送通用寄存器(DI、高
地址送ES
上三指令不影响标志位
8标志寄存器传送指令
LAHF :标志寄存器低八位送
AH
SAHF :AH送标志寄存器低八位
PUSHF :标志寄存器压入堆栈
标志寄存器:9个有效位,分6个状态寄存器和3个控制寄存器
CF当执行一个加法(减法使最高位产生进位(借位时CF=1否则
CF=0
PF指令执行的结果低8位有偶数个一时, CF=1否则
CF=0
AF当执行一个加法(减法使运算结果低4位向高4位有进位(借位时AF=1否则
8086汇编指令

HLT 处理器暂停, 直到出现中断或复位信号才继续. O MN|ea.O
WAIT 当芯片引线TEST为高电平时使CPU进入等待状态. &ET PYf %#
ESC 转换到外处理器. Kl+4 A} Uo
LOCK 封锁总线. %'[ pucEF
NOP 空操作. bn"z&g
POPD 32位标志出栈. @A6 iY
二、算术运算指令 J 299 mgB
ADD 加法. (RI)<zaK ;
ADC 带进位加法. ~+ {*KPiD
INC 加 1. oO;L l? ~
AAA 加法的ASCII码调整. At@0G\^
DAA 加法的十进制调整. '| g sm O
STC 置进位标志位. y O?52YO
CLC 清进位标志位. *Ja,3Q q
CMC 进位标志取反. J~rjI 24
STD 置方向标志位. .2 ST Bh.;
CLD 清方向标志位. G X>T~i\f8
STI 置中断允许位. t M{U6 k
CLI 清中断允许位. z`rW2UO#a`
JO 溢出转移. PW -s F
JP/JPE 奇偶性为偶数时转移. ,,V uv n
JS 符号位为 "1" 时转移. E J Ta ~
3>循环控制指令(短转移) aDX 4 }`u
LOOP CX不为零时循环. I, ?!N zB
LOOPE/LOOPZ CX不为零且标志Z=1时循环. ; 5!8LmZ0#
XADD 先交换再累加.( 结果在第一个操作数里 ) PK +sGV
8086CPU指令和伪指令(中英文全解)

8086CPU指令和寄存器英文全称。
一、数据传送指令比如,mov(move)、push、pop、pushf(push flags)、popf(pop flags)、xchg(exchange)等都是数据传送指令,这些指令实现寄存器和内存、寄存器和寄存器之间的单个数据传送。
二、算术运算指令比如,add、sub(substract)、adc(add with carry)、sbb(substract with borrow)、inc (increase)、dec(decrease)、cmp(compare)、imul(integer multiplication)、idiv (integer divide)、aaa(ASCII add with adjust)等都是算术运算指令,这些指令实现寄存器和内存中的数据运算。
它们的执行结果影响标志寄存器的sf、zf、of、cf、pf、af位。
三、逻辑指令比如,and、or、not、xor(exclusive or)、test、shl(shift logic left)、shr(shift logic right)、sal(shift arithmetic left)、sar(shift arithmetic right)、rol(rotate left)、ror(rotate right)、rcl(rotate left through carry)、rcr(rotate right through carry)等都是逻辑指令。
除了not 指令外,它们的执行结果都影响标志寄存器的相关标志位。
四、转移指令可以修改IP,或同时修改CS和IP的指令统称为转移指令。
转移指令分为一下几类。
(1)无条件转移指令,比如,jmp(jump);(2)条件转移指令,比如,jcxz(jump if CX is zero)、je(jump if equal)、jb(jump if below)、ja(jump if above)、jnb(jump if not below)、jna(jump if not above)等;(3)循环指令,比如,loop;(4)过程,比如,call、ret(return)、retf(return far);(5)中断,比如,int(interrupt)、iret(interrupt return)。
8086 8088 汇编 指令 手册

8086 8088 汇编指令手册一、常用指令二、算术运算指令三、逻辑运算指令四、串指令五、程序跳转指令------------------------------------------计算机寄存器分类简介:32位CPU所含有的寄存器有:4个数据寄存器(EAX、EBX、ECX和EDX)2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP)6个段寄存器(ES、CS、SS、DS、FS和GS)1个指令指针寄存器(EIP) 1个标志寄存器(EFlags)1、数据寄存器数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。
32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。
对低16位数据的存取,不会影响高16位的数据。
这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。
4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。
程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。
寄存器EAX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。
可用于乘、除、输入/输出等操作,使用频率很高;寄存器EBX称为基地址寄存器(Base Register)。
它可作为存储器指针来使用;寄存器ECX称为计数寄存器(Count Register)。
在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数;寄存器EDX称为数据寄存器(Data Register)。
