上海中考学科教学基本要求(完整版)-初中数学
上海中学考试数学考试大纲设计

实用文档上海市初中数学学科教学基本要求第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。
2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。
(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。
3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。
难点是求两个正整数的最小公倍数。
4.知识结构二、实数1.内容要目实数的概念,实数的运算。
近似计算以及科学记数法。
基本要求2.)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的1(关系。
)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行(2 实数的运算。
)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。
(3 3.重点和难点重点是理解实数概念,会正确进行实数的运算。
实用文档难点是认识实数与数轴上的点的一一对应关系。
4.知识结构方程与代数第二单元一、整式与分式 1.内容要目代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。
单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。
22222b2ab?a?)?ab;(a?b)??bb(a?)(a?乘法公式:因式分解:提取公因式法,公式法,十字相乘法,分组分解法。
分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。
2.基本要求 1)理解用字母表示数的意义;理解代数式的有关概念。
()通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数(2 学思想;会求代数式的值。
)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平(3 方公式。
上海初中数学学科教学基本要求(3)-第三单元 图形与几何(8)

平面向量 练习3-8
A 组
1.向量是既有 又有 的量,它的 也叫向量的长度.
2.计算:AB BA + =
3.如果非零向量a b 、满足3a b =- ,那么a b 与的方向 ;|||a b |、满足的关系式是 .
4.如图,已知ABC ∆,点D 、E 、F 分别是边AB 、BC 、CA 的中点,在以点A 、B 、C 、D 、E 、F 中的两点分别为起点和终点的向量中,
(1)写出所有与向量EF 相等的向量; (2)写出所有与向量EF 相反向量的向量;
(3)写出所有与向量EF 平行的向量.
5.如图,已知向量a b 、,求作向量:12
a b - ,2a b + . b
B 组
1.在ABC ∆,可知AB BC CA ++ =
2.化简:3(24)5()a b a b --+ =
3.如图,已知ABC ∆,点D 、E 分别是边AB 、AC 的中点,设,AB a AC b == ,试用a b 、的线性组合表
示向量DE
.
C B
4.如果向量e 是单位向量,设5PQ e =- ,那么||PQ =
5.如图,已知ABC ∆,点E 、F 分别是边BC 、AB 的中点,AE 与CF 交于点G. 设,BA m BC n == ,分
别用向量,m n 表示向量CF AE CG 、、.
G
F
E C
B A。
上海初中数学学科教学基本要求(3)-第三单元 图形与几何(4)

