9.1.1 不等式及其解集 2

合集下载

人教版数学下册:9.1.1不等式及其解集 课件(共20张PPT)

人教版数学下册:9.1.1不等式及其解集 课件(共20张PPT)

D.18≤t≤27
2.无论x取什么数,下列不等式总成立的是(D )
A.x+5>0
B.x+5<0
C.x2<0 D.x2≥0
随堂检测
3.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( B )
A.每100克内含钙150毫克 B.每100克内含钙不低于150毫克 C.每100克内含钙高于150毫克 D.每100克内含钙不超过150毫克
本节目标
了解不等式概念,理解不等式的解集,能正确表示
1 不等式的解集 .
2 培养数感,渗透数形结合的思想. .
3 培养自主学习的能力,合作交流意识与探究精神 .
预习反馈
1.下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,
其中不等式有(B )
A.2个 B.3个 C.4个 D.5个
2.若m是非负数,则用不等式表示正确的是( D )
A.m<0 B.m>0 C.m≤0
D.m≥0
预习反馈
3.用不等号“>、<、≥、≤”填空:a2+1 > 0.
4.“a<b”的反面是( C )
A.a≠b B.a>b
C.a≥b
D.a=b
课堂探究
问题
一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车 速应满足什么条件?
一般地,一个含有未知数的不等式的 所有的解,组成这个不等式的 解集.求不等式的 解集 的过程叫做解不等式.
典例精析
4.不等式的解集的表示方法 第一种:用式子(如x>3),即用最简形式的不等式(如x>a或x<a)来表示.
第二种:利用数轴表示不等式的解集.

9.1.1不等式及其解集

9.1.1不等式及其解集
9.1.1 不等式及其解集
教学目标
使学生经历“把实际问题抽象为不等式”的过程,能够“列出不等式 表示问题中的不等关系”,将符号化、模型化的思想进一步发展和加 强,体会不等式是刻画现实世界中不等关系的一种有效模型;通过类 比,了解不等式及其解与解集的概念;通过在数轴上表示出不等式的 解集,体会数形结合的思想;通过创设情境,增强应用意识和问题意 识,培养勇于探索、善于合作的精神品质.
类比 用等号连接表示相等关系的式子叫等式
教材114页
“<”或“>”
不等
不等式
定义:用“<”或“>” 表示大小关系的式子,叫做不等式.
像 a + 2 ≠ a-2 这样用符号 “≠” 表示不等关系的式子也是不等式.
持续探索,破茧成蝶
例1、请判断下列哪些是不等式?如果不是,请说明理由.
①-2<5 √ ②3+3=6 ×
数学智能AI:小度
徽章数:1
持续探索,破茧成蝶
小组抽盲盒
盲盒一:请用不等式表示: 1. x是正数; 2. a减1的差小于3
盲盒二:请用不等式表示: 1. y是负数; 2. x的两倍大于-1.
盲盒三:请用不等式表示: 1. m与n的和大于-2; 2. x的一半不等于6.
盲盒四:请用不等式表示: 一辆匀速行驶的汽车在11:20距离A地50km,要 在12:00之前驶过A地,车速x(km/h)应满足什 么条件?
持续探索,破茧成蝶
例4、在数轴上表示出教材116页第3题的解集:
(1)x 3
解:
(2)x 4
解:
(3)x 2
解:
0
3
0
4
0
2
在大家的帮助下,我获取了一些在数轴上表示不等式 的解集的图片,第三阶段学习顺利完成,获得第三枚徽章! 我终于可以回答部分人们关于不等关系的问题啦.

