光学高分子材料简述及性能表征

光学高分子材料简述及性能表征
光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

摘要:高分子材料在光学领域得到了广泛的应用,作为大型光学元器件的背投屏幕更是利用先进的高分子材料技术获得了各种优异的性能。简单介绍了背投屏幕的分类、材料和制造工艺,以及光学高分子材料的历史、分类和新的发展,以及主要性能表征。

前言:背投屏幕是背投显示的终端,在很大程度上影响整个光学显示系统的性能。背投屏幕分为背投软质屏幕、背投散射屏幕和背投光学屏幕。背投软质屏幕具备廉价、运输安装方便等优点,但是亮度均匀性比较差、严重的“亮斑效应”、光能利用率低、可视角度小等。分辨率低和对比度低。散射屏幕视角大、增益低、“亮斑效应”

明显。采用不同的工艺制造。有些采用在压克力板材表面进行雾化处理,增加散射。有些应用消眩光玻璃模具复制表面结构,基材内添加光扩散剂及调色剂制造。有些为降低成本直接在透明塑料板材表面粘贴背投软质屏幕制造。现在应用最广泛的就是微结构光学型背投影屏幕。光学型背投影屏幕指的是利用微细光学结构来完成光能

分布、实现屏幕功能的这一类屏幕。主要有FL

型(Fresnel lens-lenticular lenses)、FD型(Frensnel lens-Diffusion cover)、FLD型(Fresnel lens-Lenticular lenses-Diffusion cover)、BS型(Fresnel lens-Lenticular lenses-Black strips)。

微光学结构复制主要采用模压或铸造等复制技术。铸塑又称浇铸,它是参照金属浇铸方法发展而来的。该成型方法是将已准备好的浇铸原料(通常是单体,或经初步聚合或缩聚的浆状聚合物与单体的溶液等)注入一定的模具中,使其发生聚合反应而固化,从而得到与模具型腔相似的制件。这种方法也称为静态铸塑法。静态铸塑技术可用来将电铸镍模具板上的微光学图形转移到塑料表面。铸塑法得到的制件无针眼,无内力应变,无分子取向。重要的是,对于非晶态塑料来说,静态铸塑得到的制件相对于其它工艺一般具有更高的透光率,表现出优越的光学性质。背投光学屏幕属于大尺寸微光学元件,由于体积较大用模压工艺生产存在加工设备复杂、成本高、合格率低的缺点,主要用浇铸工艺来生产。

正文:高分子材料应用于光学领域最早由Arthur Kingston开始,他于1934年取得了注

射成型塑料透镜的专利,并将其用在了照相机中。1937年,R.F.Hunter公司制造出了全塑料透镜的照相机。在二战期间光学高分子材料被广泛用来制作望远镜、瞄准镜、放大镜及照相机上的透镜。由于受材料的品种少、质量差、加工工艺落后等条件的限制,战后在光学领域中的应用曾一度下降。60年代后,随着合成技术的发展,光学高分子的品种不断增加,加工工艺也得到了改善,同时出现了表面改性技术,这些因素促成了光学高分子的迅速发展,并形成了独立的光学高分子市场。

与传统无机光学材料相比,尽管光学高分子材料的耐热性、耐候性、耐磨性、耐溶剂性、抗吸湿性及光学均一性(双折射、光学畸变)较差,折射率、色散范围较窄,热膨胀系数较大,但是聚合物光学材料具有密度小、耐冲击、成本低、加工成型容易等优点,近年来得到了广泛的应用。常用光学高分子材料有烯丙基二甘醇二碳酸酯等几种热固性树脂和聚甲基丙烯酸甲酯、聚苯乙烯、聚碳酸酯、聚4-甲基戊烯-1、苯乙烯-丙烯腈共聚物等热塑性光学树脂。表1-1列出了一些常用光学高分子材料的特性。

由于传统光学塑料的性能无法满足人们对高性能光学元器件的要求,因此近年来又开发了一些新型光学塑料。如KT-153螺烷树脂,日本东海光学公司研制的这种螺烷树脂是一种含螺烷核的化合物;

OZ-1000树脂,具有特殊脂环基结构的甲基丙烯酸酯类的均聚物或共聚物的;