在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。
在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。
8086汇编中jmp指令详解

8086汇编中jmp指令详解jmp指令解释:⏹jmp为无条件转移,可以只修改IP,也可以同时修改CS和IP;⏹jmp指令要给出两种信息:⏹转移的目的地址⏹转移的距离(段间转移、段内短转移,段内近转移)格式:一.Jump short 标号这种格式的 jmp 指令实现的是段内短转移,它对IP的修改范围为 -128~127,也就是说,它向前转移时可以最多越过128个字节,向后转移可以最多越过127个字节。
示例:assume cs:codesgcodesg segmentstart:mov ax,0jmp short sadd ax,1s:inc axcodesg endsend start说明:上面的程序执行后, ax中的值为 1 ,因为执行 jmp short s 后,越过了add ax,1 ,IP 指向了标号 s处的 inc ax。
也就是说,程序只进行了一次ax加1操作。
注意:⏹汇编指令jmp short s 对应的机器指令应该是什么样的呢?⏹我们先看一下别的汇编指令和其对应的机器指令可以看到,在一般的汇编指令中,汇编指令中的idata(立即数),不论它是表示一个数据还是内存单元的偏移地址,都会在对应的机器指令中出现,因为CPU执行的是机器指令,它必须要处理这些数据或地址。
⏹但是:当我们查看jmp short s或jmp 0008所对应的机器码,却发现了问题。
看到了吗?机器码中并不含有立即数。
为什么呢,解释如下⏹在“jmp short 标号”指令所对应的机器码中,并不包含转移的目的地址,而包含的是转移的位移。
⏹这个位移,使编译器根据汇编指令中的“标号”计算出来的。
如果我们在第一行程序后加上Mov bx,0000,你会发器机器码没变,还是EB03,为什么呢?jm p 0008对应的偏移就是0003大家可以回忆一下cpu中指令的执行流程,就会发现当执行完EB03后,ip=ip+2=0005,大家注意看EB03后面有个03,表示再向后三个单位,这样就到了0008这个偏移处了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8086汇编指令手册
一、数据传输指令
它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据.
1. 通用数据传送指令.
MOV 传送字或字节.
MOVSX 先符号扩展,再传送.
MOVZX 先零扩展,再传送.
PUSH 把字压入堆栈.
POP 把字弹出堆栈.
PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.
POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.
PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.
POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈.
BSWAP 交换32位寄存器里字节的顺序
XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)
CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )
XADD 先交换再累加.( 结果在第一个操作数里)
XLAT 字节查表转换.
—— BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即
0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL )
2. 输入输出端口传送指令.
IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )
OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器)
输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时,
其范围是0-65535.
3. 目的地址传送指令.
LEA 装入有效地址.
例: LEA DX,string ;把偏移地址存到DX.
LDS 传送目标指针,把指针内容装入DS.
例: LDS SI,string ;把段地址:偏移地址存到DS:SI.
LES 传送目标指针,把指针内容装入ES.
例: LES DI,string ;把段地址:偏移地址存到ES:DI.
LFS 传送目标指针,把指针内容装入FS.
例: LFS DI,string ;把段地址:偏移地址存到FS:DI.
LGS 传送目标指针,把指针内容装入GS.
例: LGS DI,string ;把段地址:偏移地址存到GS:DI.
LSS 传送目标指针,把指针内容装入SS.
例: LSS DI,string ;把段地址:偏移地址存到SS:DI.
4. 标志传送指令.
LAHF 标志寄存器传送,把标志装入AH.
SAHF 标志寄存器传送,把AH内容装入标志寄存器.
PUSHF 标志入栈.
POPF 标志出栈.
PUSHD 32位标志入栈.
POPD 32位标志出栈.
二、算术运算指令——————————————————————————————————————— ADD 加法.
ADC 带进位加法.
INC 加1.
AAA 加法的ASCII码调整.
DAA 加法的十进制调整.
SUB 减法.
SBB 带借位减法.
DEC 减1.
NEC 求反(以0 减之).
CMP 比较.(两操作数作减法,仅修改标志位,不回送结果).
AAS 减法的ASCII码调整.
DAS 减法的十进制调整.
MUL 无符号乘法.
IMUL 整数乘法.
以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算),
AAM 乘法的ASCII码调整.
DIV 无符号除法.
