植物对干旱胁迫的响应及其研究进展

合集下载

植物干旱逆境胁迫研究综述

植物干旱逆境胁迫研究综述

植物干旱逆境胁迫研究综述张会【摘要】Drought has serious influence on plant growth, and also is one of the important factors which limit the agricultural production. Drought adversity stress can lead to a variety of metabolic disorder. The influence of drought on plant biological membrane system, photosynthesis and the osmotic regulation was reviewed, and research progress of the main signal transduction was elaborated.%干旱对植物的生长有着严重的影响,也是限制农业生产的重要因素之一.干旱逆境胁迫可导致各种代谢无序进行.该研究论述了干旱对植物生物膜系统、光合作用和渗透调节的影响,并阐明了干旱主要信号转导的研究进展.【期刊名称】《安徽农业科学》【年(卷),期】2013(041)003【总页数】2页(P945-946)【关键词】植物;干旱;逆境胁迫【作者】张会【作者单位】陕西师范大学生命科学学院,陕西西安710062【正文语种】中文【中图分类】S332.4植物常遭受的有害影响之一是缺水。

当植物耗水大于吸水时,组织内水分亏缺。

过度水分亏缺的现象叫干旱。

在水分亏缺严重时,植物会出现萎蔫,光合作用减弱,严重影响农作物产量。

而且,当缺水时,正常的膜双层结构被破坏,出现孔隙,渗出大量溶质,丧失选择透性。

缺水时植物的另一个显著响应是由于溶质累积渗透势下降[1]。

植物在干旱胁迫下由“渗透感受器”感受外界胁迫信号,启动一系列的信号转导途径。

植物对干旱胁迫的响应及适应机制研究

植物对干旱胁迫的响应及适应机制研究

植物对干旱胁迫的响应及适应机制研究植物是受到各种环境因素影响的生物体,其中干旱胁迫是最为常见的一种。

在全球气候变化的背景下,干旱胁迫对植物生长和产量的影响日益显著。

因此,深入研究植物对干旱胁迫的响应及适应机制,对于提高农作物产量和维持生态系统平衡具有重要意义。

一、植物对干旱胁迫的响应植物对干旱胁迫的响应主要包括生理和分子水平的调节。

在受到干旱胁迫后,植物会发生一系列的生理变化,以适应干旱环境。

1. 蒸腾作用植物叶片的蒸腾作用受到环境因素的影响比较大,而干旱环境会导致植物减小蒸腾作用,以降低水分流失。

例如,一些先进的品种,如白菜(Brassica rapa)、胡萝卜(Daucus carota)和甜菜(Beta vulgaris),具有较低的蒸腾率,并避免了干旱所导致的液压破裂。

2. 焦磷酸途径植物在经历干旱胁迫时为了保持能源供给,会通过焦磷酸途径抑制光合作用的消耗。

焦磷酸途径是一种能量代谢过程,通过将光合产物转化为有机酸和糖,进而提供能量。

干旱胁迫时,这一途径起到了保护和适应的作用,使植物在干旱环境下仍然能够维持一定的生长。

3. 抗氧化酶植物在受到干旱胁迫时会产生氧化应激。

氧化应激会导致细胞膜、蛋白质和核酸的氧化损伤。

为了抵抗氧化损伤,植物会启动抗氧化酶的系统。

这些酶能够清除自由基,保护细胞正常的代谢活动。

二、植物对干旱胁迫的适应机制1. 节水性植物在长期的进化过程中逐渐具有了节水性,这种适应机制使得植物能够适应干旱环境。

植物的根系能够控制水分的吸收,通过细胞的吸水调节机制进一步将水分存储在根系中。

在水分缺乏的条件下,植物可以通过细胞间多孔的脉管结构将水分输送到其他部位,从而实现水分利用的最大化。

2. 裸子植物的利用裸子植物是指没有花瓣、雄蕊和雌蕊的植物,它们通过不断进化适应了干旱环境,成为适应干旱土地的优良物种。

一些裸子植物,例如石松(Selaginella spp.)和铁角蕨(Pteridium aquilinum),适应了极其干燥和恶劣的土地,能够存活多年,生存能力和适应性极强。