TS-26树脂,这种树脂是由苯乙烯、甲基丙烯酸乙酯和三溴苯乙烯作为共聚单体,铸塑时形成三维交联结构;APO树脂,是日本三井石油工业公司新开发的一种光盘基板材料,是由乙烯与双环链烯及三环链烯等环状烯烃共聚合成的非晶态聚烯烃共聚物;MR系列树脂,是日本三井东亚公司于20世纪80年代后期研制出的新型光学树脂,它是由带有芳环的异氰酸酯与多硫醇化合物通过聚加成反应得到的一类硫代氨基甲酸酯树脂。MH系列树脂,是日本合成橡胶公司合成的具有多环官能基的透明聚合物,可

注射成型,用于制作透镜或其它光学元件。还有其它一些近年来研制出来的光学树脂,如德国巴依尔公司研制的E818光学树脂;1993年HOYA 公司推出的EYAS树脂;1997年HOYA公司推出目前已经商品化的折射率最高的眼睛片用树脂材料等。

光学高分子材料种类繁多,应用也不尽相同,但一般都包含三大类技术指标:光学性能、机械性能、热学性能。

光学性能主要包括折射率和色散、透过率、黄色指数及光学稳定性。

折射率和色散是光学材料的最基本性能。在透镜设计中,为使透镜超薄和低曲率必须寻求高折射率的光学材料,而校正色差要求有两组阿贝数不同的材料,即冕牌系列(低色散,阿贝数>50)和火石系列(高色散,阿贝数<40)。光学玻璃的折射率和色散有较大的选择余地,而光学塑料的选择范围却十分有限,尤其是冕牌系列光学塑料。透明塑料折射率的测定最常用的方法是折射仪法。阿贝折射仪是最广泛用于测定折射率的折射仪。

透过率是表征树脂透明程度的一个重要性

能指标,一种树脂的透过率越高,其透光性就越好。透过率的定义为:透过材料的光通量(T2)占入射到材料表面上的光通量(T1)的百分率。任何一种透明材料的透光率都达不到100%,即使是透明性最好的光学玻璃的透光率一般也难以

超过95%。

聚合物光学材料在紫外和可见光区的透光

性和光学玻璃相近,在近红外以上区域不可避免的出现碳氢振动所引起的吸收。通常,光学塑料在可见光区透光率的损失主要由以下三个因素

造成:光的反射;光的散射;光的吸收。

黄色指数是无色透明材料质量和老化程度

的一项性能指标,由分光光度计的读数计算而得,描述了试样从无色透明或白色到黄色的颜色变化。这一实验最常用于评价一种材料在真实或模拟的日照下的颜色变化。而对于透明塑料材料来说,由于原料纯度或加工条件等因素的影响,可能自身带有一定颜色。

光学树脂如同多数有机物质一样存在着耐

候和耐老化问题,因此树脂的结构和加工工艺以及使用环境对树脂的光学性能有较大的影响。在一定使用期限内,光学参数的稳定性尤为关键,

这个指标直接决定产品的使用性能。采用人工加速老化中的全紫外线老化的方法检测树脂的光

学稳定性。全紫外线老化法主要模拟阳光中的紫外线.全紫外线强度比相应太阳紫外强度高几倍。正是短波紫外线对有机材料老化起了主要作用,这样会大大地提高了老化加速率,也是全紫外老化的最突出优点。同时可以进行温度、湿度、雨淋等环境因素的模拟。这一老化方法其紫外强度等参数可以监控,试验重复性好。

韧性(耐冲击性能)和表面硬度(耐磨性)是光学高分子材料的重要机械性能。

冲击强度是衡量材料韧性的一种强度指标。冲击强度是使材料在冲击力的作用下折断,通常把折断时截面吸收的能量定义为材料的冲击韧性。冲击实验主要有弯曲梁式(摆锤式)冲击、落锤式冲击和高速拉伸试验三类。

无定型聚合物的韧性主要与其分子结构有关。主链上酯键、醚键、碳-碳键可以自由旋转,因而材料具有较好的韧性,如PC是光学塑料中抗冲击性能最好的材料;带有较大侧基的聚合物(如PVC, PMMA, PS等),因主链上可以自由旋转的基团较少或旋转时不对称,因而韧性相对较