教学设计1:9.1.1不等式及其解集

教学设计1:9.1.1不等式及其解集

9.1.1不等式及其解集教学设计目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)1.从时间方面虑:<2.从行程方面: >503.从速度方面考虑:x>50÷设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:<,>50,x>50÷都是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式<,>50的解.3.不等式的解集设问1:什么是不等式的解集?设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式<的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?2、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。

9.1.1不等式及其解集_(教案)

9.1.1不等式及其解集_(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个表达式大小关系的数学语句。它是我们解决实际问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设你有10元钱,而一支笔的价格是3元,我们如何表示“你足够买笔”这个情况?这就是不等式3x≤10的由来。
实践活动环节,学生分组讨论和实验操作的成果展示让我看到了他们的合作精神和动手能力。但是,我也观察到有些小组在讨论过程中,个别成员参与度不高,这可能是因为他们对问题的理解不够深入,或者是小组内部的沟通协作还需要加强。我计划在接下来的课程中,更加注重学生个体差异,鼓励每个学生都参与到讨论中来。
在学生小组讨论环节,我尝试作为一个引导者,而不是知识的传授者。我发现这种方式能够激发学生的思考,让他们在探索中发现问题、分析问题并解决问题。但是,我也意识到,这种方法对学生的自主学习能力要求较高,对于一些依赖性较强的学生来说,可能还需要更多的引导和鼓励。
最后,我感到课后需要给学生提供更多的练习机会,特别是针对那些在课堂上表现不够自信的学生。通过不断的练习和反馈,我相信他们能够克服难点,掌握不等式的核心知识。此外,我也会在课后收集学生的反馈,了解他们在学习过程中的真实感受,以便在后续的教学中进行调整和改进。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

2014..9.1.1.不等式及其解集

2014..9.1.1.不等式及其解集

比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.

9.1.1不等式及其解集(精选6篇)

9.1.1不等式及其解集(精选6篇)

9.1.1不等式及其解集(精选6篇)9.1.1不等式及其解集篇1课题:【学习目标】:㈠知识与技能:1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;3.能够根据题意准确迅速地列出相应的不等式。

㈡过程与方法:.1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。

㈢情感、态度、价值观:1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。

3.培养学生类比的思想方法、数形结合的思想。

【教学重点与难点】1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;2.教学难点:不等式解集的意义,根据题意列出相应的不等式。

【学法与教法设计】1.学生学法:观察发现、讨论研究、总结归纳;2.教师教法:启发引导、分析、类比。

【课时与课型】龙活虎1.课型:新授课;2.课时:第一课时。

【教学准备】计算机、自制cai、实物投影仪、三角板等。

【师生互动活动设计】教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。

【】〖创设情境——从生活走向数学〗[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。

②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。

亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。

人教版初中数学七年级下册9.1.1《不等式及其解集》教案设计

9.1.1《不等式及其解集》教学设计【内容】人教版七年级数学下第九章第一节【知识与技能】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”、“不大于”等数学术语.3.理解不等式的解、解集的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.4.能用数轴表示不等式的解集.【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性.【情感、态度与价值观】使学生能独立克服困难,运用知识解决问题,树立学好数学的自信心;在独立思考的基础上,积极参与讨论,在合作交流中有一定收获.教学重点理解不等式、不等式的解和解集,能正确列出不等式.教学难点准确应用不等号,理解不等式的解和解集的意义.学情与教材分析一、学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,使它成为一种有效的数学工具.学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆.二、教材分析不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础.它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用.本节是本章的第一课时,主要学习四个概念:不等式、不等式的解、解集。

同时渗透建模、类比、分类等思想方法.教学方法:引导发现法教学准备:教具:圆规、三角尺、多媒体及课件。

学具:圆规、三角尺。

教学过程:一创设情景引入新知(一)动画演示情景激趣:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣问题1:出示图片(多媒体演示): 若设大象的体重为x吨,你能用式子表示图片中两个小朋友的对话吗?问题2:一辆匀速行驶的汽车在11:20时距离A地50千米。

9.1.1不等式及其解集ppt_七年级数学下册_2


观察它们未知数的个数与次数有何特点? 一元一次方程 8 5 一元一次不等式 8
x = 16

x < 16
Hale Waihona Puke 只含有一个未知数,未知数的次数是一次
像这样,含有 一个未知数,未知数的次 未知数,未知数的次数 类似地, 含有一个 是一次 的方 程,叫做一元一次方程 数是 一次 的不等式,叫做一元一次不等式
四.解不等式
(4)x与12的差比y的3倍大; 解: x-12>3y;
(5)x与y的和的不大于-2; 解:x+y ≤-2;
解:20%(a+b) ≤15
(6)a与b的和的20%至多为15.