植物对干旱胁迫的生理生态响应及其研究进展

植物对干旱胁迫的生理生态响应及其研究进展

干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。

植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。

在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。

因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。

干旱作为植物所遭受的所有非生物胁迫中损害最为严重的不利因素,直接影响世界农业的生产。

据统计资料表明:中国农田耗水量大约占全国总耗水量的80%,而中国受旱农田面积由20世纪70年代的1 134万hm2增长到90年代的2 667万hm2,全国农田灌溉区每年缺水量约300亿m3[1-2]。

目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。

1 干旱胁迫对植物生长指标的影响1.1 干旱胁迫对根系活力的影响植物根系的活力是体现植物根系吸收功能、合成能力、氧化还原能力以及生长发育情况的综合指标,能够从本质上反应植物根系生长与土壤水分及其环境之间的动态变化关系,因此,保证一个深层、分散、具有活力的根系是植物耐旱避旱的重要因素之一。

有研究表明:当植物生长受到干旱胁迫时,高羊茅(Festuca arundinacea)的根死亡率升高,其中土壤表层的根死亡率最高[3-4]。

当土壤含水量低于一定程度时,随着胁迫时间的增长,根系活力逐渐不足以维持生命而使植物不可逆转地彻底死亡[5]。

由此可见,根系活力和土壤的相对含水量与植物的抗旱性密切相关。

植物对干旱胁迫的响应研究进展

植物对干旱胁迫的响应研究进展

植物对干旱胁迫的响应研究进展一、本文概述干旱胁迫是全球气候变化背景下植物经常面临的一种环境压力,它不仅影响植物的生长和发育,还可能对植物的生存造成威胁。

因此,深入了解植物对干旱胁迫的响应机制,对于提高植物的抗逆性、优化农业生产和保护生态环境具有重要意义。

本文旨在综述近年来植物对干旱胁迫响应的研究进展,包括植物在干旱胁迫下的生理生化变化、分子生物学机制以及抗旱性改良等方面的研究成果,以期为未来的植物抗旱性研究提供参考和借鉴。

