物理物理光学章光的电磁理论及课后习题答案

合集下载

郁道银 工程光学-物理光学答案整理

郁道银 工程光学-物理光学答案整理

第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。

(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。

解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。

3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。

物理光学问题详解梁铨廷

物理光学问题详解梁铨廷

物理光学问题详解梁铨廷九阳真经------搞仫仔第⼀章光的电磁理论1.1在真空中传播的平⾯电磁波,其电场表⽰为Ex=0,Ey=0,Ez=,(各量均⽤国际单位),求电磁波的频率、波长、周期和初相位。

解:由Ex=0,Ey=0,Ez=,则频率υ= ==0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。

1.2.⼀个平⾯电磁波可以表⽰为Ex=0,Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电⽮量的振动取哪个⽅向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=Hz,波长λ=υ=,原点的初相位φ0=+π/2;(2)传播沿z轴,振动⽅向沿y轴;(3)由B=,可得By=Bz=0,Bx=1.3.⼀个线偏振光在玻璃中传播时可以表⽰为Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。

解:(1)υ===5×1014Hz;(2)λ=;(3)相速度v=0.65c,所以折射率n=1.4写出:(1)在yoz平⾯内沿与y轴成θ⾓的⽅向传播的平⾯波的复振幅;(2)发散球⾯波和汇聚球⾯波的复振幅。

解:(1)由,可得;(2)同理:发散球⾯波,,汇聚球⾯波,。

1.5⼀平⾯简谐电磁波在真空中沿正x⽅向传播。

其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动⾯与xy平⾯呈45o,试写出E,B 表达式。

解:,其中=υ=υ=,1.6⼀个沿k⽅向传播的平⾯波表⽰为E=,试求k ⽅向的单位⽮。

解:,⼜,∴=。

1.9证明当⼊射⾓=45o时,光波在任何两种介质分界⾯上的反射都有。

证明:oooo==oooo==1.10证明光束在布儒斯特⾓下⼊射到平⾏平⾯玻璃⽚的上表⾯时,下表⾯的⼊射⾓也是布儒斯特⾓。

工学光学工程郁道银第三版课后答案 物理光学

工学光学工程郁道银第三版课后答案 物理光学

第十一章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。

解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。

假设太阳光发出波长为600nm λ=的单色光。

解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。

《物理光学》第十一章光的电磁理论

《物理光学》第十一章光的电磁理论

(三)平面电磁波的性质 1、 1、电磁波是横波 散度: 取 E = A exp[i (k ⋅ r − ωt )] 散度:
∵∇ ⋅ E = 0 ⇒ k ⋅ E = 0
∇ ⋅ E = A ⋅ ∇ ⋅ exp[i(k ⋅ r - ωt )] = ik ⋅ Aexp[i(k ⋅ r − ωt )] = ik ⋅ E
二、物理光学的应用 分为成像和非成像两大类。 分为成像和非成像两大类。 成像应用涉及各种成像系统,如望远镜、 成像应用涉及各种成像系统,如望远镜、 显微镜、照相机、 光机 内窥镜、 光机、 显微镜、照相机、X光机、内窥镜、红外 夜视仪、全息术等。 夜视仪、全息术等。 非成像应用又可分为信息应用和能量应用。 非成像应用又可分为信息应用和能量应用。 信息应用包括光学测量、光通信、光计算、 信息应用包括光学测量、光通信、光计算、 光储存、光学加密和防伪等; 光储存、光学加密和防伪等;能量应用有 光学镊、打孔、切割、焊接表面处理、 光学镊、打孔、切割、焊接表面处理、原 子冷却、核聚变等等。 子冷却、核聚变等等。
(1)波动方程的平面波解: 波动方程的平面波解 平面电磁波指电场或磁场在与传播方向正交的平面上各点具有相同 值的波。如图所示,假设波沿直角坐标系xyz的z方向传播,则平面 波的E和B仅与z、t有关,而与x、y无关,则电磁场的波动方程变为
∂2E 1 ∂2E − 2 = 0 2 2 ∂z v ∂t
∂2B 1 ∂2B − 2 2 =0 2 ∂z v ∂t
同理得到 ∵ ∇ ⋅ B = 0 ⇒ k ⋅ B = 0
2、E、H相互垂直 、 、 相互垂直
∂Bቤተ መጻሕፍቲ ባይዱ∇× E = − ∂t
∇ × E = {∇ exp[i(k ⋅ r − ωt )]}× A = ik × E ∂B = −iωB ∂t

