911不等式及其解集教案
人教版数学七年级下册9.1.1不等式及其解集教学设计

5.课后反思:要求学生撰写一篇关于本节课学习心得的反思,内容包括对不等式知识点的理解、解题方法的总结、学习中遇到的困难及解决办法等。通过课后反思,促使学生自我总结,提高学习效率。
6.预习任务:布置下一节课的相关预习内容,让学生提前了解下一课的主题,为课堂学习做好充分的准备。
人教版数学七年级下册9.1.1不等式及其解集教学设计
一、教学目标
(一)知识与技能
本节课主要围绕人教版数学七年级下册9.1.1不等式及其解集展开,使学生掌握以下知识与技能:
1.理解不等式的概念,了解不等式与等式的区别,能够识别并写出常见的不等式。
2.学会使用不等式的性质进行简单的推导和证明,如:不等式的两边同时加上或减去同一个数,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变。
-引导学生通过画图、列表等方式,探索不等式的性质,增强直观想象能力。
4.互动交流,合作学习:
-鼓励学生之间的讨论和互助,通过小组合作的方式解决复杂的不等式问题,培养学生的团队协作能力。
-设计课堂展示环节,让学生分享解题思路和方法,互相学习,共同进步。
5.反馈评价,持续改进:
-通过课堂提问、作业批改和单元测试等方式,及时了解学生的学习情况,对教学效果进行评估。
-一元一次不等式的解集的求解方法。
-利用数轴和区间表示不等式的解集。
2.教学难点:
-不等式性质中关于符号变化的掌握。
-在实际问题中建立不等式模型。
-对不等式解集的不同表示方法的灵活运用。
人教版数学七年级下册《9.1.1不等式及其解集》教学设计

人教版数学七年级下册《9.1.1不等式及其解集》教学设计一. 教材分析人教版数学七年级下册《9.1.1不等式及其解集》是学生在学习了整式、分式等基础知识后,引入的一种新的数学表达形式。
本节课主要让学生了解不等式的概念,学会用不等号表示两个数的大小关系,以及如何求解不等式的解集。
教材中通过丰富的实例,引导学生探究不等式的性质,培养学生的逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算规则有一定的了解。
但学生在学习新知识时,可能对不等式的概念和性质理解不够深入,需要在教学过程中加以引导和巩固。
此外,学生对实际问题中不等式的应用还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。
2.学会求解不等式的解集,并能解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生解决数学问题的能力。
四. 教学重难点1.重难点:不等式的概念、性质以及求解不等式的解集。
2.难点:对不等式性质的理解和应用,求解不等式时的运算技巧。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究不等式的性质。
2.利用多媒体辅助教学,生动展示不等式的图形表示,帮助学生形象理解。
3.运用实例分析,让学生体会不等式在实际问题中的应用。
4.注重练习,让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,包括不等式的概念、性质、例题及练习题。
2.教学素材:收集一些实际问题,用于引导学生应用不等式解决问题。
3.练习题:准备一些不等式的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学符号表示两个数的大小关系。
通过讨论,引出不等式的概念。
2.呈现(10分钟)介绍不等式的基本性质,如对称性、传递性等。
通过实例演示,让学生直观地感受不等式的性质。
3.操练(15分钟)让学生分组讨论,尝试解决一些不等式问题。
教学设计1:9.1.1不等式及其解集

9.1.1不等式及其解集教学设计目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)1.从时间方面虑:<2.从行程方面: >503.从速度方面考虑:x>50÷设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:<,>50,x>50÷都是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式<,>50的解.3.不等式的解集设问1:什么是不等式的解集?设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式<的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?2、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
9.1.1 不等式及其解集 教案.doc.1.1 不等式及其解集 教案