本文将概述干旱胁迫对植物生长发育的影响,包括水分亏缺对植物形态结构、生理功能和代谢过程的影响。

我们将重点介绍植物在干旱胁迫下的响应机制,包括植物激素、转录因子、基因表达调控以及信号转导等方面的研究进展。

我们还将综述植物抗旱性改良的研究现状,包括传统育种、基因工程和组学技术在抗旱性改良中的应用。

我们将对植物抗旱性研究的前景进行展望,探讨未来研究方向和挑战。

通过本文的综述,我们期望能够为读者提供一个全面的视角,以了解植物对干旱胁迫响应的研究现状和发展趋势,为植物抗旱性研究和实践提供有益的参考和启示。

二、植物干旱胁迫的生理生态响应植物在面对干旱胁迫时,会表现出一系列的生理生态响应。

这些响应旨在最大限度地减少水分损失,提高水分利用效率,以及维持生命活动的正常进行。

在形态学方面,植物会通过减少叶片数量和大小,降低叶面积指数,以及增加叶片厚度和角质层等方式,来减少水分蒸发和蒸腾作用。

根系也会发生适应性变化,如增加根长、根表面积和根毛数量,以扩大水分吸收的范围和效率。

在生理方面,植物会通过调整气孔开闭,降低蒸腾拉力,以减少水分流失。

同时,植物还会提高叶片细胞液的浓度,如增加脯氨酸等溶质的含量,以降低渗透势,增强保水能力。

植物还会通过调节光合作用的速率和途径,以及调整呼吸作用等,以适应干旱环境下的能量代谢需求。

在分子层面,植物会表达一系列与干旱胁迫相关的基因,编码如转录因子、蛋白激酶、水解酶等抗旱相关蛋白,以调节和响应干旱胁迫。

植物对干旱胁迫的响应

植物对干旱胁迫的响应

近年来,各国学者对植物的抗旱性进行了广 泛深入的研究,植物的抗旱机理十分复杂, 抗旱性是受许多形态解剖和生理生化特性控 制的复合遗传性状,不同形态解剖和生理特 性之间既相互联系又相互制约。单一的抗旱 性鉴定指标难以充分反映出植物对于旱适应 的综合能力,只有采用多项指标的综合评价 ,才能较准确的反映植物的抗旱水平。内的蛋白质分解加速,合 成减少,这与蛋白质合成酶的钝化和能 源(ATP)的减少有关。
如玉米水分亏缺3小时后,ATP含量减少 40%。
干旱时植物体内游离氨基酸特别是脯氨 酸含量增高,可增加达数十倍甚至上百 倍之多。
因此脯氨酸含量常用作抗旱的生理指标, 也可用于鉴定植物遭受干旱的程度。
膜内脂类分子排列
正常水分状况下双分子分层排列
脱水膜内脂类分子成放射的星状排列
2.破坏了正常代谢过程
细胞脱水对代谢破坏的特点是抑制合 成代谢而加强了分解代谢,即干旱使 合成酶活性降低或失活而使水解酶活 性加强。
(1) 光合作用减弱
(2) 呼吸作用先升后降
(3) 蛋白质分解,脯氨酸积累
(4) 破坏核酸代谢
3.机械性损伤
细胞干旱脱水时,液泡收缩,对原生质产生 一种向内的拉力,使原生质与其相连的细胞 壁同时向内收缩,在细胞壁上形成很多折叠, 损伤原生质的结构。
如果此时细胞骤然吸水复原,可引起细胞质、 壁不协调膨胀把粘在细胞壁上的原生质撕破, 导致细胞死亡。
所以,干旱对细胞的机械性损伤可能会使植 株立即死亡。。
干旱
当前,环境恶化严重威胁人类的生存与发展,干旱 是最为严重的自然灾害之一,其出现的次数、持续 的时间、影响的范围及造成的损失居各种自然灾害 之首。据统计全世界由于水分胁迫导致的作物减产 可超过其他因素造成减产的总和。而我国是荒漠化 危害较为严重的国家之一,荒漠化带来的恶劣生态 环境条件已给我国的经济和社会发展带来严重影响。 几年来,我国的荒漠化治理工作虽然取得了举世瞩 目的成绩,并在局部地区控制了荒漠化的发展,但 还未从根本上扭转荒漠化土地扩大的趋势。

作物对干旱胁迫的响应机制研究进展

作物对干旱胁迫的响应机制研究进展
河北农业科学,2009,13(4):6—10
Journal
of
Hebei Agricultural Sciences
编辑曹娜
作物对干旱胁迫的响应机制研究进展
闫志利,牛俊义
(甘肃农业大学农学院,甘肃兰州730070)
摘要:干旱是制约作物生长发育的重要环境因子。从作物生长形态、溶质积累、光合作用、超微结构、呼吸作 用、蒸腾作用、内源激素、代谢系统、保护酶系统、产量和品质10个方面,综述了作物对干旱胁迫响应机制 的研究进展。 关键词:作物;干旱胁迫;响应机制;研究进展
2009篮
胞分裂素(CTK)含量降低。但也有报道,许多作物在
干旱胁迫下,吲哚乙酸(IAA)含量下降。同时,CTK
保护细胞膜免遭氧化伤害。SOD是1种在植物体中普遍 存在的极为重要的金属酶,直接控制植物体超氧阴离子 自由基(0f・)和过氧化氢(H:O:)的浓度。CAT专 一清除植株体内的H:O:,与SOD协同作用,最大限度 地减少羟自由基(・OH)的形成。POD在逆境胁迫下, 既可清除H:O:,表现为保护效应;还可参与活性氧的 形成,表现为伤害效应旧1。各种保护酶协调一致,使 作物体内自由基维持在一个较低的水平,从而避免活性 氧(ROS)伤害。在作物不同生育期,各种酶发挥的作 用不同。前人的研究结果也因所选作物种类、品种特性 和干旱胁迫强度而异,尚未得出较为一致的结论。但在 干旱胁迫下,作物过氧化产物丙二醛(MDA)和叶片 质膜透性(RC)均呈上升趋势H
如果气孔关闭而叶肉细胞间隙CO,浓度不变甚至还有所 提高,则证明光合作用的下降主要是由叶肉细胞或叶绿 体等光合器官的光活性下降引起的。
4作物超微结构的响应机制
作物在干旱胁迫条件下,细胞自由基积累平衡机制 遭到破坏,造成膜脂过氧化和脱脂化,使大量电解质外 渗,电导率增加,细胞透性加大¨…。耐旱性品种电解 质外渗量小,膜透性增加幅度小;不耐旱品种外渗量