四边形 练习3-4A 组1.如果一个多边形的内角和为540︒,那么这个多边形是 边形.2.平行四边形ABCD 的对角线AC 与BD 相交于点O ,在下列情况下,指出这个四边形ABCD 属于哪一类特殊的平行四边形.若AB =AD ,则平行四边形ABCD 是 形;若AC =BD ,则平行四边形ABCD 是 形;若90ABC ∠=︒,则平行四边形ABCD 是 形;若BAO DAO ∠=∠,则平行四边形ABCD 是 形;3.平行四边形ABCD 的对角线AC 与BD 相交于点O.如果AC =14,BD =18,AB =10,那么OCD ∆的周长是 ;如果A ∠比B ∠大40︒,那么C ∠的度数是4.已知边长为4cm 的菱形有一个内角是120︒,那么这个菱形的较长的一条对角线的长是 cm.5.已知菱形的两条对角线长的比为3:4,边长为10cm ,那么这个菱形的面积是 2cm .6.已知梯形的上底长是4cm ,中位线长是7cm ,那么下底长是 cm.7.已知梯形ABCD 中,AD// BC ,AD :BC =1:2,这个梯形的面积是452cm ,高是6cm , 那么AD = cm.8.顺次联结等腰梯形各边中点所得的四边形是 形.9.如果等腰梯形的腰和上底的长都等于a ,腰和上底的夹角为120︒,那么下底的长等于 .10.两条对角线互相垂直且相等的四边形是( )A.等腰梯形B.菱形C.矩形D.不能确定类型11.下列四边形中,是轴对称但不是中心对称的图形是( )A.非正方形的矩形B.非正方形的菱形C.正方形D.等腰梯形12.下列命题中,真命题是( )A.一组对边平行且一组对角相等的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.一条对角线平分一组对角的四边形是菱形;D.四条边相等的四边形是正方形.B 组1.已知:如图,点E 和点F 分别是平行四边形ABCD 的边AB 和CD 的中点,G 、H 分别为AD 和BC 边上的一点,且AG =CH. 求证:EF 与GH 互相平分.H G EF D C B A2.已知:如图,在ABCD 中,,AE BC AF CD ⊥⊥,AE =AF. 求证:ABCD 是菱形.EF D BA3.已知:如图,在四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC.求证:四边形ABCD 是等腰梯形.DC B A4.如图,已知在梯形ABCD 中,AD//BC ,AB =DC ,120D ∠=︒,对角线CA 平分BCD ∠,且梯形的周长是20.求AC 的长.DBA5.已知如图,在四边形ABCD 中,AB =1,BC =5,CD =4,AD=AB AD ⊥.求四边形ABCD 的面积.DCB A6.已知四边形ABCD 中,AD//BC ,AB =DC ,AC 与BD 相交于点O ,120BOC ∠=︒,AD =7,BD =10.求四边形ABCD 的面积.。
初中数学学科课堂教学基本要求

初中数学学科课堂教学基本要求一、课堂教学准备(一)理解课标要求通过《义务教育数学课程标准》的学习,明确课程的性质、基本理念与设计思路、数学学科核心素养与课程目标;明确7~9年级学生通过数学学习,应达到的学段目标,以及学业质量标准;明确7~9 年级学生在数与代数、图形与几何、统计与概率、综合与实践四个学习领域的课程内容、教学及学业要求;明确数学教学活动是在教师引导下,学生主动参与数学学习活动的过程,是学生在理解和掌握“四基”的同时,逐步发展数学学科核心素养,形成良好学习习惯的过程;明确评价的目的是为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学。
(二)分析教学实际1. 分析学生了解学生的学习习惯、兴趣爱好、思维方式和个性特点等状况;了解学生学习本节课内容所需的前期知识和存在的疑惑,以及学习经验等情况。
分析达成数学课堂教学目标所需要具备的认知基础,确定“已有的数学基础”和“需要的数学基础”之间的差距,分析哪些差距可以由学生通过努力自己消除,哪些差距需要在教师帮助下消除。
2. 分析教学条件(1)通读当地使用的整套、整册、整章教科书和教师教学指导用书,了解教材的基本内容和设计思路,教材的知识体系及整体结构,领悟教材促进学生数学核心素养发展的整体编排特点,明晰教材分阶段、分内容落实各核心素养的编排路径;了解本章内容在整套教材中所处的地位和作用,精读本节、本课时教材中的课题引入、情境呈现、新知识形成和例题的分析过程,明确新知识的发生和发展过程,分析知识产生和发展过程中蕴涵的数学思想方法和数学活动类型,挖掘其中蕴涵的学科育人价值;仔细解答教科书中的每一道题,体会例题、练习题、习题、复习题以及综合实践作业的设计与安排,体会其中用到的数学知识、解题方法及蕴涵的数学思想。
(2)要清楚可供使用的教具、课件、多媒体等教学资源有哪些,以及它们的性能,尽可能合理、有效地使用现有教学资源,发挥它们的作用,提高教学效益。
最新版上海初中数学学科教学基本要求-6