9.1.1导学案教学目标:知识与能力:1、能说出不等式和一元一次不等式的定义。
2、能说出什么是不等式的解、解集、解不等式。
过程与方法:通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上。
情感态度和价值观:探究不等式解与解集的不同意义的过程,渗透数形结合思想。
教学重点:了解不等式和一元一次不等式的定义。
教学难点:能把不等式的解集正确地表示到数轴上。
教学方法:112师生互动模式教具:多媒体教学过程:一、导学质疑:知识链接:1、用式子表示三角形的三边关系2、什么叫方程、一元一次方程?举例说明。
导入明标:1、举一些有关不等式的生活实例。
如:一天,小明和他的爸爸去动物园玩,10:20从鸟的天堂出发赶往距此50千米的熊猫馆,可熊猫馆要在11:00以前才能够进去,否则要等到下午,可下午爸爸有事.问:爸爸的车速应该具备什么条件,才能在11:00以前赶到?若设车速为每小时x千米,能用一个式子表示吗?2.学生再举出一些有关不等式的实例。
如:过马路,跷跷板,太阳温度,限速路标,乌鸦喝水,思考相应问题,体会生活中的不等式。
3.结合实例引入本节课所要学习的内容和本节的学习目标。
(板书课题)学习目标:1、能说出不等式和一元一次不等式的定义。
2、能说出什么是不等式的解、解集、解不等式。
3、会把不等式的解集正确地表示到数轴上。
自觉质疑:(自学10分钟)请阅读课本114页到115页的内容,思考以下问题:1、①什么叫不等式、一元一次不等式?举例说明。
②下列式子中哪些是不等式?哪些是一元一次不等式?(1)a+b=b+a (2)-3>-5 (3)x≠1(4)x+3>6 (5)2m<n(6)2x-3③不等号有哪几种?④数-2,-1,0,1,2.5适合不等式x+3<4吗?⑤什么叫不等式的解?⑥什么叫不等式的解集?如何在数轴上表示它的解集?⑦什么叫解不等式?2、思考:①判断下列数中哪些是不等式>50的解76,73,79,80,74.9,75.1,90,60 上述不等式还有其它的解吗?并在数轴上表示它所有的解二、合作交流:(10分钟)1.各小组同学之间互相检查一下自学情况。
人教版数学七年级下册9.1.1《不等式及其解集》教学设计1

人教版数学七年级下册9.1.1《不等式及其解集》教学设计1一. 教材分析《不等式及其解集》是人教版数学七年级下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。
本节内容是学生学习不等式的基础,对后续不等式变形、解不等式组等内容有重要影响。
教材通过例题和练习题,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
二. 学情分析学生在七年级上册已经学习了有理数的概念,对数轴有了一定的了解。
但他们对不等式的概念和解集的表示方法可能还比较陌生。
因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
三. 教学目标1.了解不等式的概念,理解不等式解集的含义。
2.学会用数轴表示不等式的解集。
3.能够解简单的不等式。
四. 教学重难点1.不等式的概念及其与等式的区别。
2.不等式解集的含义及其表示方法。
3.解简单的不等式。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索。
2.利用数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
3.通过练习题和小组讨论,巩固所学知识,提高解题能力。
六. 教学准备1.教学PPT或黑板。
2.练习题和答案。
3.数轴和标记工具。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索不等式的概念。
例如:“在日常生活中,你遇到过哪些不等式?”让学生举例说明,并解释不等式的含义。
2.呈现(15分钟)讲解不等式的概念,介绍不等式与等式的区别。
通过数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
例如,展示数轴,并在数轴上标出不同不等式的解集,让学生观察和理解。
3.操练(15分钟)让学生练习解简单的不等式。
给出一些具体的不等式,要求学生将其解集用数轴表示出来。
例如,解不等式3x > 6,将其解集用数轴表示出来。
4.巩固(10分钟)通过小组讨论和练习题,巩固所学知识。
人教版七年级数学下册《9.1.1不等式及其解集》教学设计导学案教案