x < 16
你能找出一个符合条件的x的值吗? 使方程等号两边相等的未知数的值 使不等式成立的未知数的值叫做 不等式的 解。 叫方程的解。
点此播放视频
问题1:老师按八折买了2件圣诞礼品, 共付了16元钱,你知道礼品的标价 每件是多少元吗?
用x表示礼品的标价,由题意,得: 8
x = 16

问题2:老师按八折买了2件圣诞礼品,付费少于16元
,你知道礼品的标价每件是多少元吗? 用x表示礼品的标价,由题意,得: 8 5 16
x < 16
>2 0.8 x
3
4
0
1 x>2
2
找点
定向
画线
练习 1.用不等式表示下列关系: (1)a与3的和是正数; (2)m的倒数大于n的一半;
解:a+3>0;
1 (3)a与b和的 是非正数 . 2 1 解: (a+b)≤0. 2
n 1 解: > ; m 2
(4)x与5的差的3倍不是负数;
解:3(x-5)≥0;

人教版数学七年级下册-9-1-1不等式及其解集-课件(2)

3
x >75在数轴上表示如下
0
75
在表示75的点上画空心圆圈,表 示不包含这一点,向右表示大于
解集的表示方法: 第一种:用式子(如x>2),即用最简形式的不等式 (如x>a或x<a)来表示. 第二种:用数轴,一般标出数轴上某一区间,其中的 点对应的数值都是不等式的解. 用数轴表示不等式的解集的步骤:
3.下列不是不等式5x-3<6的一个解的是( B ) A.1 B.2 C.-1 D.-2
4.在数轴上表示不等式x-1<0的解集,正确的是( C )
5. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0_>___-8;
(5)-a__<__a (a>0); (6)-a_>___a(a<0).
一个式子是不等式,要把握两点: 一是含有不等号, 二是表示不等关系,而与不等式是否成立无关.
知识点二:列不等式表示不等关系
列不等式的一般步骤是: (1)分析题意,找出题目中的各种量; (2)寻找各种量之间的不等关系; (3)用代数式表示各量; (4)用适当的符号将各量连接起来.
例1 列不等式:
(1)a与1的和是正数:___a_+__1_>_0____; 表示不等关系的关键词有:
6.直接写出下列不等式的解集. x+3>6的解集是 x>3 ; 4x<8的解集是 x<2 ; x-2>0的解集是 x>2 .
7. 用不等式表示:
(1) a是正数;
(2) a是负数;
(3) a与5的和小于7;(4) a与2的差大于-1;
(5) a的4倍大于8; (6) a的一半小于3.

9.1.1 不等式及其解集.doc

课 题: 9.1.1 不等式及其解集一、学前准备:1.等式:用“=”连接的表示相等关系的式子叫做等式.2.一元一次方程:含有_____个未知数,并且未知数的次数是_____的方程叫做一元一次方程.3. 方程的解:使方程左右两边相等的未知数的值叫做方程的解二、新课探究:(一)、不等式的概念1. 你能列出下列式子吗?(1)5小于7; (2)a 是正数; (3)m 的2倍大于或等于-1;(4)x-3不等于2 (5)a 不大于1 ;不等式:像上面的这些式子,用符号“ ”, “ ” ,“ ” “ ”或“ ”表示不等关系的式子叫做不等式。

巩固练习1:下列式子中哪些是不等式?(1)a +b=b+a (2)-3>-5 (3)x ≠l(4)x 十3≥6 (5) 2m< n (6)2x-3 (7)51x(二)、不等式的解、不等式的解集判断下列哪些数值能使不等式x +3 > 6成立?x . . . -4 -2. 5 0 1 2.5 3 3.2 4.8 8 12 … x+3 判断 想一想: 使不等式x +3 > 6成立的数值还有没有? 有多少个?总结1:1、不等式的解:使不等式 的 的值叫做不等式的解.2、不等式的解有 个。

