平面直角坐标系知识点归纳总结

合集下载

《平面直角坐标系》知识点大全

《平面直角坐标系》知识点大全

《平面直角坐标系》知识点大全3.1确定位置:在平面内,确定一个物体的位置一般需要两个数据。

3.2平面直角坐标系1、有序数对:我们把这种有顺序的两个数a 与b 组成的数对叫做有序数对,即:(a,b)2、平面直角坐标系:在平面内,两条互相垂直、且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向竖直的数轴称为y 轴或纵轴,习惯上取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0;第二象限:x<0,y>0第三象限:x<0,y<0;第四象限:x>0,y<0x 轴上的点:(x ,0)y 轴上的点:(0,y )4、距离问题:点(x ,y )距x 轴的距离为y点(x ,y )距y 轴的距离为x坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为21x x -点A (0,y 1)点B (0,y 2),则AB 距离为21y y -5、角平分线问题若点(x ,y )在第一、三象限角平分线上,则x=y若点(x ,y )在第二、四象限角平分线上,则x=-y6、对称问题:对称点坐标的特征:P(a,b)关于x 轴对称的点的坐标为(a,-b);P(a,b)关于y 轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b)7、平行于坐标轴的直线上的点:平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同。

8、中点坐标:点A (1x ,0)点B (2x ,0),则AB 中点坐标为(221x x +,0)。

人教版七年级数学下册第七章平面直角坐标系知识点归纳完整版

人教版七年级数学下册第七章平面直角坐标系知识点归纳完整版

人教版七年级数学下册第七章平面直角坐标系知识点归纳HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中a为横坐标,b为纵坐标;3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;Y 坐标轴上的点不属于任何象限; b P(a,b)4、四个象限的点的坐标具有如下特征:1象限横坐标x纵坐标y-3 -2 -1 0 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:(1)点 P()所在的象限横、纵坐标、y的取值的正负性;(2)点 P(x,y)所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P (a,b),则a ;b P (a,b )(1)点 P 到x轴的距离为b;(2)点 P 到y轴的距离为ab (3)点 P 到原点 O 的距离为 PO=a2?b2O x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上,所有点的纵坐标相等;YA B点 A、B 的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点 C、D 的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P (m , n ) 关于 x 轴的对称点为 P 1 (m ,?n ) , 即横坐标丌变,纵坐标互为相反数; b) 点 P (m , n ) 关于 y 轴的对称点为 P 2 (?m , n ) , 即纵坐标丌变,横坐标互为相反数; c) 点 P (m , n ) 关于原点的对称点为 P 3 (?m ,?n ) ,即横、纵坐标都互为相反数;yyyPPn P2n n POmX? m? mm XO m X O? n P 1 ? nP 3关于 x 轴对称 关于 y 轴对称 关于原点对称d) 点 P (a , b )关于点 Q (m , n ) 的对称点是 M (2m-a ,2n-b );8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m , n )在第一、三象限的角平分线上,则 m ? n ,即横、纵坐标相等;b) 若点 P ( m , n )在第二、四象限的角平分线上,则 m ???n ,即横、纵坐标互为相反数;yyn P PnOm Xm OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移(1)点的平移将点(x , y )向右(或向左)平移 a 个单位,可得对应点(x+a , y ){或(x-a , y )},可记为“右加左减,纵不变”;将点(x , y )向上(或向下)平移 b 个单位,可得对应点(x , y+b ){或(x , y-b )},可记为“上加下减,横不变”;(2)图形的平移把一个图形各个点的横坐标都加上(或减去)一个正数 a ,相应的新图像就是把原图形向右(或向左)平移 a 个单元得到的。

八上数学平面直角坐标系必背知识点总结

八上数学平面直角坐标系必背知识点总结

第三章平面直角坐标系
1、在平面内,确定一个物体的位置一般需要两个数据。

①列数和排数,(列数,排数)
②方位角和距离,(方位角以南北开头)
③经度和纬度
④区域定位法,如A2
2、平面直角坐标系
定义:在平面内,两条互相垂直且有公共原点重合的数轴组成平面直角坐标系
.......。

x轴与y轴的交
点为平面直角坐标系的原点
..(.0.,.0.).。

水平的数轴叫x.轴或横轴
....;x轴取向右为正方向。

竖直的数
轴叫y.轴或纵轴
....;y轴取向上为正方向。

坐标表示(横坐标,纵坐标)
象限:第一象限(+,+)第二象限(-,+)
第三象限(-,-)第四象限(+,-)
坐标轴(x轴或y轴)上的点不属于任何一个象限.
x轴正半轴(+,0),x轴负半轴(-,0);
y轴正半轴(0,+),y轴负半轴(0,-);
3、性质:
①位于x轴上的点,纵坐标等于0 ;
位于y轴上的点,横坐标等于0 .
②点(x , y)到x轴的距离等于纵坐标的绝对值(即|y|),
到y轴的距离等于横坐标的绝对值(即|x|)。

