公务员考试相遇问题解题技巧
多次相遇问题丨公务员考试行测答题技巧

多次相遇问题丨公务员考试行测答题技巧多次相遇问题是公务员考试数量关系的常见题型,其变化形式多样,条件分析复杂,需要综合运用的知识较多,所以,很多考生在备考中“闻之色变”,放弃心态对待。
其实,我们认真分析,详细总结,不难发现其考查形式,命题角度仍相对清晰,下面对多次相遇问题给出备考指导。
一、直线异地多次相遇甲、乙两人分别从A、B两地同时出发,相向而行,则其相遇过程如下:【结论】从两地同时出发的直线多次相遇过程中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍,每个人走过的路程等于他第一次所走路程的(2n-1)倍。
例1:两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
问A、B相城相距多少千米?解析:第一次相遇时,两车共走一个全程,从第一次相遇到第二次相遇时两车共走两个全程,从A城出发的汽车从第一次相遇时开始到第二次相遇时共走了52×2=104千米,从B城出发的汽车走了52+44=96千米,故两城间距离为(104+96)÷2=100千米。
二、环形同地反向多次相遇两人在环形跑道上从同一地点同时相向而行,则他们的相遇过程如下:【结论】从同地同时出发的环线多次相遇过程中,第n次相遇时,路程和等于第一次相遇时路程和的n倍,每个人走过的路程等于他第一次所走路程的n倍。
例2:老张和老王两个人在周长为400米圆形池塘边散步。
老张每分钟走9米,老王每分钟走16米。
现在两个人从同一地点反方向行走,那么出发后多少分钟他们第二次相遇?解析:环形多次相遇问题,每次相遇所走的路程和为一圈。
因此第二次相遇时,两人走过的路程和刚好是池塘周长的2倍。
相遇时间=路程÷速度和,即400×2÷(9+16)=32分钟。
通过对多次相遇的归类,来进行相关题型备考,不仅能够让广大考生清楚知道自己目前对题目的了解程度,逃离迷茫备考,也能让广大考生得到事半功倍,高效备考的效果。
行测数量关系技巧:相遇与追及问题

⾏测数量关系技巧:相遇与追及问题 公务员⾏测考试主要是考量⼤家的数学推理能⼒和逻辑分析能⼒,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系技巧:相遇与追及问题”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系技巧:相遇与追及问题 在数量关系中,⾏程问题是必考考点,但考⽣在做⾏程问题时可能只会做⼀些简单的⾏程问题,对于稍微难⼀点的⾏程问题就难以下⼿。
其实在⾏程问题中有⼀类题:直线上的相遇与追及,也是⽐较简单的⼀类题,是可以通过学习攻克的⼀类题型。
接下来和⼤家⼀起看⼀下直线上的相遇与追及。
例1.甲⼄两⼈分别从A、B两地同时出发,相向⽽⾏,甲的速度为60km/h,⼄的速度为40km/h,甲⼄两⼈5⼩时后相遇,问A、B两地的距离为多少千⽶?A.200B. 300C.500D.600 【点拨】相向⽽⾏说的是相遇,对于相遇问题,我们需要记住路程和 ×相遇时间,也就是路程和对应速度和的问题,这⾥需要注意时间必须是同时运动的时间。
例2.南京到上海的⽔路⻓392千⽶,同时从两港各开出⼀艘轮船相对⽽⾏,从南京开出的船每⼩时⾏28千⽶,从上海开出的船每⼩时⾏21千⽶,经过⼏⼩时两船相遇?A.6B.7C.8D.9 【点拨】相遇问题, ,路程和对应速度和的问题。
例3.甲⼄两⼈分别从A、B两地同时出发,同向⽽⾏,A、B两地间的距离为500km,甲的速度为60km/h,⼄的速度为40km/h,问甲追上⼄需要多少⼩时?A.25B.26C.27D.28 【点拨】同向⽽⾏说的是追及,对于追及问题,我们需要记住 追及时间,也就是路程差对应速度差的问题,这⾥需要注意时间必须是同时运动的时间。
公务员行测考试相遇问题示例(精选3篇)