第六单元 四边形、圆与正多边形 6.1 四边形例题1.通常把不能完全重合的图形称为不同的图形.如果将两个全等的锐角三角形按不同的方法拼成四边形,可以拼成几个不同的四边形?可以拼成几个不同的平行四边形?请将得到的结2.已知:如图6-1-5,菱形ABCD 的对角线AC 与BD 相交于点O ,P 是BD 延长线上一点. (1)求证:PA =PC ;(2)当PC BC ⊥时,求证:APC BCD ∠=∠.O P CDA3.已知:如图6-1-6,在梯形ABCD 中,AD//BC ,点E 是边CD 的中点,点F 在边BC 上,EF//AB. 求证:1()2BF AD BC =+. CFEDBA4.如图6-1-10,在直角梯形ABCD 中,AD//BC ,90B ∠=︒,BC -AD =3,CD =5,AC =8.求梯形ABCD 的面积.CDB A5.已知点P 在正方形ABCD 外,联结AP 、BP 、DP ,恰有AP =AD. (1)当PAD ∠为锐角(图6-1-11)时,求BPD ∠的度数; (2)当PAD ∠为钝角时,请画出图形,并求BPD ∠的度数.MPCDB A日常作业或纸笔测试题1.如果一个多边形的内角和是它的外角和的4倍,那么这个多边形的边数是 .2.平行四边形ABCD 的对角线AC 与BD 相交于点O ,在下列情况下,指出这个四边形ABCD 属于哪一类特殊的平行四边形.若AB =AD ,则平行四边形ABCD 是 形; 若AC =BD ,则平行四边形ABCD 是 形;若90ABC ∠=︒,则平行四边形ABCD 是 形; 若BAO DAO ∠=∠,则平行四边形ABCD 是 形;3.如果边长为4cm 的菱形有一个内角是120︒,那么这个菱形的较长的一条对角线的长 是 cm.4.在梯形ABCD 中,AD//BC ,AD =3,BC =7,点E 、F 分别是AC 、BD 的中点,那么EF 的长为 .5.设平行四边形ABCD 的对角线AC 、BD 交于点O ,则下列式子不一定正确的是( ) A.AB =CD ; B.BO=OD ; C.AC=BD ; D.BAD BCD ∠=∠6.在四边形ABCD 中,如果AB 与CD 不平行,AC 与BD 相交于点O ,那么下列条件中判定四边形ABCD 是等腰梯形的是( )A.AC =BD =BC ;B.AB =AD =CD ;C.OB =OC ,AB =CD ;D.OB =OC ,OA =OD.7. 已知:如图6-1-13,点E 和点F 分别是平行四边形ABCD 的边AB 和CD 的中点,G 、H 分别为AD 和BC 边上的一点,且AG =CH. (1)求证:EF 与GH 互相平分.(2)当EG 平分AGH ∠时,求证:四边形EHFG 是矩形.HGE FD CBA8.如图6-1-14,在正方形ABCD 中,AB =8,点M 在边BC 上,且BM =6,点P 在边AD 或DC 上,联结AM 、AP 、MP .当AMP ∆为等腰三角形时,求AMP ∆的面积.M CDBA探究性问题9.探究活动:多边形内角和的探究.问题1:关于凸n 边形的内角和,你已知学习过的结论是什么?你还记得推导的方法吗? 问题2:如图6-1-15,四边形ABCD 是凹四边形,1A B D ∠∠∠∠、、、是它的内角.你能类比凸n 边形的内角和的推导方法,求出这个凹四边形的内角和吗?请简要说明理由.问题3:类似地,图6-1-16所示的五角星是一个凹十边形,你能求出这个凹十边形的内角和吗?请尝试用两种方法说明理由,并与其他同学交流.J IHGFE DCBA1CDBA6.2 圆与正多边形例题1.已知:如图6-2-1,AD 是O 的直径,点B 、C 分别在O 上,AB =AC.求证:AD BC ⊥.2.上海临港新城的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三点,使得点A 、B 之间的距离与点A 、C 之间的距离相等.如果测得BC 长为240米,A 到BC 的距离为5米,如图所示,请你帮他们求出滴水湖的半径长.OD CBA3.在Rt ABC ∆中,90ACB ∠=︒,AC =6,AB =10,以点C 为圆心作圆,设圆的半径长为r. (1)要使点A 在圆C 的内部,点B 在圆C 的外部,求r 的取值范围; (2)要使AB 与圆C 相切,求r 的值;(3)以点A 为圆心作圆A ,使圆A 与第(2)题所作出的圆C 相切,求圆A 的半径长.CBA4.如图6-2-4,1O 与2O 相交于点A 和点B ,AAB 与12O O 相交于点C. 1O 与2O 的半径长分别为20和13,12O O =21.