IDIV 整数除法.
以上两条,结果回送:
商回送AL,余数回送AH, (字节运算);
或商回送AX,余数回送DX, (字运算).
AAD 除法的ASCII码调整.
CBW 字节转换为字. (把AL中字节的符号扩展到AH中去)
CWD 字转换为双字. (把AX中的字的符号扩展到DX中去)
CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去)
CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去)
三、逻辑运算指令——————————————————————————————————————— AND 与运算.
OR 或运算.
XOR 异或运算.
NOT 取反.
TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果).
SHL 逻辑左移.
SAL 算术左移.(=SHL)
SHR 逻辑右移.
SAR 算术右移.(=SHR)
ROL 循环左移.
ROR 循环右移.
RCL 通过进位的循环左移.
RCR 通过进位的循环右移.
以上八种移位指令,其移位次数可达255次.
移位一次时, 可直接用操作码. 如SHL AX,1.
移位>1次时, 则由寄存器CL给出移位次数.
如MOV CL,04
SHL AX,CL
四、串指令——————————————————————————————————————— DS:SI 源串段寄存器:源串变址.
ES:DI 目标串段寄存器:目标串变址.
CX 重复次数计数器.
AL/AX 扫描值.
D标志0表示重复操作中SI和DI应自动增量; 1表示应自动减量.
Z标志用来控制扫描或比较操作的结束.
MOVS 串传送.
( MOVSB 传送字符. MOVSW 传送字. MOVSD 传送双字. ) CMPS 串比较.
( CMPSB 比较字符. CMPSW 比较字. )
SCAS 串扫描.
把AL或AX的内容与目标串作比较,比较结果反映在标志位.
LODS 装入串.
把源串中的元素(字或字节)逐一装入AL或AX中.
( LODSB 传送字符. LODSW 传送字. LODSD 传送双字. ) STOS 保存串.
是LODS的逆过程.
REP 当CX/ECX<>0时重复.
REPE/REPZ 当ZF=1或比较结果相等,且CX/ECX<>0时重复.
REPNE/REPNZ 当ZF=0或比较结果不相等,且CX/ECX<>0时重复.
REPC 当CF=1且CX/ECX<>0时重复.
REPNC 当CF=0且CX/ECX<>0时重复.
五、程序转移指令———————————————————————————————————————
1>无条件转移指令(长转移)
JMP 无条件转移指令
CALL 过程调用
RET/RETF过程返回.
2>条件转移指令(短转移,-128到+127的距离内)
( 当且仅当(SF XOR OF)=1时,OP1<OP2 )
JA/JNBE 不小于或不等于时转移.
JAE/JNB 大于或等于转移.
JB/JNAE 小于转移.
JBE/JNA 小于或等于转移.
以上四条,测试无符号整数运算的结果(标志C和Z).
JG/JNLE 大于转移.
JGE/JNL 大于或等于转移.
JL/JNGE 小于转移.
JLE/JNG 小于或等于转移.
以上四条,测试带符号整数运算的结果(标志S,O和Z).
JE/JZ 等于转移.
JNE/JNZ 不等于时转移.
JC 有进位时转移.
JNC 无进位时转移.
JNO 不溢出时转移.
JNP/JPO 奇偶性为奇数时转移.
JNS 符号位为"0" 时转移.
JO 溢出转移.
JP/JPE 奇偶性为偶数时转移.
JS 符号位为"1" 时转移.
3>循环控制指令(短转移)
LOOP CX不为零时循环.
LOOPE/LOOPZ CX不为零且标志Z=1时循环.
LOOPNE/LOOPNZ CX不为零且标志Z=0时循环.
JCXZ CX为零时转移.
JECXZ ECX为零时转移.
4>中断指令
INT 中断指令
INTO 溢出中断
IRET 中断返回
5>处理器控制指令
HLT 处理器暂停, 直到出现中断或复位信号才继续.
WAIT 当芯片引线TEST为高电平时使CPU进入等待状态.
ESC 转换到外处理器.
LOCK 封锁总线.
NOP 空操作.
STC 置进位标志位.
CLC 清进位标志位.
CMC 进位标志取反.
STD 置方向标志位.
CLD 清方向标志位.
STI 置中断允许位.
CLI 清中断允许位.
六、伪指令——————————————————————————————————————— DW 定义字(2字节).
PROC 定义过程.
ENDP 过程结束.
SEGMENT 定义段.
ASSUME 建立段寄存器寻址.
ENDS 段结束.
END 程序结束.。