植物对干旱胁迫的响应与适应

植物对干旱胁迫的响应与适应

植物对干旱胁迫的响应与适应干旱是全球面临的一项重大环境挑战,对农业、生态系统和资源可持续利用产生严重影响。

植物作为生态系统的重要组成部分之一,面对干旱胁迫时,会通过一系列响应和适应机制来保持生存和繁衍。

本文将探讨植物在干旱胁迫下的响应与适应机制。

一、根系响应干旱胁迫下,植物的根系是其首要感受器官。

当土壤水分减少时,植物根系会通过以下方式来响应:首先,根系会增加根毛的表面积,以增加水分吸收能力;其次,根系会释放激素和生长调节物质,促进根系的生长和分化,以提高水分吸收效率;最后,植物根系还能通过生物化学物质的分泌来吸附土壤中的水分,以增加可利用水分的含量。

二、气孔调节气孔是植物调节水分蒸腾和二氧化碳吸收的关键结构。

在干旱胁迫下,植物的气孔会通过以下方式来调节:首先,气孔会收缩,减少水分蒸腾量,以保持水分平衡;其次,植物会释放激素,促进气孔的关闭,减少水分流失;最后,植物还能通过调节气孔的密度和大小,来适应不同的环境压力。

三、营养物质分配在干旱胁迫下,植物会重新分配其营养物质,以应对水分和养分的亏缺。

植物会优先向生长点和重要器官(如花和果实)输送水分和养分,以保证其正常发育和功能;而对于次要器官和叶片,植物则会减少营养物质的输送,以减少水分和养分的损失。

四、积累耐旱物质植物在干旱胁迫下还会积累一些特殊的化合物,以提高其对干旱的适应能力。

例如,植物会合成抗氧化剂,以抵抗干旱引起的氧化损伤;植物还会合成保护蛋白,以维持细胞结构和功能的完整性;此外,植物还会积累可溶性糖类和有机酸等物质,以调节细胞渗透压和水分均衡。

五、生长调节干旱胁迫会明显影响植物的生长和发育。

为了适应干旱环境,植物会通过生长调节来保持其生长和发育的平衡。

植物会调节其生长速率和方向,以适应土壤水分和养分的分布;植物还会调整分蘖、萌芽和开花的时间和数量,以优化其资源利用效率。

此外,植物还会调节叶片面积和叶片厚度等形态特征,来减少水分蒸腾和光合作用的损失。

作物和牧草对干旱胁迫的响应及机理研究进展

作物和牧草对干旱胁迫的响应及机理研究进展
曲涛 , 南志标
( 兰州 大 学草 地 农 业 科 技 学 院 , 肃 兰 州 70 2 ) 甘 30 0
摘 要 : 资 源 短缺 是 2 世纪 人 类 所 面 临 的最 主 要 问题 之 一 , 对 农 牧 业 的 发 展 无 疑 是 一 个 巨 大 的 挑 战 。近 年 来 , 水 I 其
bd p i tain ) io ssh l a 和玉 米 ( e y ) a Z ama s 的基 因组 序列 测定计 划[ , 1 充分 显 示 了其对 逆 境 生物 学研 究 的重 视 。从 已 ] 有 的研究 来看 , 植物 的抗旱 响应及 其机理 研究 已取得 了大量 的成果 [ 5 。
其 中的重 要作 用 , 对 作 物 和牧 草 在 抗 旱 研 究 工 作 中的 思 路 进 行 了 初 步 的 探 讨 和 展 望 , 并 以期 为 节 水 和 旱 作 农 牧 业 提供借鉴 。
关键词 : 物和牧草 ; 旱胁迫 ; 作 干 响应 ; 研究 进展
中 图分 类 号 :5 0 3 ; 9 5 7 ¥4.4Q 4.8
植 物 对于 旱 胁 迫 的 响 应 已成 为 国 内外 的研 究 热 点 之 一 , 为此 , 合 国 内外 作 物 和牧 草 对 干 旱 胁 迫 响 应 研 究 的 动态 , 结 综 述 了作 物 和牧 草 对 于 旱 胁 迫 响 应 及 相关 机 理 的研 究 进 展 , 重 讨 论 了 气 孔 调 节 、 透 调 节 和抗 氧 化 防御 系 统 在 着 渗
维普资讯
1 26— 1 35