求AB 的长.O 2O 1CBA5.如图6-2-5,已知AB 、AC 是O 的弦,AB 、AC 的长分别等于O 的内接正六边形和正五边形的边长.(1)试判断BC 的长是否等于O 的内接正几边形的边长; (2)如果O 的半径OA =6,求O 的内接正六边形的面积.OCBA日常作业或纸笔测试题1.如图6-2-6,已知大圆半径长为10cm ,小圆半径长为5cm , 那么图中阴影部分的面积等于 2cm (精确到0.1)2.如果扇形的圆心角为60︒,半径长为6cm ,那么这个扇形的面 积是 2cm .3.如果圆的半径长为5cm ,一条弦的长为8cm ,那么这条弦的弦心距等于 cm.4.如果ABC ∆是等边三角形,AB =4cm ,以A 为圆心的圆与边BC 相切,那么圆A 的半径 等于 cm.5.下列命题中假命题是( )A.平分弦的直径垂直于弦;B. 垂直平分弦的直线必经过圆心;C.垂直于弦的直径平分这条弦所对的弧;D.平分弧的直径垂直平分这条弧所对的弦.(6-2-6)6.如果1O 、2O 的半径长分别是3和4,那么下列叙述中正确的是( )A. 当12O O =1时,1O 与2O 外切; B. 当12O O =3时,1O 与2O 相交;C. 当12O O > 6时,1O 与2O 外离; D. 当12O O < 2时,1O 与2O 没有公共点;7. 已知:如图6-2-7,AB 是O 的直径,直线l 交O 于C 、D 两点,,AE l BF l ⊥⊥,E 、F 是垂足.求证:EC =DF.l8. 如图6-2-8,已知AB 是O 的直径,AB =20,点P 是AB 所在直线上一点,OP =16,点C 是O 上一点,PC 交O 于点D ,30BPC ∠=︒,求CD 的长.PB探究性问题9.实际生活中的一个覆盖问题:一种电讯信号转发装置的发射直径为31千米.现要求在一边长为30千米的正方形城区选择若干个安装点,每个点安装一个这种装置,使这些装置转发的信号能完全覆盖这个城区.(1)能否找到4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)是否可以选择更少的安装点,使得这些点安装了这种转发装置后达到预设的要求?请简要说明你的分析过程.十种静脉穿刺技巧静脉穿刺作为临床护士所必须掌握的基本技能之一,其熟练度、精准度直接体现出临床护士对于这项专业技术操作的掌握情况,现将收集到的一些静脉穿刺方法和个人临床的小经验介绍给大家,希望能在临床中对大家有所帮助。
初中数学学科教学基本要求

初中数学学科教学基本要求1.制订教学计划要在全面了解任课班级学生对数学的兴趣、学习方法与习惯、意志品质、存在的主要困难等情况的基础上,根据数学课程标准要求,选定教学资源,确定教学目标,不得随意提高或降低教学难度,应科学把握进度。
根据每个具体单元的知识网络、教学要求、教学策略,积极探索“建立情境问你——数学建模——解决数学问题——应用、拓展”的教学模式,加强数学思想方法和能力培养方面的教学研究。
2.备课要根据学生的生活经验和数学经验,创设适当的情境,培养和帮助学生建立数学模型,形成问题意识。
3.课堂数学要强化四基教学。
注意概念、公式、定理、法则的提出过程,知识的形成发展过程,解题的思路及探索过程,解题方法和规律的概括过程。
注意捕捉课堂中生性教学资源并加以充分利用。
注意提高学生的数学思维能力,重视良好学习习惯的培养。
4.根据学生的不同特点,布置不同层次和不同类型的作业,严格控制作业量。
作业批改要及时,除全收全改外,以下方法供参考:(1)全收半改,精批精改。
同桌两人中每次必改一人。
(2)自我批改和互批互改结合。
答案可由教师给出,也可事先安排几个学生,定期轮流负责批改。
教师抽查并评价。
(3)面批面改。
学习后进生的作业,尽可能当面批改。
通过交谈的方式,从中注意发现不足或闪光点,帮助并鼓励学生学好数学。
(4)每生每期精批精改的次数不少于50次,面批面改(或个别辅导)不少于2次(有记录)。
5.数学课外活动要面向全体对数学学习有兴趣的学生,开展不同层次的活动。
对基础知识好的同学,举行有关的专题讲座,拓广学生的数学视野,挖掘学生的数学潜能。
对于基础知识一般的同学,可组织一些如数学游戏、制作几何模型、测量、社会调查、课外阅读等活动。
6.考试、考查试题内容应重点关注数学的核心知识。
试题结构应合理,面向大多数学生,注重考查学生对双基础知识所蕴含的数学本质的理解,考查学生能否在具体情境中合理应用数学知识。
除考试考查外还可以建立学生数学发展记录,帮助学生建立学好数学的自信。