差[44] 。

硬度是衡量材料表面抵抗机械压力的能力,可定义为:材料对形变(特别是永久形变)、压痕或刻痕的抵抗能力。对于透明塑料材料,特别是光学树脂的硬度通常可以采用铅笔硬度。

耐磨性与结构关系密切。交联树脂比未交联树脂耐磨性显著提高,如用于制造眼镜片的

CR-39树脂、KT-153树脂都是交联树脂。光学树脂硬度较低、表面易被擦伤这一缺点现在已经很容易克服,采用表面增强技术(如涂覆耐磨材料、真空镀膜等),可以使树脂的表面硬度和光学玻璃一样优良。

高聚物的耐热性主要是指聚合物受热下的变形,高聚物的耐热性主要指玻璃化温度、软化温度等。有机玻璃在玻璃态下使用,而超过这个温度将变为高弹态或黏流态,此时即使受到较小的力也会产生较大的形变而不能保持其外形尺寸。玻璃化转变温度是在恒定的较小负荷下测得的温度形变曲线上发生玻璃化转变较窄温度范围的中间值。在实际使用中,高聚物总是处于受力的情况下,因此不是以静态的玻璃化温度作为耐热温度,而是测量高聚物在一定外力下达到一

定形变值时的温度作为耐热温度,常用的有马丁耐热温度、维卡软化温度及热变形温度。

玻璃化转变温度是聚合物材料的一种普遍现象,它是一种聚合物材料使用的上限温度,因此玻璃化转变温度是聚合物的一个非常重要的性能指标。玻璃化转变的实质是链段运动随温度的降低被冻结或随温度的升高被激发的结果。在玻璃化转变前后分子的运动模式有很大的差异。因此,当聚合物发生玻璃化转变时,其物理和力学性能必然有急剧的变化。除形变和模量外,聚合物的比热容、比容积、热膨胀系数、折射率和介电常数等都表现出突变或不连续的变化。因此,根据这些性质上的变化,可以对聚合物的玻璃化转变进行实验测量。常用的测定聚合物玻璃化转变的方法有静态热机械法TMA(如膨胀计法、温度形变曲线法等)、动态力学测量法DMA (如扭辫法和扭摆法等)、热力学方法(如示差扫描量热法DSC或差热分析法DTA)等。

玻璃化转变温度(Tg)可直接反映出聚合物耐热性的高低,Tg的高低与聚合物的分子结构有关。在聚合物材料中,链的刚性越大,Tg 越高;使体系交联也可提高耐热性。

聚合物的热稳定性是其实际应用中的一个重要性质。通常随着温度的升高,聚合物都会发生从玻璃态、高弹态到黏流态的力学变化,最后聚合物会在温度达到一定程度分解,从而破坏聚合物。聚合物的分解温度就是其热稳定性的重要指标之一。热失重法(TG)是目前最常用的一种表征聚合物分解温度的方法,即在程序升温的环境中(空气或氮气氛围),测试试样的质量对温度的依赖关系。热失重法的基本原理:聚合物在温度的作用下,随温度的升高,会发生相应的变化,如水分蒸发,失去结晶水,低分子易挥发物的逸出,物质的分解和氧化等。若将物质的质量变化和温度变化的信息记录下来,就可得到物质的质量温度的关系曲线,即热失重曲线。用热失重法可求得质量和质量变化与温度的关系,求质量变化速率与温度的关系,则需将质量对温度求导,即微商热重法(DTG),描述质量变化速率的曲线即为微商热重曲线。

不同的应用要求光学高分子材料的其他特性要求,如耐化学品性能、电性能等等,这里就不一一叙述。总之,高分子材料正在光学领域发挥着越来越重要的作用。同时由于与国际水平的