公务员行测考试相遇问题示例(精选3篇)公务员行测考试相遇问题示例精选篇1从两地同时出发的直线异地多次相遇的问题中,有如下两个结论:(1)每两次相遇之间,相遇总路程、时间、甲路程、乙路程,除了第一次剩下都相等且为第一次的2倍。
(2)从出发开始到第n次相遇,相遇总路程、时间、甲路程、乙路程为第一次相遇总路程、时间、甲路程、乙路程的2n-1倍。
题型一:求两地之间的距离例1:两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距多少千米。
【解析】第一次相遇时两车共走一个全程,从第一次相遇到第二次相遇时两车共走了两个全程,从A城出发的汽车从第一次相遇时开始到第二次相遇时走了52×2=104千米,从B城出发的汽车从第一次相遇时开始到第二次相遇时走了52+44=96千米,故两城间距离为(104+96)÷2=100千米。
题型二:求运动时间例题2:老张和老王分别从相距1800米的A、B两地相向而行,老张每分钟走40米,老王每分钟走50米,两人在A、B两地来回行走,不计转向时间,问出发多长时间两人第十次相遇?【解析】第一次相遇时间为:1800÷(40+50)=20min,根据“从出发开始到第n次相遇,时间为第一次相遇时间的2n-1倍”可得:20× (2×10-1) =380min。
以上就是多次相遇的一些常考题型,其实对于解决多次相遇问题,大家只要建立在多次相遇的结论上进行公式代入即可。
确定好到底是相邻两次的数据还是累计到n次相遇节点的数据,做好公式分类,就一定可以把此类问题完美解决!公务员行测考试相遇问题示例精选篇2矛盾关系和反对关系都属于不相容关系,或叫全异关系,但是二者是有区别的。
一、矛盾关系矛盾关系是指对立的两种情况,没有第三种情况存在,非此即彼,非彼即此。
【例】男:女首先男女是对立的,是男不是女,是女不是男。
国家公务员考试行测多次相遇题型总结

国家公务员考试行测多次相遇题型总结在国家公务员考试行测中,多次相遇题型是一个比较常见的考点。
这种题型要求考生在给定的条件下,通过分析、推理和判断,找出多次相遇的规律,进而解决问题。
为了帮助考生更好地掌握这种题型,本文将对其进行总结和解析。
一、基本概念多次相遇题型通常涉及两个或多个对象在同一路径上多次相遇的情况。
例如,甲和乙两人在一条路上多次相遇,每次相遇的时间间隔和地点都有规律可循。
二、解题思路1、确定研究对象:首先要明确题目中涉及的对象,以及它们之间的相互关系。
2、分析相遇条件:多次相遇的情况通常有一定的规律可循。
通过分析题目的条件,找出每次相遇的时间、地点等规律。
3、建立数学模型:根据题目所给条件,建立适当的数学模型,以便更好地解决问题。
4、推导结论:根据建立的数学模型,进行计算和推理,得出结论。
三、常见题型及解析1、追及问题:两个对象在同一路径上运动,一个对象比另一个对象速度快,最终追上另一个对象。
这类问题通常涉及到速度、时间和距离之间的关系。
例题:甲和乙两辆车在同一条路上行驶,甲车速度是乙车速度的2倍。
两车从同一地点出发,当甲车追上乙车时,乙车已经行驶了10公里。
问甲车追上乙车需要多少时间?解析:设乙车的速度为x,甲车的速度为2x。
根据题意,当甲车追上乙车时,乙车已经行驶了10公里。
因此,甲车行驶的距离为10公里加上乙车行驶的距离。
根据速度、时间和距离之间的关系,可以列出方程:(10 + 10) / (2x - x) = 10 / x。
解得x = 1公里/小时。
因此,甲车的速度为2公里/小时,甲车追上乙车需要10小时。
2、相遇问题:两个对象在同一路径上运动,它们的运动方向相反,最终相遇。
这类问题通常涉及到速度、时间和距离之间的关系。
例题:甲和乙两辆车在同一条路上行驶,它们的速度相同。
两车从同一地点出发,当它们相遇时,它们各自行驶了10公里。
问它们相遇需要多少时间?解析:设它们相遇需要t小时。
行测:简单又复杂的“多次相遇”问题