(完整版)上海中考数学考试大纲

上海市初中数学学科教学基本要求第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。
2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。
(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。
3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数.难点是求两个正整数的最小公倍数。
4.知识结构二、实数1.内容要目实数的概念,实数的运算。
近似计算以及科学记数法.2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。
(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。
(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。
3.重点和难点重点是理解实数概念,会正确进行实数的运算.难点是认识实数与数轴上的点的一一对应关系。
4.知识结构第二单元 方程与代数一、整式与分式 1.内容要目代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。
单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。
乘法公式:22222()();()2a b a b a b a b a ab b +-=-±=±+因式分解:提取公因式法,公式法,十字相乘法,分组分解法。
分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。
2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。
(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。
(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式.(4)理解因式分解的意义,掌握提取公因式法、公式法、二次项系数为1时的十字相乘法、分组分解法等因式分解的基本方法.(5)理解分式的有关概念及其基本性质,掌握分式的加、减、乘、除运算。
上海初中数学学科教学基本要求(3)-第三单元 图形与几何(3)

全等三角形 练习3-3-3A 组1. 如图,AC 、BD 相交于点O ,A D ∠=∠,要使得AOB ∆≌DOC ∆,还需添加一个条件,这个条件可以是2.如图,已知等边三角形ABC 中,点D 在边AB 上,点E 在边BC 上,AD =BE ,那么CPE ∠=3.已知ABC ∆中,AB =a ,AC =b ,边BC 上的垂直平分线DE 交边BC 、边BA 分别于点D 和E ,那么AEC ∆的周长等于4.如图,已知AD//BC ,点E 是DC 的中点,AE 平分BAD ∠,那么AEB ∠=5.如图,某学生把一块三角形的玻璃打碎成了四块,现在要带一块碎片到玻璃店去配一块和原来一样的三角形玻璃,那么( )A.带①去B. .带②去C. .带③去D. .带④去6.下列命题中真命题是( )A.有两条边对应相等的两个直角三角形一定全等;B.有一边对应相等的两个等腰直角三角形一定全等;C.顶角和底边分别对应相等的两个等腰三角形一定全等;D.有两条边和一个角分别对应相等的两个三角形一定全等.B 组1.已知:如图,在ABC ∆中,AB =AC ,AD BC ⊥,垂足为点D ,BE =CF.求证:DE =DF.F ED C B A(第1题) 4321P A B C D E D C B A OD C B A (第2题) (第4题) (第5题)2.已知:如图,在四边形ABCD 中,90A ∠=︒,BD =DC ,BC =2AB. 求证:点D 在ABC ∠的角平分线上.3.如图,已知ABC ∆是边长为9的等边三角形,BDC ∆是等腰三角形,且120BDC ∠=︒. 以D 为顶点作一个60︒角,使其两边分别交边AB 于点M ,交边AC 于点N ,联结MN ,求AMN ∆的周长.NMABC4.已知:在ABC ∆中,AB =AC ,点P 在直线BC 上,PD AB ⊥于点D ,PE AC ⊥于点E ,BH 是ABC ∆的高.