较大差距,值得各位同仁共同努力,提高基础开发及应用的水平。

氟化钙_氟化钡混晶制备与光学性能表征

关珮雯等:铒铥共掺碲酸盐光纤的近红外宽带发射光谱· 1599 ·第41卷第11期 DOI:10.7521/j.issn.0454–5648.2013.11.23 氟化钙–氟化钡混晶制备与光学性能表征 谷亮1,曾繁明1,李春1,林海1,张莹2,刘禹1,刘景和1 (1. 长春理工大学材料科学与工程学院,长春 130022;2. 中国科学院长春光学精密机械与物理研究所,长春 130033 ) 摘要:通过直接沉淀法制备氟化钙–氟化钡(CaF2-BaF2)混晶多晶料。采用坩埚下降法,通过设计合理的工艺条件(真空度:10–3 Pa,下降速率:0.2~1mm/h;轴向温度梯度:40~70/cm ℃;径向温度梯度:50~70/cm ℃,降温速率:25/h ℃),生长出不同原料配比的CaF2-BaF2混晶。用X射线衍射仪、双折射率仪、红外分光光度计对CaF2-BaF2混晶性能进行表征,并研究其光学性能。结果表明:CaF2-BaF2混晶尺寸为φ20mm×(175~180)mm,晶体透过率为70%~80%,其本征双折射率略低于CaF2单晶。 关键词:氟化钙;氟化钡;混晶原料纯度;双折射;透过率 中图分类号:TU502.4 文献标志码:A 文章编号:0454–5648(2013)11–1599–04 网络出版时间:2013–10–28 15:40:49 网络出版地址:https://www.360docs.net/doc/138245508.html,/kcms/detail/11.2310.TQ.20131028.1540.023.html Preparation and Optical Characterization of Calcium Fluoride-Barium Fluoride Mixed Crystal GU Liang1,ZENG Fanming1,LI Chun1,LIN Hai1,ZHANG Ying2,LIU Yu1,LIU Jinghe1 (1. School of Material Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China) Abstract: The polycrystalline materials of calcium fluoride-barium fluoride (CaF2–BaF2) were prepared by a direct precipitation method. The CaF2-BaF2 mixed crystals at different ratios of raw materials were grown by the Bridgman method. The parameters of the growth used were the vacuum degree of 10–3 Pa, the decline rate of 0.2–1mm/h, the axial temperature gradient of 40–70/cm ℃, the radial temperature gradient of 50–70/cm ℃, and the cooling rate of 25/h ℃. The performance of the CaF2-BaF2 materials was characterized by X-ray diffraction, birefringence analysis and Fourier transform infrared spectroscopy, respectively. The optical prop-erties of the CaF2-BaF2 mixed crystal were also analyzed. The results show that the size of the CaF2-BaF2 is φ20mm in diameter and 175–180mm in length. The transmittance of the mixed crystals is 70%–80%. The intrinsic birefringence of the mixed crystals is less than that of CaF2 single crystal. Key words: calcium fluoride; barium fluoride; mixed crystals; purity of raw materials; birefringence; transmission 1 Introduction The stages of developing integrated circuits (ICs) are divided by small-scale, large-scale, and even great-scale. The ICs can be applied in various fields such as aero-space engineering, defense engineering, etc.[1] Lithography as one of the most mature methods to prepare ICs has undergone four stages, g line (436nm), i line (365nm), far ultraviolet (UV)(248nm, KrF laser), and deep ultraviolet (DUV) (193nm, ArF laser).[2–3] The wavelength reduction at each stage represents the de-velopment of the ICs, the lithography range of DUV laser is from 193nm to 121nm now[4]. The CaF2 crys-tals are widely used as optical medium materials and important lithography lens elements due to its remark-able properties such as high and stable transmission at the ultraviolet region, broad transmittance range (from far UV to mid-IR), high laser damage threshold, low refractive index, low stress birefringence, and corrosion resistance.[5–7] As the lens of the lithography system, the lens surface of the two polarizations has different refractive indices, 收稿日期:2013–02–18。修订日期:2013–08–10。 基金项目:吉林省科技发展计划国际科技合作(20110747);长春市国际科技合作计划(长科技合(2011086)资助项目。 第一作者:谷亮(1988—),男,硕士研究生。 通信作者:曾繁明(1976—),男,博士,副教授。Received date:2013–02–18. Revised date: 2013–08–10. First author: GU Liang (1988–), male, Master candidate. Correspondent author: ZENG Fanming (1976–), male, Ph.D., Associate Professor. E-mail: zengfm@https://www.360docs.net/doc/138245508.html, 第41卷第11期2013年11月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 11 November,2013