③ 与x轴平行(或与y轴垂直)的直线上的点,纵坐标相等;
与y轴平行(或与x轴垂直)的直线上的点,横坐标相等;
④关于x轴对称的两个点的坐标,横坐标相等,纵坐标互为相反数;
关于y轴对称的两个点的坐标,纵坐标相等,横坐标互为相反数;
关于原点对称的两个点的坐标,横坐标互为相反数,纵坐标互为相反数;第一象限(+,+)
第二象限(-,+)
第三象限(-,-)第四象限(+,-)。

(完整版)平面直角坐标系知识点总结(可编辑修改word版)

(完整版)平面直角坐标系知识点总结(可编辑修改word版)

温馨提示(a , b )与(b , a )顺序不同,含义就不同。

例如:用(3 , 5) 表示第 3 列的第 5 位同学,那么(5 , 3) 就表示第 5 列的第 3 位同学。

夯实基础平面直角坐标系平面直角坐标系的有关概念一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数 a 与b 组成的数对,叫做有序数对,记作(a , b )。

例 1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上, 如果把“5 排 8 号”简记为(5,8),那么“4 排 9 号”如何表示?(8,3)表示什么含义?二.平面直角坐标系相关概念具体内容平面直角坐标系定义在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系两轴水平的数轴叫做 x 轴或横轴,取向右为正方向;垂直的数轴叫做 y 轴或纵轴,取向上为正方向 原点 两轴的交点O 为平面直角坐标系的原点 坐标平面坐标系所在的平面叫做坐标平面三.象限x 轴和 y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。

y第二象限第三象限第一象限Ox第四象限y b • Oax例 2:设M (a , b ) 为平面直角坐标系中的点。

(1) 当a > 0, b < 0 时,点M 位于第几象限?(2) 当ab > 0 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点 A ,过点 A 分别向 x 轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数 a 、b 分别叫做点 A 的横坐标和纵坐标,有序数对(a , b )叫做点 A 的坐标,记作A (a , b ) ,如图。

1. 已知坐标平面内的点,确定点的坐标先由已知点 P 分别向 x 轴、 y 轴作垂线,设垂足分别为 A 、 B ,再求出垂足 A 在 x 轴上的坐标 a 与垂足 B 在 y 轴上的坐标b ,最后按顺序写成(a , b )即可。

平面直角坐标系——知识点归纳

平面直角坐标系——知识点归纳

第11章平面直角坐标系——知识点归纳1.平面直角坐标系的定义:平面内画两条互相垂直并且有公共原点的数轴组成平面直角坐标系。

水平的数轴为x轴,习惯上取向右为正方向;竖直的数轴为y轴,取向上为正方向;它们的公共原点O为直角坐标系的原点。

两坐标轴把平面分成四个象限,坐标轴上的点不属于任何象限。

注意:同一平面、互相垂直、公共原点、数轴。

2.点的坐标:坐标平面内的点可以用一对有序实数对表示,这个有序实数对叫坐标。

表示方法为(a ,b)。

a是点对应 x 轴上的数值,表示点的横坐标;b是点对应 y 轴上的数值,表示点的纵坐标。

3.坐标系内点的坐标特点:练习1、下列说法正确的是()A平面内,两条互相垂直的直线构成数轴 B、坐标原点不属于任何象限。

C.x轴上点必是纵坐标为0,横坐标不为0 D、坐标为(3, 4)与(4,3)表示同一个点。

2、判断题(1)坐标平面上的点与全体实数一一对应()(2)横坐标为0的点在轴上()(3)纵坐标小于0的点一定在轴下方()(4)若直线轴,则上的点横坐标一定相同()(5)若,则点P ()在第二或第三象限()(6)若,则点P ()在轴或第一、三象限()3、已知坐标平面内点M(a,b)在第二象限,那么点N(b, -a)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点(-1,m2+1)一定在()A、第一象限B、第二象限C、第三象限D、第四象限5、点E与点F的纵坐标相同,横坐标不同,则直线EF与y轴的关系是()A.相交 B.垂直 C.平行 D.以上都不正确6、若点A(m,n),点B(n,m)表示同一点,则这一点一定在( )yA第二、四象限的角平分线上 B 第一、三象限的角平分线上C平行于X轴的直线上 D平行于Y轴的直线上7、点P(3a-9,a+1)在第二象限,则a的取值范围为___________.8、如果点M (3a-9,1-a )是第三象限的整数点,则M 的坐标为4、平面直角坐标系中的距离 (1)点到坐标轴的距离点P (b a ,)到x 轴的距离= b ,点P (b a ,)到y 轴的距离= a (2)若P (a ,b ),Q (a ,n ),则PQ=(n -b ), 若P (a ,b ),Q(m ,b ),则PQ=( m -a ),练1、点E (a,b )到x 轴的距离是4,到y 轴距离是3,则有( )A .a=3, b=4 B .a=±3,b=±4 C .a=4, b=3 D .a=±4,b=±3 2、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是3、5,则坐标是 .已知点M(2m+1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m= 。