第 1 7卷
第 2 期
&} 0 20 8
A CT A PRA TACU LTU R AE N I SI CA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植物对干旱胁迫的响应及其研究进展学院:班级:姓名:学号:摘要:植物在经受干旱胁迫时,通过细胞对干旱信号的感知和传导,调节基因表达,产生新蛋白质,从而引起大量形态、生理和生化上的变化.干旱胁迫对植物在细胞、器官、个体、群体等水平的形态指标有显著影响,也会影响其光合作用、渗透调节、抗氧化系统等生理生化指标.植物对干旱胁迫分子响应较复杂,包括合成一些新的基因如NCED、Dehydrin基因和CBF、DREB等转录因子.另外,干旱胁迫还能造成蛋白质组学的变化.关键词干旱胁迫;生态响应;生理机制;研究进展干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。

植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。

在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。

因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。

目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。

一、植物抗旱基因工程研究新进展(一)与干旱胁迫相关的转录因子研究通过转化调节基因来提高植物脱水胁迫的耐性是一条十分诱人的途径.由于在逆境条件下,这些逆境相关的转录因子,能与顺式作用重复元件结合,从而调节这些功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因的同时表达.胁迫诱导基因能增强胁迫反应的耐力,不同的转录因子参与胁迫诱导基因的调控.遗传研究已经鉴定了很多转录因子操纵胁迫反应的调控.最近的研究进展是在干旱胁迫下基因表达的复合调控.植物转录调节子的AP2/ERF家族至少包含一个拷贝的DNA结合域,叫AP2域.AP2域是植物特定的、在不同的植物中都有同源性.(二)与脱落酸(ABA)生物合成相关酶的基因——( NCED)研究作为一种植物激素,ABA在植物生命周期的很多阶段都发挥重要作用,包括种子的形成和萌芽以及植物对各种环境胁迫的反应,因为这些生理过程和内源ABA水平相关,ABA的生物合成使得这些生理过程得以说明.脱落酸在干旱胁迫下调控基因表达,一旦ABA水平升高,信号传导机制被激活,刺激基因表达.ABA在植物适应水分胁迫中具有重要作用.(三)与干旱胁迫直接相关的诱导基因研究在干旱胁迫条件下,植物会特异地表达一些基因,通过研究这些被干旱胁迫所诱导的基因可能找到植物对干旱胁迫的适应及抵御机理,并为植物抗旱基因工程提供理论支持,避免抗性分子育种的盲目性.例如:在拟南芥中的两个基因rd29A和rd29B能被干旱、低温和高盐或外源ABA诱导.rd29A在脱水和高盐条件下能作m快速反应,但对ABA反应没有响应.rd29A 在脱水、高盐、和低温下能延迟rd29B的诱导.(四)与干旱胁迫相关的蛋白质、蛋白质组学研究植物适应逆境胁迫的一个重要策略是即时大量合成许多胁迫诱导蛋白.干旱诱导蛋白是指植物在受到干旱胁迫时新合成或合成增多的一类蛋白.逆境诱导蛋白对植物的逆境适应起保护作用,它们的诱导是植物对环境的一种适应,可以提高植物的耐胁迫能力.胚胎发生后期,富集蛋白(LEA)在逆境胁迫下能被诱导并迅速大量合成,参与植物的防御代射.LEA蛋白可以解决在严重脱水的情况下,植物因失水导致的细胞组分的晶体化,破坏细胞的有序结构的问题.LEA蛋白被构建成伸展状态而不是折叠成球状,使它具有高的亲水性,LEA蛋白的这些由柬水作用组成的优点加上它们高的细胞内浓度和它们的表达方式,可以维持特殊的细胞结构或者通过少量的水分需求而适应干旱胁迫的影响.二、干旱胁迫对植物的生理伤害(一)干旱胁迫对植物生长指标的影响1、干旱胁迫对根系活力的影响植物根系的活力是体现植物根系吸收功能、合成能力、氧化还原能力以及生长发育情况的综合指标,能够从本质上反应植物根系生长与土壤水分及其环境之间的动态变化关系,因此,保证一个深层、分散、具有活力的根系是植物耐旱避旱的重要因素之一。