光敏高分子材料的研究进展

光敏高分子材料的研究进展 骆海强,重庆大学化学化工学院应用化学2班 摘要:由于当今材料科学技术的快速更迭,高分子材料逐渐成为材料科学领域中极具发展潜力的一类材料。在可利用能源不断缩减的今天,光敏高分子材料的研究力度大大提升,逐渐成为现代生活中不可或缺的部分。本文分别对光敏高分子材料的四大类——感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料本身的特性及应用进行了综述性概括,以便快捷了解光敏高分子材料的特点。 0前言 随着材料科学技术相关研究人员在该领域的不断探索,高分子材料无论是在科研领域还是社会生活中,都扮演着极为重要的角色。在光电材料研究风气盛行的当下,太阳能电池、太阳能汽车等光能利用、转化设备普及的大环境下,光敏高分子材料的研究力度渐渐增加,也得到了许多理想的科研成果, 1光敏高分子材料概述 在光照下能表现出特别性能的高分子聚合物即为光敏高分子材料,是材料科学里一类主要的功能高分子材料,所触及范畴也较为普遍,如光致抗蚀剂、光导电高分子、高分子光敏剂等功能材料。 光敏高分子材料根据其自身在光照条件下所产生的反应类型及其展现出的特征性能,可以分成如下四类:感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料。 现基于以上分类,对各种材料进行阐述。 2 感光性高分子材料 在光照下可以进行光化学反应的高分子材料常被称为感光性高分子材料。

根据其用途可分为光敏涂料和光刻胶。 2.1光敏涂料 2.1.1光敏涂料的作用机理 光敏涂料具有光敏固化功能,可以利用光交联反应或光聚合反应,使其中的低聚物聚合成膜或网状。经过恰当波长照射后,光敏涂料会快速固化,获得膜状物。因为固化过程较为稳定不易挥发溶剂,从而降低了排放,提高了材料利用,保障了安全性。而且由于是在覆盖之后才发生的交联,使图层交联度更好,机械强度也更稳固。 2.1.2光敏涂料的中常见低聚物的类型 以铁酸锌环氧酯错误!未找到引用源。错误!未找到引用源。涂料为一类的环氧树脂型低聚物,在紫外光的处理下,给电冰箱表面上漆,能够是冰箱表面具有很好的柔顺性且不宜脱落。以含氟丙烯酸酯预聚物错误!未找到引用源。为一类的不饱和聚酯型低聚物,与光引发剂等结合后形成的混合型涂料,其硬度、耐挂擦力、附着力等性能大大提高。此外还有聚氨酯型低聚物错误!未找到引用源。及聚醚型低聚物。 2.2光刻胶(光致抗蚀剂) 2.2.1光刻胶的作用机理 生产集成电路的现有工艺中,通常会用这类感光性树脂覆盖在氧化层从而避免其被活性物质腐蚀。将设计好的图案曝光、显影,改变了其溶解性,其中树脂发生化学反应后去除了易溶解的物质,氧化层表面留下不溶部分,从而避免氧化层被活性物质腐蚀。 2.2.2光刻胶的分类 正性光刻胶和负性光刻胶错误!未找到引用源。是根据曝光前后涂膜的溶解性来分类的。其中正性光刻胶受光后会降解,被显影液所消融;而与之相反,在光照后,负性光刻胶获得的图形恰好与掩膜板图形互补,即曝光处会发生交链反应形成不溶物残余在表面形成图像,而非曝光处则如正性光刻胶同样被消融,。 根据光刻胶所吸收的光的紫外波长,还可将其分为深紫外(i-线,g-线)光刻胶,远紫外(193 nm)光刻胶和极紫外(13. 5nm)光刻胶错误!未找到引用源。。Lawrie等错误!未找到引用源。经过多次实践合成了一种感光灵敏度为4~6 mJ/cm2、分辨率为22.5 nm的