物理光学第一章 习题

物理光学第一章 习题

1.9 球面电磁波的电场E是r和t的函数,其中r 是一定点到波源的距离,t是时间。 (1)写出与球面波相应的波动方程的形式; (2)写出波动方程的解。
1. 9 解:球坐标系中:
2 1 2 E 1 E 1 E 2 E 2 r 2 sin 2 2 r r r r sin r sin 2
sinsinsin50sin0511153072sincos2sincos06651335sinsin2sincos2sincos07051414sincossincos14光矢量垂直于入射面和平行于入射面的两束等强度的线偏振光以50度角入射到一块平行平板玻璃上试比较两者透射光的强度
第一章 光的电磁理论 习题
By 0,
Bz 0
由麦克斯韦方程得:
B E t
分量式为:
i E x Ex
j y Ey
k z Ez
Ez E y Ex Ez E y Ex ( )i ( )j ( )k y z z x x y Bx By Bz i j k t t t
由题意球面电磁波的电场E是r和t的函数:
1 2 E 2 E 2 E 1 2 E 2 r rE 2 2 r r r r r r r r
2
则球坐标系下的波动方程为:
1 2 1 2 E rE 2 2 2 r r v t 2 2 1 rE rE 2 2 r v t 2
1.1 一个平面电磁波可以表示为
14 z Ex 0, Ey 2cos 2 10 t , Ex 0 c 2
求: (1)该电磁波的频率、波长、振幅和原点的初 位相为多少? (2)波的传播和电矢量的振动各沿什么方向? (3)写出与电场相联系的磁感应强度的表达式。

物理光学课后答案叶玉堂

物理光学课后答案叶玉堂

第四章 光的电磁理论4-1计算由8(2)exp 610)i y t ⎡⎤=-+++⨯⎢⎥⎣⎦E i 表示的平面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长。

解:由题意:)81063(2t y x i eE x ⨯++-= )81063(32t y x i e E y ⨯++=∴3-=xy E E ∴振动方向为:j i3+-由平面波电矢量的表达式: 3=x k 1=y k∴传播方向为: j i+3平面电磁波的相位速度为光速: 8103⨯=c m/s 振幅:4)32()2(222200=+-=+=oy x E E E V/m频率:8810321062⨯=⨯==πππωf Hz 波长:πλ==fcm 4-2 一列平面光波从A 点传到B 点,今在AB 之间插入一透明薄片,薄片的厚度mm h 2.0=,折射率n =1.5。

假定光波的波长为5500=λnm ,试计算插入薄片前后B 点光程和相位的变化。

解:设AB 两点间的距离为d ,未插入薄片时光束经过的光程为:d d n l ==01 插入薄片后光束经过的光程为:h n d nh h d n l )1()(02-+=+-= ∴光程差为:mm h n l l 1.02.05.0)1(12=⨯=-=-=∆ 则相位差为:ππλπδ6.3631.010550226=⨯⨯=∆=-4-3 试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω(2))cos(0kz t E E x -=ω,)4/cos(0πω+-=kz t E E y (3))sin(0kz t E E x -=ω,)sin(0kz t E E x --=ω 解:(1)∵)2cos()sin(00πωω--=-=kz t E kz t E E x∴2πϕϕϕ=-=x y∴ 为右旋圆偏振光。

(2)4πϕϕϕ=-=x y∴ 为右旋椭圆偏振光,椭圆长轴沿y =x (3)0=-=x y ϕϕϕ∴ 为线偏振光,振动方向沿y =-x4-4 光束以30°角入射到空气和火石玻璃(n 2=1.7)界面,试求电矢量垂直于入射面和平行于入射面分量的反射系数s r 和p r 。

物理光学课后习题答案-汇总

物理光学课后习题答案-汇总
解:设能看见 个亮纹。从中心往外数第 个亮纹对透镜中心的倾角 ,成为第N个条纹的角半径。设 为中心条纹级数, 为中心干涉极小数,令 ( , ),从中心往外数,第N个条纹的级数为 ,则

两式相减,可得 ,利用折射定律和小角度近似,得 ,( 为平行平板周围介质的折射率)
对于中心点,上下表面两支反射光线的光程差为 。因此,视场中心是暗点。由上式,得 ,因此,有12条暗环,11条亮环。
解:由题意,得,波列长度 ,
由公式 ,
又由公式 ,所以频率宽度

某种激光的频宽 Hz,问这种激光的波列长度是多少?
解:由相干长度 ,所以波列长度 。
第二章光的干涉及其应用
在与一平行光束垂直的方向上插入一透明薄片,其厚度 ,若光波波长为500nm,试计算插入玻璃片前后光束光程和相位的变化。
解:由时间相干性的附加光程差公式
,所以