2、干旱胁迫对叶片相对含水量的影响水是植物的血液,其含量一般占组织鲜重的65% ~ 90%。

叶片的相对含水量(RWC)表征植物在遭受干旱胁迫后的整体水分亏缺状况,反映了植株叶片细胞的水分生理状态。

因此,RWC 常常是被用来衡量植物抗旱性的生理指标。

RWC 比单纯的含水量更能较为敏感地反映植物水分状况的改变,在一定程度上反映了植物组织水分亏缺程度。

在干旱胁迫条件下,土壤中的可利用水减少,导致根系吸水困难,相对含水率降低。

(二)干旱胁迫对植物光合作用的影响绿色植物的光合作用是自然界中规模最大的碳素同化作用,是植物物质生产和产量形成的重要生理过程,同时也是受干旱胁迫影响最为显著的生理过程之一。

没有水,光合作用就无法进行。

1、干旱胁迫对光合速率的影响干旱胁迫下,光合速率的下降是气孔限制和非气孔限制双重作用的结果,轻度干旱胁迫下气孔限制是光合速率下降的主要原因,而严重干旱胁迫下非气孔因素是光合速率下降的主要原因。

2. 干旱胁迫对叶绿素含量的影响叶绿体是绿色植物叶片进行光合作用的场所,主要利用叶绿素进行光能吸收、传递与转换,叶绿素在植物体内是不断进行代谢的,与作物光合作用及产量形成的关系密切。

叶绿素是光合作用中最重要和最有效的色素,其含量在一定程度上能反映植物同化物质的能力,从而影响植物的生长。

植物缺少水分会抑制叶绿素的生物合成,而且与蛋白质合成受阻有关,严重缺水还会加速原有叶绿素的分解,因此植物在遭受干旱时,叶片呈黄褐色。

(三)干旱胁迫对植物生长过程中氮代谢的影响1 、干旱胁迫对硝酸还原酶(NR)的影响硝酸还原酶(nitrate reductase,NR)可催化植物体内的硝酸盐还原成亚硝酸盐,是硝酸盐同化中第一个酶,也是限速酶。

作为植物氮代谢的关键酶,其活性大小反映了作物对氮素的利用速度,水分胁迫下NR 活性和作物生长发育有密切关系。

对农作物产量和品质有重要影响。

在正常情况下,植物物体内一般不会发生硝酸盐积累。

但在干旱条件下,由于水分胁迫减弱了酶的合成速度导致植株中硝酸盐积累过多,从而发生毒害作用。

研究表明:干旱胁迫会使NR 活性急剧降低,抗旱品种的NR 活性高于不抗旱品种。

2 、干旱胁迫对蛋白质组分的影响在干旱条件下,植物体内代谢产生变化与调整,引起活性氧的积累,进而导致脂过氧化和蛋白质(酶)、核酸等分子的破坏,植物自身为了避免胁迫造成的伤害,会诱导产生某些抗逆性蛋白质(四)干旱胁迫对植物生长过程中氧代谢的影响在长期的进化过程中,植物形成了受遗传性制约的逆境适应机制。

氧代谢在这些适应性机制中占据重要位置,是植物对逆境胁迫的最基本的反应。

干旱诱导脂过氧化是造成植物细胞膜受到损伤的关键因素,而膜损伤又是导致植物组织伤害和衰老的重要诱导因素,但植物在遭受水分胁迫时可以启动保护酶系统来有效地防御和清除自由基保护细胞免受氧化伤害。