有机高分子材料介绍

第四章有机高分子材料 第一节概述 有机高分子材料包括两种: 天然高分子材料:木材、棉花、皮革等; 有机聚合物合成材料:塑料、合成纤维、合成橡胶、涂料及粘合剂等。 有机高分子材料的特点:质地轻、原料丰富、加工方便、性能良好、用途广泛,因而发展速度很快。且随着合成、加工技术的发展,耐高温、高强度、高模量和具有特定性能和功能的高分子材料也应运而生。 有机聚合物(有机玻璃、橡胶等等)具有与金属相反的物理性能: 大部分是电和热的绝缘体 不透明 硬度低 大部分不能禁受200℃以上的温度 有机聚合物材料的加工工艺 有机聚合物材料的加工工艺路线 有机物原料或型材 成形加工 切削加工 零件 热处理、焊接等 热压、注塑、挤压、喷射、真空成形等 高分子材料的基本概念 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机化合物中,除碳原子外,其他主要元素为氢、氧、氮等。在碳原子与碳原子之间、碳原子与其它元素的原子之间能形成稳定的共价键。由于碳原子是4价,所以可以形成为数众多、结构不同的有机化合物,已知的有机化合物的总数已接近千万,而且新的有机化合物还不断合成出来。 高分子的链结构 高分子的聚合度及其计算 立构规整性 碳链高分子与杂链高分子 共聚物 高分子的相对分子质量与机械强度 1、高分子的链结构 一个大分子往往由许多相同的、简单的结构单元通过共价键重复连接而成,因此高分子又称为聚合物(polymer)。 也就是说高分子化合物是由许多结构单元相同的小分子化合物通过化学键连接而成的。 高分子的一个重要特点: 当一个化合物的相对分子质量足够大,以至多一个链节或少一个链节不会影响其基本性能。 方括号内是聚氯乙烯结构单元,并简称结构单元。 许多重复单元连接成线型大分子,类似一条链子,因此有时又将重复单元称为链节。 由形成结构单元的小分子组成的化合物,称为单体,是合成高分子的原料。 式中括号表示重复连接,通常用n代表重复单元数,由又称聚合度。聚合度是衡量高分子大小的指标。 2、高分子的聚合度及其计算 由聚氯乙烯的结构式很容易看出,高分子的相对分子质量是重复单元的相对分子质量(M0)与聚合度( )(或重复单元数n)的乘积,即 根据化合物的相对分子质量大小来划分高分子和小分子:相对分子质量小于1000的,一般为小分子化合物;而相对分子质量大于10000的,称为高分子或高聚物;处于中间范围的可能为高分子(低聚物),也可能为小分子。 3、立构规整性

塑料的一些光学特性如透光率、雾度、折射率等知识

塑料的光学特征包括两类: 一类为传递特性,包括光的透过、反射、散射及折射等;另一类为光的转换特性,包括光的吸收、光热、光化、光电及光致变色等。 常用可表征光的传递特性指标有透光率、雾度、折射率、双折射及色散等。在上述指标中,透光率和雾度两个指标主要表征材料的透光性,而折射率、双折射及色散三个指标主要用于表征材料的透光质量。一种好的透明性材料,要求上述性能指标优异且均衡。 1.透光率(Tt) 透光率是表征树脂透明程度的一个最重要性能指标。一种树脂的透光率越高,其透明性就越好。 塑料制品透明的条件有两个: 一为制品是非结晶体;二为虽部分结晶但颗粒细小,小于可见光波长范围,不妨碍太阳光光谱中可见光和近红外光的透过。 任何一种透明材料的透光率都达不到100%,即使是透明性最好的光学玻璃的透光率一般也难以超过95%。 造成人射光通量在媒体中损失的主要原因有如下几个方面。 (1)光的反射即入射光进入聚合物表面而返回的光通量。反射光通量占光在透过媒体时损失的大部分。 衡量光的反射程度可用反射率?表征,反射率可通过其折射率(n)进行计算,两者关系如下。 例如,PMMA的折射率n= 1.492,则其R经计算为 3.9%说明PMMA的反射光比较小,透光率大,透明性好。

(2)光的吸收入射到聚合物上的光通量既没有透过也没有反射部分的光通量即为光的吸收。优良的透明塑料光的吸收很小。 光线吸收的大小取决于聚合物本身的结构,主要指分子链上原子基团与化学键的性质。 例如,含有双键(冗键)的聚合物易于吸收可见光而产生能级的转移。 还以PMMA为例,其透光率一般为93%,反射率为 3.9%,则其余 3.1%即为光的吸收与光的散射两者之和。 (3)光的散射即光线入射到聚合物表面,既没有透过也没有反射和吸收的一部分光通量,其占有比重比较小。 造成光散射的原因有: 制品表面粗糙不平,聚合物内部结构不均匀如分子量分布不均匀、无序相与结晶相共存等。 结晶聚合物的散射比较严重,只有结晶聚合物的晶体颗粒小于可见光波长时,才能像非晶聚合物那样不引起散射,光线全部透过,提高透明度。如P E、PP等结晶聚合物只有用快速冷却的方法才可得到低结晶度、晶体颗粒细的制品,取得一定的透明性;但对有些结晶塑料品种而言,要想控制太低的结晶度很困难,总有部分光被散射,造成薄膜的半透明。另外,通过拉伸的方法可使结去晶颗粒变细,并使透明度迅速提高,如可使BOPP膜的透明性迅迅速提高。只有TPX塑料比较特殊,其结晶颗粒比较小,无论结晶度大小,制品都透明。 2.雾度 雾度又称为浊度,它可衡量透明或半透明材料不清晰或混浊的程度,是表征散射的指标。雾度的产生是由于材料内部或外部表面光散射造成的云雾状或混浊的外观。雾度的定义为材料散射光通量与透过材料光通量之比的百分数。