在历年公务员考试中,行程问题都是一个必考知识点,而在考察的行程问题中,多次相遇问题出现频率非常高,对于很多考生而言,这部分知识难度大,变化形式多,因此很多考生在考场上就会放弃这类题目,其实了解这部分题型的本质后,就会将复杂问题简单化,很容易求解选出正确答案。
万变不离其宗,要想快速求解多次相遇问题,首先要了解其基本模型,了解了基本模型,在此基础上所做的变化也难逃大家的法眼。
多次相遇的三个前提条件为:1、往返运动;2、匀速行驶;3、迎面相遇。
一、基本模型考察的最基本模型为:甲从A地、乙从B地两人同时出发,在两地之间往返行走(到达另一地后就马上返回)。
在往返的过程中两人实现多次相遇。
如下图示。
\图中简单画出了前三次相遇情况,以此向下类推,从图中不难看出:㈠相邻两次相遇从出发到第一次相遇,两人走过的路程和S0-1=AB;从第一次相遇到第二次相遇,两人走过的路程和S1-2=2AB;从第二次相遇到第三次相遇,两人走过的路程和S2-3=2AB;从第三次相遇到第四次相遇,两人走过的路程和S3-4=2AB;……因此,两人走过的路程和存在以下比例关系:S0-1 : S1-2 : S2-3 : …… : Sn-1-n =1:2:2 : …… :2路程和=速度和×时间,由于两人是匀速行驶,速度和不变,时间与路程和成正比:T0-1 : T1-2 : T2-3 : …… : Tn-1-n =1:2:2 : …… :2甲乙两人速度不变,各自所走路程与时间成正比:S甲0-1 : S甲1-2 : S甲2-3 : …… : S甲n-1-n =1:2:2 : …… :2S乙0-1 : S乙1-2 : S乙2-3 : ...... : S乙n-1-n =1:2:2 : (2)㈡从出发到第N次相遇从出发到第一次相遇,两人走过的路程和S0-1=AB;从出发到第二次相遇,两人走过的路程和S0-2=3AB;从出发到第三次相遇,两人走过的路程和S0-3=5AB;从出发到第四次相遇,两人走过的路程和S0-4=7AB;……因此,两人走过的路程和存在以下比例关系:S0-1 : S0-2 : S0-3 : …… : S0-n =1:3:5 : …… :(2n-1)路程和=速度和×时间,由于两人是匀速行驶,速度和不变,时间与路程和成正比:T0-1 : T0-2 : T0-3 : …… : T0-n =1:3:5 : …… :(2n-1)甲乙两人速度不变,各自所走路程与时间成正比:S甲0-1 : S甲0-2 : S甲0-3 : …… : S甲0-n =1:3:5 : …… :(2n-1)S乙0-1 : S乙0-2 : S乙0-3 : …… : S乙0-n =1:3:5 : …… :(2n-1)二、模型变式考察的模型变式为:甲、乙两人同时从A地出发前往B地,在两地之间往返行走(到达另一地后就马上返回)。
公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。
然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。
接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。
一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。
2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。
3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。
二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。
三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。
国考行测数量关系——直线型相遇追及问题

国考行测数量关系——直线型相遇追及问题【答题妙招】相遇问题:相遇距离=(大速度+小速度)×相遇时间追及问题:追及距离=(大速度-小速度)×追及时间【例1】公路上有三辆同向行驶的汽车,其中甲车的时速为63公里,乙、丙两车的时速均为60公里,但由于水箱故障,丙车每连续行驶30分钟后必须停车2分钟。
早上10点,三车到达同一位置,问1小时后,甲、丙两车最多相距多少公里()A.5B.7C.9D.11【答案】B。
在这1个小时中,丙车最多休息4分钟,也即丙在一个小时内最少行程为56公里。
而甲车持续行驶,可达63公里。
因此两车最多相距7公里。
【例2】甲、乙两人分别从A.B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A.B两地的距离是()米。
A.6000B.6500C.7000D.7500【答案】D 。
解法一:如图所示,设甲第一次走的路程为S 1,乙第一次走的路程为S 2。
可以看出,从第一次相遇到第二次相遇,甲走的路程为2S 2+3000,乙走的路程为2S 1-3000。
由路程与速度成正比可列方程:S 1:S 2=(2S 2+3000):(2S 1-3000)=2:3,解得S 1=4500,S 2=3000。
因此A.B 两地相距4500+3000=7500米。
因此答案选择D 选项。
解法二:设总路程为S ,分析题意可知,甲速:乙速=3:2,所以第一次相遇时,甲乙总路程为1个全程,乙的路程应为总路程的S 52;第二次相遇时,甲乙总路程为3个全程,甲的路程为S 54S S 59+=。
所以第一次相遇点距离第二次相遇点为3000S 52S 52S 54==-,S=7500米。
因此答案选择D 选项。
【例3】往返A 市和B 市的长途汽车以同样的发车间隔从两个城市分别发车,以每小时40公里的速度前往目标城市。
行测考试中相遇问题的解题技巧