1、干旱胁迫对氧自由基的影响正常情况下,植物体细胞内自由基的产生的清除处于动态平衡状态。

但是当植物处于干旱条件下及衰老时,植物细胞内活性氧自由基的产生和清除代谢的平衡受到破坏,使活性氧自由基的产生占据主导地位从而导致自由基含量过多积累且超过阈值,进而引发或加剧了细胞的膜脂过氧化,给植物体造成伤害2 、干旱胁迫对保护酶及丙二醛(MDA)影响MDA 是植物细胞膜脂过氧化作用的主要产物之一,并且是最终分解产物,在干旱胁迫时,植物体内活性氧自由基大量产生,进而引发加剧了膜过氧化产生丙二醛,造成植物细胞膜系统受到破坏。

三、植物对干旱胁迫的生理生态响应植物受到干旱胁迫时能做出多种抗逆性反应,包括气孔调节、pH调节、渗透调节、脱水保护以及活性氧清除等.植物在经受干旱胁迫时,通过细胞对干旱信号的感知和转导、调节基因表达、产生新蛋白质从而引起大量的生理和代谢上的变化.比较常见的是:光合速率降低,代谢途径发生改变,可溶性物质累积,脯氨酸、甜菜碱通过各种途径被合成,一些体内原来存在的蛋白质消失、分解,同时产生包括参与各种代谢调节相关的酶.干旱胁迫容易引起光能过剩,过剩的光能会对光合器官产生潜在的危害.依赖于叶黄素循环的热耗散是光保护的主要途径,同时酶促及非酶促系统也是防止光合器官破坏的重要途径.四、干旱伤害植物的机理干旱对植物的影响通常易于观察,如植株部分敏感器官萎蔫。

萎蔫的实质是因为缺水导致植株内部组织、细胞等结构发生了物理或化学变化,如膜的结构和透性改变。

由于结构变化导致代谢过程受阻,如光合作用抑制、呼吸作用减慢,蛋白质分解,脯氨酸积累,核酸代谢受阻,激素代谢途径改变等。

植物体内水分分配出现异常,抑制植物生长,更为严重的是引起植株机械性损伤,导致植株死亡。

五、启示与展望干旱胁迫常常影响植物的生长发育,造成作物严重减产,对农作物造成损失在所有的非生物胁迫中占首位,仅次于病虫害造成的损失。

随着淡水资源的日益匮乏,干旱已经成为全球各国农业生产上面临的严峻问题。

因此,深入了解干旱胁迫对植物的伤害机理及植物细胞对干旱胁迫的应答反应愈来愈成为国内外植物生理学专家学者关注的研究热点之一。

从目前对干旱胁迫下作物生长的研究进展看来,作物对缺水环境会产生相应的适应和抗旱机制。

随着分子和基因组时代的到来,近年来对植物抗旱性的研究也已经深入到了分子水平,在植物抗旱生理方面的研究也已经取得了较大的成就。

许多与胁迫相关的基因及其调控因子已通过现代基因分离技术得到鉴定,并且利用各种现代分子生物学技术成功克隆一批能有效地提高植物的渗透调节能力、增强植物的抗逆性的基因。

例如各种经胁迫诱导表达的大量调控性基因和功能性基因。

日益增加的研究结果表明植物中存在一个胁迫反应体系,对不同环境胁迫的交叉响应可能是由共同的细胞信号转导途径介导的。

例如有研究表明:在一定的干旱胁迫强度之下有些植物能够通过信号传导作用,调控与抗旱有关的基因表达,随之产生一系列的形态、生理生化及生物物理等方面的变化以达到抵抗逆境的目的,显示出抗旱力,但研究成果之间彼此较独立。

因此,应该把重点放在以下几个方面:(一)、研究如何实际应用且有利于控制土壤水分状况的田间操作,以及如何把基因工程手段与传统的栽培技术结合起来等方面。

(二)、在稳产、高产、优质的前提下,以培育抗旱性较强的作物品种为重点,进一步加强作物耐旱、抗旱机理及其应用的发掘和创新,抗旱遗传基因的研究。

相关文档
最新文档