(完整版)平面直角坐标系知识点总结

(完整版)平面直角坐标系知识点总结

平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。

我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。

七年级下数学第七章_平面直角坐标系知识点总结

七年级下数学第七章_平面直角坐标系知识点总结

七年级下数学第七章平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

a,)3、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b一一对应;其中,a为横坐标,b为纵坐标坐标;4、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、各种特殊点的坐标特点。

象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

c) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;XXX在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。

平面直角坐标系知识点口诀

平面直角坐标系知识点口诀

平面直角坐标系知识点口诀一、平面直角坐标系基本概念口诀。

1. 坐标轴。

- 平面直角坐标系,横轴纵轴要牢记。

- 横轴名叫x轴,向右为正方向齐。

- 纵轴名叫y轴,向上为正方向立。

- 原点坐标是(0,0),两条数轴交点集。

2. 象限。

- 坐标平面分象限,一、二、三、四按序排。

- 右上象限是第一,符号为(+, +)真开怀。

- 左上象限第二家,符号是(-, +)不奇怪。

- 左下象限第三处,(-, -)符号记心怀。

- 右下象限第四域,(+, -)符号要明白。

3. 点的坐标。

- 点在平面有坐标,先横后纵顺序好。

- 横坐标x把位标,纵坐标y来相靠。

- 例如点A(x,y),x在前来y在后。

二、坐标的平移口诀。

1. 左右平移。

- 点沿x轴左右移,左右平移x变起。

- 向左平移减数值,向右平移加无疑。

- 例如点P(x,y),向左平移a单位,新坐标为(x - a,y)。

- 向右平移a单位,新坐标就成(x+a,y)。

2. 上下平移。

- 点沿y轴上下移,上下平移y变易。

- 向下平移减数值,向上平移加进去。

- 若点Q(x,y),向上平移b单位,新坐标为(x,y + b)。

- 向下平移b单位,新坐标就是(x,y - b)。

三、对称点坐标口诀。

1. 关于x轴对称。

- 关于x轴来对称,横坐标x不变更。

- 纵坐标y变符号,正负相反记心中。

- 点M(x,y)对称点,x轴对称M'(x, - y)。

2. 关于y轴对称。

- 关于y轴的对称,纵坐标y不折腾。

- 横坐标x变符号,正负互换要记清。

- 若点N(x,y)对称,y轴对称N'(-x,y)。

3. 关于原点对称。

- 原点对称有特点,横纵坐标都要变。

- 横坐标x变符号,纵坐标y也换脸。

- 点P(x,y)对称点,原点对称P'(-x, - y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系知识点归纳总结
石门私塾数学王老师
一、各象限内点的坐标特点:
第一象限:P(x,y)x>0 y>0
第二象限:P(x,y)x<0 y>0
第三象限:P(x,y)x<0 y<0
第四象限:P(x,y)x>0 y<0
二.平面直角坐标系
1、点A(x,y)到X标轴的距离为|Y|,到Y标轴的距离为|X|,;
三、原点及坐标轴上点的坐标特点:
原点:P(0,0)
X轴上的点:P(x,0)
Y轴上的点:P(0,y)
四、平行于坐标轴的直线的点的坐标特点:
平行于x轴(或横轴)的直线上的点的纵坐标相同;
平行于y轴(或纵轴)的直线上的点的横坐标相同。

五、各象限的角平分线上的点的坐标特点:
第一、三象限角平分线上的点的横纵坐标相同;
第二、四象限角平分线上的点的横纵坐标相反。

六、与坐标轴、原点对称的点的坐标特点:
关于x轴对称的点的横坐标相同,纵坐标互为相反数
关于y轴对称的点的纵坐标相同,横坐标互为相反数
关于原点对称的点的横坐标、纵坐标都互为相反数
七、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:
•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;•在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

相关文档
最新文档