行测考试中相遇问题的解题技巧行程问题中的相遇追击问题可以说是公务员行测考试问题中的一个母题,很多行程问题中的小题型如牛吃草问题、多次相遇问题、青蛙跳井问题、间隔发车问题、钟表问题等等都是由追击相遇的基本模型展开的,而展开的前提就是时间,就此为考生梳理一下追击相遇的基本公式:相遇模式:路程和=速度和×时间追击模式:路程差=速度差×时间广大考生朋友要注意的是,这里的追击相遇模式,并不代表真正的追击和相遇,只要是满足时间一定(几个量完成路程所花的时间一定)时,我们知道路程和就可以用相遇模式,知道路程差就是追击模式。
(一) 相遇追击模式之钟表问题另:相邻小时刻度间距为30度对于钟表问题而言,我们做题的入手点就是,我们通过判断可以得到路程和还是路程差。
知道路程和,就可以用相遇模式解决;知道路程差我们可以用追击模式来解决。
通过例题来看一下:现在为北京时间15:00,请问多少分钟后时针与分针第一次重合?这道题的入手点就是判断已知路程和路程差的问题,我们都知道北京时间15:00时分针与时针的间距为90度,题目要求分针与时针第一次重合,所以可以判断这90度就是分针和时针的路程差,所以由15:00变成分针与时针重合用的时间等于90/(6-0.5)。
(二)相遇追击模式之牛吃草问题牛吃草问题又称之为牛顿牧场问题或者是消长问题,它的母题也是相遇追击模式。
首先我们通过一道例题来认识一下牛吃草问题:一片牧草(牧草每天均匀生长或者均匀枯萎),可以供7头牛吃8天,可以供12头牛吃5天。
请问:(1)如果牧草每天均匀生长可以供9头牛吃几天?(2)如果牧草每天均匀生长,要使牧草永远不被吃光,最多可以养多少头牛?(3)如果牧草每天均匀枯萎可以供9头牛吃几天?这时我们可以发现,如果牧场每天均匀生长,那么这道题目就是一个基本的追击模型,就是牛吃草量—草生长量=原牧草的量。
草永远不被吃光就是每天牛吃的量=每天草长的量。
如果牧草每天枯萎那么就是一道相遇的模型:牛吃草量+草枯萎量=原牧场的量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题之相遇问题
从历年的考试大纲和历年的考试分析来看,数学运算中的行程问题一直是常考的一类题。
行程问题分为相遇问题,追及问题和流水问题。
每一类问题的题型都有相应的解法,只有熟练掌握这些解法,才能提高我们的解题速度,节约时间,在考试中考出优异的成绩。
下面京佳教育专家就行程问题中的相遇问题做专项的讲解。
行程问题的准备知识
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。
相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
相遇(相离)问题的基本数量关系:
速度和×相遇时间=相遇(相离)路程
在相遇(相离)问题和追及问题中,考生必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:
A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间相遇问题的核心是“速度和”问题。
例1.某校下午2点整派车去某厂接劳模作报告,往返需1小时。
该劳模在下午1点就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30分到达。
问汽车的速度是劳模步行速度的()倍。
A. 5
B. 6
C. 7
D. 8
【答案】A 车往返需1小时,实际只用了30分钟,说明车刚好在半路接到劳模,故有车15分钟所走路程=劳模75分钟所走路程。
设劳模步行速度为a,汽车速度是劳模的x倍,则可列方程,75a=15ax,解得x=5。
例2.甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。
已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发()分钟。
A. 30
B. 40
C. 50
D. 60
【答案】C 本题涉及相遇问题。
方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有(60+40)x=60[y+(x-30)]+40(x-30),y =50。
方法2:甲提前走的路程=甲乙共同走30分钟的路程,那么提前走的时间为,30(60+40)/60=50。
例3.甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。
如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。
又知甲的速度比乙的速度快,乙原来的速度为()
A. 3km/h
B. 4 km/h
C. 5 km/h
D. 6 km/h
【答案】B 原来两人速度和为60÷6=10 km/h,现在两人相遇时间为60÷(10+2)=5小时,设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4。
注意:在解决这种问题的时候一定要先判断谁的速度快。
方法2:提速后5小时比原来的5小时多走了5千米,比原来的6小时多走了1千米,可知原来1小时刚好走了5-1=4千米。
二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
则有:
第二次相遇时走的路程是第一次相遇时走的路程的两倍。
例4.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?
A. 120
B. 100
C. 90
D. 80
【答案】A 方程法:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,乙第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
方法2:乙第二次相遇所走路程是第一次的二倍,则有54×2-42+54=120。
总之,利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。