人教版七年级数学下册《9.1.1不等式及其解集》教学设计导学案教案人教版七班级数学下册《9.1.1不等式及其解集》教学设计PPT课件导学案教案课题:9.1.1不等式及其解集教学目标1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简约的实际问题,使同学自发地查找不等式的解,会把不等式的解集正确地表示到数轴上;2、经受由详细实例建立不等模型的过程,经受探究不等式解与解集的不同意义的过程,渗透数形结合思想;3、通过对不等式、不等式解与解集的探究,引导同学在独立思索的基础上积极参加对数学问题的争论,培育他们的合作沟通意识;让同学充分体会到生活中到处有数学,并能将它们应用到生活的各个领域。
教学难点正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
知识重点建立方程解决实际问题,会解“a*+b=c*+d”类型的一元一次方程教学过程〔师生活动〕设计理念提出问题多媒体演示:1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么缘由呢?2、一辆匀速行驶的汽车在11:20时距离A地50千米。
要在12:00以前驶过A地,车速应当具备什么条件?假设设车速为每小时*千米,能用一个式子表示吗?通过实例创设情境,从“等”过渡到“不等”,培育同学的观测技能,激发他们的学习爱好.探究新知〔一〕不等式、一元一次不等式的概念1、在同学充分发表自己看法的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。
2、以下式子中哪些是不等式?〔1〕a+b=b+a〔2〕-3>-5〔3〕*≠l〔4〕*十36〔5〕2mn〔6〕2*-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.3、小组沟通:说说生活中的不等关系.分组活动.先独立思索,然后小组内相互沟通并做记录,最末各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.〔二〕不等式的解、不等式的解集问题1.要使汽车在12:00以前驶过A地,你认为车速应当为多少呢?问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式50的解?问题4,数中哪些是不等式50的解:76,73,79,80,74.9,75.1,90,60你能找出这个不等式其他的解吗?它究竟有多少个解?你从中发觉了什么规律?争论后得出:当*75时,不等式50成立;当*75或*=75时,不等式50不成立。
人教版七年级数学下册9.1.1《不等式及其解集》教学设计

人教版七年级数学下册9.1.1《不等式及其解集》教学设计一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,本节内容是在学生已经掌握了整数、分数、小数的基本运算的基础上,引入不等式的概念,让学生了解不等式的定义、性质和求解方法,为后续学习不等式的应用打下基础。
本节教材主要包括以下几个部分:1.不等式的定义:介绍不等式的概念,让学生了解不等式是由不等号连接的两个表达式构成的数学句子。
2.不等式的性质:讲解不等式的基本性质,包括同向不等式的相加、相减、乘除等运算规律。
3.不等式的解集:介绍不等式的解集的概念,讲解求解不等式解集的方法。
二. 学情分析七年级的学生已经具备了基本的数学运算能力,对于新知识有一定的接受能力,但是对不等式的概念和性质可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。
三. 教学目标1.了解不等式的概念,能够正确书写不等式。
2.掌握不等式的基本性质,能够进行简单的同向不等式运算。
3.了解不等式的解集的概念,能够求解简单的不等式解集。
四. 教学重难点1.不等式的定义和性质。
2.不等式的解集的求解方法。
五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际操作,引导学生主动探索和发现不等式的性质和求解方法,注重学生的参与和实践,提高学生的学习兴趣和能力。
六. 教学准备1.教学PPT或者黑板。
2.教学素材和例子。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,例如:“小明比小红高,小华比小明高,请问谁最高?”让学生思考并回答,引导学生认识到不等式的概念。
2.呈现(10分钟)呈现不等式的定义和性质,通过具体的例子和实际操作,让学生理解和掌握不等式的概念和性质。
3.操练(10分钟)让学生进行不等式的书写和运算练习,老师进行指导和讲解,帮助学生巩固不等式的概念和性质。
4.巩固(10分钟)通过一些练习题,让学生自己独立解决不等式问题,巩固所学的不等式的概念和性质。
人教版数学七年级下册教案9.1.1《 不等式及其解集》