(1)当点P 在边BC 上时,求证:PD+PE =BH.(2)当点P 在边BC 的延长线上时,试探索PD 、PE 和BH 之间的数量关系. HP ABC DE相似三角形 练习3-3-4A 组1. 如果线段a =4cm ,b =9cm ,那么它们的比例中项是 cm.2.在比例尺为1:40 000的一张地图上,量得A 、B 两地的距离是37cm ,那么A 、B 两地的实际距离 是 km.3.如果直角三角形的斜边长为18,那么这个直角三角形的重心到直角顶点的距离为 .4.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是5.已知点P 是线段AB 上的黄金分割点,且AP>BP ,线段AB 的长为10cm ,那么AP =6.如图,点D 、E 分别在ABC ∆的边AB 和BC 上,下列所给的四个条件中,不一定能得到DE//AC 的条件是( ) A.BE BC BD BA= B. CE AD BE BD = C. BD DE BA AC = D. BC CE AB AD =B 组 1.如图,已知点D 在ABC ∆的边AB 上,且ACD B ∠=∠,:1:3ACD DBC S S ∆∆=,求AC AB的值. D C B A2.如图,已知点E 、F 分别在矩形ABCD 的边BC 和CD 上,EF AE ⊥,BE =3cm ,AB =6cm ,矩形ABCD 的周长为28cm ,求CF 的长.E FDCB AE D CB A3.已知:如图,D 、E 、F 分别是ABC ∆的边BC 、AB 、AC 的中点,AD 与EF 相交于点O ,线段CO 的延长线交AB 于点P. 求证:AB =3AP.OE PF CB A4.已知:如图,在Rt ABC ∆中,90ACB ∠=︒,点D 为AB 的中点,BE CD ⊥,垂足为点F ,BE 交AC 于点E ,CE =1cm ,AE =3cm.(1)求证:ECB ∆∽BCA ∆;(2)求斜边AB 的长.EFD CBA5.试一试.如图,已知在ABC ∆中,P 是边BC 上的一个动点,PQ//AC ,PQ 与边AB 相交于点Q ,AB =AC =10,BC =16,BP =x ,APQ ∆的面积为y.(1)求y 关于x 的函数解析式,并写出它的定义域;(2)试探索:APQ ∆与ABP ∆能否相似?如果能相似,请求出x 的值;如果不能相似,请说明理由.QCB A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教学基本要求数学第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。
2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。
(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。
3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。
难点是求两个正整数的最小公倍数。
4.知识结构二、实数1.内容要目实数的概念,实数的运算。
近似计算以及科学记数法。
2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。
(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。
(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。
3.重点和难点重点是理解实数概念,会正确进行实数的运算。
难点是认识实数与数轴上的点的一一对应关系。
4.知识结构第二单元 方程与代数一、整式与分式 1.内容要目 代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。
单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。
乘法公式:22222()();()2a b a b a b a b a ab b +-=-±=±+因式分解:提取公因式法,公式法,十字相乘法,分组分解法。
分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。
2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。