杨氏干涉实验中,若波长 =600nm,在观察屏上形成暗条纹的角宽度为 ,(1)试求杨氏干涉中二缝间的距离(2)若其中一个狭缝通过的能量是另一个的4倍,试求干涉条纹的对比度
解:角宽度为 ,
所以条纹间距 。
由题意,得 ,所以干涉对比度
若双狭缝间距为,以单色光平行照射狭缝时,在距双缝远的屏上,第5级暗条纹中心离中央极大中间的间隔为,问所用的光源波长为多少是何种器件的光源
解:由公式 ,所以
= 。
此光源为氦氖激光器。
在杨氏干涉实验中,照明两小孔的光源是一个直径为2mm的圆形光源。光源发光的波长为500nm,它到小孔的距离为。问两小孔可以发生干涉的最大距离是多少?
解:因为是圆形光源,由公式 ,
则 。
月球到地球表面的距离约为 km,月球的直径为3477km,若把月球看作光源,光波长取500nm,试计算地球表面上的相干面积。

高二物理选修4《光学、电磁场和电路分析》练习题及答案

高二物理选修4《光学、电磁场和电路分析》练习题及答案

高二物理选修4《光学、电磁场和电路分
析》练习题及答案
1. 光学题目
1.1. 问题:一束光从空气射入玻璃,其入射角为45度。

如果玻璃的折射率为1.5,计算反射角和折射角。

答案:根据斯涅尔定律,反射角等于入射角,折射角由正弦关系计算得出,折射角约为29.1度。

1.2. 问题:一束光通过凹透镜聚焦。

如果物距为30厘米,凹透镜的焦距为10厘米,计算像距和放大率。

答案:根据薄透镜公式,1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。

代入数值计算,得到像距为20厘米,放大率为2。

2. 电磁场题目
2.1. 问题:一根长直导线通电,产生的磁场强度如何随距离变化?
答案:根据安培定律,距离直线导线越远,磁场强度越弱。

2.2. 问题:一个平行板电,两板间的电场强度如何随距离变化?
答案:根据电场的定义,两平行板间的电场强度与距离成反比
关系。

3. 电路分析题目
3.1. 问题:一个由电阻、电容和电感串联的电路,如何计算电流?
答案:根据欧姆定律和基尔霍夫定律,可以通过计算电路中的
总电阻,以及应用电压和总电阻的关系计算电流。

3.2. 问题:一个并联电路中,两个电阻的等效电阻如何计算?
答案:在并联电路中,两个电阻的等效电阻可以通过公式1/R
= 1/R1 + 1/R2 计算得出。

以上是《光学、电磁场和电路分析》的一些练题及答案,希望
能对您的研究有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*物质方程
D E,
B H,
j E
0 r
0 r
(1.3~1.5)
式中:、、σ分别称为介电系数(或电容 率),磁导率和电导率。
线性光学:
➢ 、与光强无关;
➢ 在透明、无损介质中=0;
➢ 非铁磁性材料: r=1 2、非线性:
光强很强:
非线性光学
f
(E)
三、 电磁场的波动性
*波动方程:
四、电磁波
电磁波在传播介质中的绝对折射率—真空光速/介质光速:
n c v
0 0
r r
式中r,r分别为相对介电系数和相对磁导率。除了铁 磁物质之外,对于大多数物质,r=l,因而上式变为
n r
n() r () 色散效应
1889年,赫兹在实验中得到了波长为60厘米的电 磁波,观察了电磁波在金属镜面上的反射,折射,以及干 涉现象。赫兹的实验不仅以无可质疑的事实证实了电磁波 的存在,而且也证明了电磁波具有光波的性质。
高斯定理: 是空间区域上三重积分与其边界上曲面积分之
间关系的定理。
FdV
F
d
V
斯托克斯:定理是关于曲面积分与其边界曲线积分之间关
系的定理。
Fd
F
dl
l
2、微分形式Maxwell方程
对方程组的第一式,如果闭合曲面积分域内包含
的电荷是连续分布的:
D
d
Q
B
d
0
Q dV
D
V
d
DdV
V
B)变化的电场也能够产生磁场:
传导电流意味着电荷的流动,而位移电流却意味着 电场的变化,但是两者在产生磁场方面是等效的 .
电场中任一截面的位移电流强度等于通过该截面的
电通量的时间变化率。
ID
d dt
D
d
D t
d
ID
JD
d
JD
D t
H
dl
I
D t
d
交变电磁场的普遍规律:
D
d
Q
2E z 2
1
2
2E t 2
0
两个结论:
第一,任何随时间变化的磁场在周围空间产生电场, 这种电场具有涡旋性,电场的方向由左手定则决定;
第二,任何随时间变化的电场在周围空间产生磁场, 磁场是涡旋的,磁场的方向出右手定则决定。
电场和磁场相互激发形成电磁场
从Maxwell方程到波动方程 ,证明电磁场的波动性
➢ 根据真空中的介电常数和磁导率得出真空中的光速: 2.99794x108m/s
➢ 实验结果计算出电磁波在真空中的速度为:3.1074x108m /s,
➢ 测量的光速为:3.14858x108m/s。
B
d
0
HEddllI BtdDtd
(1.1)
这四个方程通常称为积分形式的麦克斯韦方程组。
二)微分形式的Maxwell方程
1、矢量运算与场论基础:矢量运算:
b
点积(内积):
a
b
a
b
cos
0
a
叉积(外积):
abcos
a
b
a
b
s in
i j k a b ax ay az
bx by bz
一)积分形式的Maxwell方程
D:电感应强度(电位移矢量)
B:磁感应强度
E:电场强度
H:磁场强度
D E
B H
D
d
Q
B
d
0
E dl
H dl I
Bd
t
D t
d
、分别称为介电系数(或电容率),磁导率
高斯定理——电和磁
D