人教版数学七年级下册教案9.1.1《不等式及其解集》一. 教材分析《不等式及其解集》是人教版数学七年级下册的教学内容,这部分内容是学生继学习算术运算后,进一步理解代数表达式的性质,认识不等式的概念及其应用。
通过学习不等式,学生能更好地理解数学中的限制条件,并能运用不等式解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了算术运算的基本规则,对代数表达式有一定的理解。
但他们对不等式的概念和性质可能比较陌生,因此需要通过实例和练习来逐步建立不等式的基本概念,并理解不等式的解集。
三. 教学目标1.了解不等式的概念,理解不等式的基本性质。
2.学会解一元一次不等式,并能求出其解集。
3.能够应用不等式解决实际问题。
四. 教学重难点1.教学重点:不等式的概念,不等式的基本性质,一元一次不等式的解法。
2.教学难点:不等式的解集的表示方法,不等式的应用。
五. 教学方法采用问题驱动法,通过实例引入不等式的概念,引导学生探究不等式的性质,再通过练习和应用来巩固所学知识。
六. 教学准备1.教学PPT,包含不等式的定义,不等式的性质,一元一次不等式的解法等内容。
2.练习题,包括简单的不等式题目和实际应用题目。
七. 教学过程导入(5分钟)通过一个实际问题引入不等式的概念:某班级有40人,男生和女生的人数之和为40,男生比女生多3人,请问男生和女生各有多少人?让学生尝试用数学表达式来表示这个问题,并引入不等式的概念。
呈现(10分钟)通过PPT呈现不等式的定义和基本性质,让学生直观地理解不等式的形式和意义。
同时,通过例题来展示不等式的解法和解集的表示方法。
操练(15分钟)让学生独立完成一些简单的不等式题目,如解一元一次不等式,求解集等。
教师在旁边巡回指导,解答学生的疑问。
巩固(10分钟)通过一些实际应用题目,让学生运用不等式来解决问题。
如购物问题,时间安排问题等,让学生感受不等式在实际生活中的应用。
拓展(10分钟)让学生尝试解决一些复杂的不等式问题,如多变量的不等式,不等式的组合等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本信息
学科
数学
年级
七年级
教学形式
教师
雷天坤
单位
宜城市城关中学
课题名称
9.1.1不等式及其解集
教学重点与难点
重点:不等式的解集的表示.
难点:不等式解集的确定.
教学目标
一、1.知识目标:能说出不等式概念,能说明不等式的解集。
二、2.能力目标:能正确表示不等式的解集.
教学过程
一、出示本节课教学目标及重难点。
(4)不等式的解与不等式的解集的区别与联系是什么?
引导学生说出:区别:不等式的解→未知数的值.
不等式的解集→未知数的取值范围.
联系:解集包括解,所有的解组成了解集.
第3题
1.(2)不等式的解集对吗?(估计问题不大)
2.数轴表示它们的解集对吗?用数轴表示解集时,注意什么呢?
引导学生说出:。表示不包括;.表示包括.
(1)x+2≥6 (2)源自x﹤10(三)学生练习,教师巡视.
板书设计
(3)所列的不等式都是一元一次不等式吗?为什么?一元一次不等式满足哪些条件?引导学生说出:①一个未知数;②未知数的次数是1;③不等式.
第1题
(1)不等式的解找的对吗?为什么?
引导学生说出:使不等式成立的未知数的值叫做不等式的解.
(2)这个不等式的解有多少个?(估计问题不大)引导学生回答:无数个解.
(3)(手指第3题第(1)题)这个不等式的解集对吗?对!
7分钟后,比谁能正确地做出检测题.
三、先学:
(一)学生看书,教师巡视,督促每一位学生认真、紧张的自学,鼓励学生质疑问难.
(二)检测
1.过渡语:看完的同学请举手,看懂的请举手。
2.检测题:(2名学生演板)
(1)P123 1、2
(2)直接想出不等式的解集,并在数轴上表示解集
(1)X+3>6;(2)2X≤8
3.学生练习,教师巡视.(收集错误进行第二次备课)
四、后教
(一)更正:
过渡语:请看黑板,找一找哪里做错了?能发现错误,并会更正的请举手.(鼓励尽量多的学生参与更正)
(二)讨论:
评:第2题
(1)不等式列的对吗?(估计问题不大)
(2)不等号有哪些?引导学生说出:
﹥﹤≠≥≤
学生可能说不全引导学生举出:①a是非负数;②x与y的差不小于2
二、本节课自学指导:
1、认真看课本(P121-123练习之前)注意:
(1)什么是不等式,思考不等号有哪些;
(2)理解不等式的解﹑解集的概念,想一想它们的区别和联系分别是什么?如何用数轴表示不等式的解集;
(3)结合P113黄色书签的内容,思考一元一次不等式满足的条件是什么。
如有不懂,立即请教同桌或举手问老师.
开口向右表示大于;开口向左表示小于.
不理解的同学请举手,如有不懂的同学,教师鼓励质疑.
更正错题,继续看书,进一步理解新知识。
五、当堂训练
(一)讲述:同学们,能运用新知识做对作业吗?好,注意解题格式,书写工整.
(二)出示作业题:
必做题: P128:2 (1) (3) (5) (7);
3直接想出不等式的解集并在数轴上表示解集.