由上题我们可以发现,当x >3时,不等式x +3 > 6总成立;而当x ≤3时,不等式x +3 > 6总不成立.这就是说,任何一个大于3的数都是不等式x +3 > 6的解,因此x >3表示了能使不等式x +3 > 6成立的x 的取值范围,叫做不等式x +3 > 6的解的集合,简称解集总结2: 1.不等式的解集:一个含有未知数的不等式的 组成这个不等式的解集。

2.注意: 解集中包括了每一个解,解集是一个范围。

(((1)(2巩固练习2:1.判断: 数-3,-2,-1,0,1,2,3中,哪些是不等式2x+3<5的解? 哪些不是?2.下列说法正确的是( )A. x=3是2x>1的解集B. x=3不是2x>1的解C. x=3是2x>1的唯一解D. x=3是2x>1的解(三)、用数轴表示不等式解集的方法总结:1.用数轴表示不等式的解集的步骤:画数轴找点 画点 画方向2.用数轴表示不等式的解集,应记住下面的规律:(1)有等号(“≥ ,≤”)画实心点,无等号 (“>,<”) 画空心圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.1.1 不等式及其解集
【教学目标】
1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

【教学重点与难点】
1. 难点:正确理解不等式、 不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

2. 建立方程解决实际问题,会解 “ax +b=cx+d ”类型的一元一次方程
【教学过程】
一、提出问题
1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?
2、一辆匀速行驶的汽车在11:20时距离A 地50千米。

要在12:00以前驶过A 地,车速应该具备什么条件?若设车速为每小时x 千米,能用一个式子表示吗?
二、探究新知
(一)不等式、一元一次不等式的概念
1、 在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。

2、下列式子中哪些是不等式?
(1)a +b=b+a (2)-3>-5 (3)x ≠l
(4)x 十3>6 (5) 2m< n (6)2x-3
上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.
3、小组交流:说说生活中的不等关系.
分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.
(二)不等式的解、不等式的解集
问题1.要使汽车在12:00以前驶过A 地,你认为车速应该为多少呢?
问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小
时74千米呢?
问题 3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把
使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式x 3
2 > 50的解?
问题4.数中哪些是不等式x 3
2 > 50的解: 76,73,79,80,74. 9,75.1,90,60
你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?
讨论后得出:当x > 75时,不等式
x 32 > 50成立;当x < 75 或x=75时,不等式x 3
2 > 50不成立。

这就是说,任何一个大于75的数都是不等式x 3
2 > 50的解,这样的解有无数个。

因此,x > 75表示了能使不等式x 3
2 > 50成立的“x ”的取值范围。

我们把它叫做不等式x 32 > 50的解的集合,简称解集.这个解集还可以用数轴来表示(教师示范表示方法).回到前面的问题,要使汽车在12:00以前驶过A 地,车速必须大于每小时75千米。

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.
三、巩固新知
1、下列哪些是不等式x +3 > 6的解?哪些不是?
-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12
2、直接想出不等式的解集,并在数轴上表示出来:
(1)x +3 > 6(2)2x < 8(3)x -2 > 0
四、拓广探索
对于问题1还有不同的未知数的设法吗?
学生思考回答:若设去年购买计算机x 台,得方程
21402
x x x ++= 若设今年购买计算机x 台,得方程
14042
x x x ++= 五、解决问题
某开山工程正在进行爆破作业.已知导火索燃烧的速度是每秒0.8厘米,人跑开的速度是每秒4米.为了使放炮的工人在爆炸时能跑到100米以外的安全地带,导火索的长度应超过多少厘米?
六、总结归纳
1、不等式与一元一次不等式的概念;
2、不等式的解与不等式的解集;
3、不等式的解集在数轴上的表示.
七、布置作业
1、用不等式表示下列数量关系:
(1)a 比1大;
(2)x与一3的差是正数;
(3)x的4倍与5的和是负数
2、在-4,-2,-1,0,1,3中,找出使不等式成立的x值:
(1)x+5 > 3,(2) 3x < 5
3、在数轴上表示下列不等式的解集:
(1) x < 2 ,(2) x >-3
4、不等式x < 5有多少个解?有多少个正整数解?。

相关文档
最新文档