(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。
(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。
(4)理解因式分解的意义,掌握提取公因式法、公式法、二次项系数为1时的十字相乘法、分组分解法等因式分解的基本方法。
(5)理解分式的有关概念及其基本性质,掌握分式的加、减、乘、除运算。
(6)理解正整数指数幂、零指数幂、负整数指数幂的概念,掌握有关整数指数幂的乘(除)、乘方等运算的法则。
说明 ①在求代数式的值时,不涉及繁难的计算;②不涉及繁难的整式运算,多项式除法中的除式限为单项式;③在因式分解中,被分解的多项式不超过四项,不涉及添项、拆项等技巧;④不涉及繁复的分式运算。
3.重点和难点 重点是整式与分式的运算,因式分解的基本方法,整数指数幂的运算。
难点是选择适当的方法因式分解及代数式的混合运算。
4.知识结构二、二次根式1.内容要目二次根式的概念,二次根式的性质;最简二次根式,同类二次根式,分母有理化,二次根式的加、减、乘、除及其混合运算,分数指数幂。
2.基本要求(1)理解二次根式的概念,会根据二次根式中被开放数应满足的条件,判断或确定所含字母的取值范围。
(2)掌握二次根式的性质,会利用性质化简二次根式。
(3)理解最简二次根式、同类二次根式、分母有理化的意义,会将二次根式化为最简二次根式,会判别同类二次根式,会进行分母有理化。
(4)会进行二次根式的加、减、乘、除及其混合运算。
(5)会解系数或常数项含二次根式的一元一次方程和一元一次不等式。
(6)理解分数指数幂的概念,会求分数指数幂。
说明①关于二次根式的性质,包括:2(0(||0(0),(0);(0,0,a aa a a aa aa b a b a b⎧⎪=≥===⎨⎪-⎩=≥≥=≥>),<>0)②不出现繁难的二次根式的运算;在求解其系数或常数项含二次根式的一元一次方程和一元一次不等式时,所涉及的计算不繁难。
3.重点和难点重点是二次根式的性质,二次根式的加、减、乘、除及其混合运算,分数指数幂的运算。
难点是系数或常数项含二次根式的一元一次不等式的求解。
4.知识结构三、一次方程与不等式(组)1.内容要目列方程,一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
不等式的概念,不等式的性质,不等式的解集;一元一次不等式,一元一次不等式的解法;一元一次不等式组及其解集,一元一次不等式组的解法。
二元一次方程、二元一次方程组的概念,二元一次方程组的解法,三元一次方程的概念,三元一次方程组的解法。
一次方程组的应用。
2.基本要求(1)理解一元一次方程的有关概念,掌握一元一次方程解法。
(2)理解二元一次方程和它的解以及一次方程组和它的解的概念,掌握“消元法”,会解二元、三元一次方程组。
(3)会列一次方程(组)解简单的应用题。
(4)理解不等式及不等式的基本性质,理解一元一次不等式(组)及其解的有关概念,掌握一元一次不等式的解法,会利用数轴表示不等式的解集,会解简单的一元一次不等式组。
说明不出现涉及繁难计算的解方程(组)、不等式(组)的问题。
3.重点和难点重点是一元一次方程、二元一次方程组、三元一次方程组、一元一次不等式、一元一次不等式组的解法。
难点是一次方程(组)的应用。
4.知识结构四、一元二次方程1.内容要目一元二次方程的概念,一元二次方程的解法,一元二次方程的根的判别式,一元二次方程的应用。
2.基本要求(1)理解一元二次方程的概念。
(2)会用开平方法、因式分解法解特殊的一元二次方程,理解配方法解一元二次方程的思路,会用配方法和公式法解一元二次方程。
(3)会求一元二次方程的根的判别式的值,知道判别式与方程实数根情况之间的联系,会利用判别式判断实数根的情况。
(4)会利用一元二次方程的求根公式对二次三项式在实数范围内进行因式分解。
(5)会列一元二次方程解简单的实际问题。
3.重点和难点重点是一元二次方程的解法。
难点是一元二次方程的简单应用。
4.知识结构五、代数方程1.内容要目含有字母系数的一元一次与一元二次方程,特殊的高次方程(二项方程、双二次方程),分式方程,无理方程,简单的二元二次方程(组),列方程(组)解应用题。
2.基本要求(1)知道整式方程的概念;会解含有一个字母系数的一元一次方程与一元二次方程。