d
Q
B•
d
0
1)E高斯(Gauss)定理: 通过任意封闭曲面的电感通 量等于曲面内所包含自由电荷 的代数和。
0 ,
a a 0
axb
b a
梯度:标量场f(x,y,z)在某点M(x,y,,z)的梯度是 一个矢量,它以f(x,y,z)在该点的偏导数,为 其在“x,y,z”座标轴上的投影,记作:
f
(x,
y,
z)
f x
x0
f y
y0
f z
z0
微分算符(也称为哈密顿算符),定义为:
x0
x
y0
y
z0
z
散度:矢量函数
F
(M)在坐标轴上的投影为P、Q、R,它的
散度是一个标量函数,定义为微分算符与矢量F的数量
积,
记作:
F
( x0
x
y0
y
z0
z ) (Px0
Qy0
Rz0 )
(P Q R ) x y z
旋度: 矢量函数 F(M)在坐标轴上的投影为P、Q、R,它的
旋度是一个矢量函数,定义为微分算符与矢量F的矢量
D
B 0
方程组第三四式:
HEddllI BtdDtd
I
j
d
H
dl
(
H)d
H
j
D
E
t B
t
*微分形式的 Maxwell方程:
D
B 0
E
B
H
t
j
D
t
(1.2)
二、物质方程:
1、一般特性:
E
、B
:电磁场基本物理量,代表介质中总的宏观
电磁场;
D
、H
:与介质特性相关的辅助场量;
2)B高斯定律:通过任意封闭 曲面的磁感通量为零,说明穿 入与穿出任一封闭曲面的磁通 量永远相等,即磁场没有起止 点,磁力线是闭合曲线。
法拉第电磁感应定律
e
t 随时间变化的磁场会产生感生电动势
A)交变的磁场产生涡旋电场;
法拉第(Farady)电磁感应定律:变化电场中,
沿任一封闭路径的感应电动势e等于路径所包
面积上的磁感通量的变化率,
e d d
B
d
dt dt
B d
t
感应电动势:单位正电荷沿闭合回路移动一周
时涡旋电场所作的功,
e E dlຫໍສະໝຸດ E dl Bdt
安培环流定则
H • dl I
随时间变化的电场 会产生涡旋磁场
I E
t
磁场强度H沿任意闭合回路的环流等于穿过 闭合回路所围曲面的全电流之和
1.1 光的电磁波性质
一、麦克斯韦方程组
麦克斯韦(Maxwell)在法拉第(Faraday)、安 培(Anper)等人研究电磁场工作的基础上:于1864 年总结出了一组描述电磁场变化规律的方程组, 从而建立了经典电磁理论。 Maxwell方程两种等效的表达形式: 积分形式适用于解释物理现象;微分形式适用于 理论推导。
在无限大均匀介质中,=常数,=常数,并且不 存在自由电荷和传导电流(ρ=0,j=0)。
第三式的旋度代入四式,
( E)
H
2
E
t
t 2
( E) ( E) 2E
E 0
2
E
2E t 2
0
1
同样:
2
H
1
2
2H t 2
0
电场和磁场以波动形式在空间传播,传播速度为v;解的 形式取决于边界条件。
积,即:
F (x0 x y0 y z0 z ) (Px0 Qy0 Rz0 )
(
R y
Q z
)
x0
(
P z
R x
)
y0
(
Q x
P y
) z0
矢量分析基本公式:
矢量积分定理:
(f ) 0
( F ) 0
(f ) 2 f
( F ) ( F ) 2F
相关文档
最新文档