(2)知道高次方程的概念;会用计算器求二项方程的实数根(近似跟),会用换元法解双二项方程,会用因式分解的方法解某些简单的高次方程。
(3)理解分式方程、无理方程的概念;掌握可化为一元一次方程、一元二次方程的分式方程(组)和简单的无理方程的解法,知道“验根”是解分式方程(组)和无理方程的必要步骤,掌握验根的基本方法。
(4)理解二元二次方程和二元二次方程组的概念;会用代入消元法解由一个二元一次方程与一个二元二次方程所组成的二元二次方程组,会用因式分解法解两个方程中至少有一个容易变形为二元一次方程的二元二次方程组。
(5)会列出一元二次方程、分式方程(组)、无理方程、二元二次方程组求解简单的实际问题。
3.重点和难点重点是特殊的高次方程的解法和简单的分式方程、无理方程、二元二次方程组的解法,以及有关方程(组)的基本应用。
难点是对分式方程和无理方程有可能产生增根的理解以及对实际问题中数量关系的分析。
4.知识结构第三单元图形和几何一、长方体的在认识1.内容要目长方体,长方体的画法,直线与直线、直线与平面、平面与平面的基本位置关系。
2.基本要求(1)认识长方体的顶点、棱、面等元素,会画长方体的直观图。
(2)以长方体为载体理解长方体中棱、面之间的基本位置关系的含义,知道两条直线之间三种位置关系。
(3)认识线面、画面的平行和垂直关系,知道一些简单的检验方法。
3.重点和难点重点是长方体的概念、画法,长方体中棱、面之间的位置关系。
难点是利用工具检验空间直线、平面之间的位置关系。
二、相交直线与平行直线1.内容要目平面上两直线的位置关系;垂线;对顶角;邻补角。
同位角、内错角、同旁内角。
两点的距离、点到直线的距离、两条平行线间的距离。
平行线的判定、性质。
角平分线及其性质,线段的垂直平分线及其性质;轨迹。
基本作图。
2.基本要求(1)知道平面中两条直线的位置关系是相交或平行;知道两条相交直线只有一个交点,它们所成的角(小于平角)有四个,会用交角的大小描述相交直线的位置特征;知道垂线的概念及性质;理解对顶角和邻补角的概念,掌握对顶角的性质。
(2)掌握同位角、内错角、同旁内角的概念。
(3)知道两点之间线段最短,理解两点的距离的意义;知道过直线外一点到直线的垂线段最短,理解点到直线的距离的意义;知道过直线外一点能且只能画一条直线与这条直线平行,理解两条平行线间的距离的意义。
(4)掌握平行线的判定方法及其性质。
(5)掌握角的平分线、线段的垂直平分线的有关性质,知道轨迹的意义以及三条基本轨迹(圆、角平分线、线段的垂直平分线)。
(6)掌握直尺、三角板、圆规、量角器的使用方法,会画已知线段的中点和直线的垂线;会用直尺和圆规作一条线段等于已知线段,作一个角等于已知角、作角的平分线、作线段的垂直平分线等,从中体会交轨法作图。
3.重点和难点重点的平行线的判定和性质及其应用。
难点是角的平分线性质和线段的垂直平分线性质及其应用。
4.知识结构三、三角形(一)三角形的概念1.内容要目三角形的概念,三角形三边之间的关系,三角形的高、中线、角平分线,三角形中位线定理,三角形的分类,三角形的内角和定理,三角形外角的概念和性质。
命题,真命题,假命题,逆命题,定理,逆定理。
2.基本要求(1)掌握三角形的任意两边之和大于第三边的性质(2)理解三角形的高、中线、角平分线等概念,并会画这些特殊线段。
(3)知道三角形的三条中线交与一点(重心)、三条角平分线交于一点(内心)、三条高所在的直线交于一点(垂心),三条边的垂直平分线交于一点(外心)。
(4)知道三角形中位线的定义,掌握三角形中位线定理。
(5)知道三角形按边分类和按角分类的类型,体会分类讨论思想。
(6)理解三角形内角和定理的推导过程,掌握三角形的内角和定理;知道三角形的外角,初步掌握三角形外角的性质。
(7)理解命题、真命题、假命题、逆命题、定理、逆定理的意义,会叙述简单命题的逆命题,知道命题的真假与逆命题的真假无关。
3.重点和难点重点是三角形的内角和定理,以及三角形中位线定理。
难点是三角形内角和定理的证明过程和对三角形的任意两边之和大于第三边的理解。
4.知识结构(二)等腰三角形与直角三角形1.内容要目等腰三角形的概念,等腰三角形的性质和判定,等边三角形的概念,等边三角形的性质和判定,直角三角形的概念,直角三角形的性质和判定,勾股定理。
2.基本要求(1)知道等腰三角形的轴对称性及对称轴。
(2)掌握等腰三角形、等边三角形的有关性质和判定,能运用这些性质及判定定理进行有关的计算和证明(3)掌握直角三角形的判断和性质,能运用这些性质及判定定理进行有关的计算和证明。