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

光学表征技术

光学表征技术 光学基本知识 引子: 这章将介绍在半导体工业中最常见的光学表征技术。由于光学表征是非接触式的,而接触式的方法总式破坏性的,因此这个优点使得它成为一个另人关注的方法。 光学方法可分成三大块:光度测量方法——测量反射或投射光的幅度;干涉法——测量反射或投射光的相位;偏振法——测量反射光椭圆率。 主要光学技术可以用这个图表示:发射,发射,吸收,透射。都将在这章得到讨论。 光学方法采用紫外光到外红外光段的电磁谱。参数有:波长——λ,能量——E/h ν,波数——WN 。 基本公式: 341.239710 1.239710 1.2397()()()()hc E h eV nm m A νλλλμλ??===== 光学显微镜 光学显微镜的简单结构如下图所示,有物镜和目镜组成。 光学显微镜有几个重要概念:分辨率,放大率和对比度。 先来看分辩率。由于光具有波粒二相性,解释很多实验现象就可以通过两方面来解释。 Airy 最先计算出了衍射图象,对于一个直径为d 的圆形光圈,第一个最小光区的角度可由下式计算 1.22sin()d λα= 中心区域包含主要光线的,叫做Airy 或者是衍射盘。 可以通过一些实验来观察这一现象,让光源透过一个小孔来照射到纸板上,就能观看到这一有趣的现象,当然是要在一个暗室里进行。在足够的光照下,可以被检测的物体并没有最小尺寸的限制。 当有两个点光源的时候,假设相距s ,就会产生叠影图象,如这个图所示。但当

两者靠近时并不能轻易得区分这两个点光源。Raleigh 认为能被区分的条件是一点的最大中心区和另一个的最小中心是一致的。也就是指两个光盘的中心都在对方的盘边上。这时中心的峰值降为单点峰值的80%。 0.610.61sin()s n NA λλθ== 这个公式给出了分辨率的计算方法,分辨率就是一个物体两部分或两点之间的最小距离。n 是物体与物镜间介质的折射率,θ是透镜对物体的半角。数值孔径NA 通常是刻在物镜上的,是表示透镜的分辨能力和形成的图象亮度的数值。这个值越高,那么这个透镜的性能也就越好。高分辨率,低的s 值。由前面的式子知,可以调整三个变量来增加或者减小s 。例如波长,蓝光的分辨率高于红光。还可以增加观察角度直到90度,NA 的实际上限是0.95。还有就是采用液体替代透镜与物体之间的空气,即提高折射率。比如采用水(n=1.33),甘油(n=1.44),油(n=1.5-1.6),但是油对NA 的限制影响s ,对绿光(λ=0.5m μ)s 只有0.25m μ。 但是高的NA 需要减少视场的深度以及减小工作范围,物体面的焦点到物镜表明的距离。这个关键概念就是焦深,可以同时处于焦点范围内的成像空间,公式是 24focus D NA λ = 同时处于焦点的集成电路的顶低两面放大200倍也是不够的。就有另一个概念场深,可以同时处于焦点内的物体空间: field D == 焦深和场深都是随着NA 的增加而减小。可以通过增加物镜的工作距离获得物镜与样品之间的更高的清晰度。 放大倍数M 是显微镜分辨能力的一个重要参数。分辨能力就是眼睛、显微镜、相机、或者图片能够提供的最高的细节。 max 1.4700min 0.002 imumNAofmicroscope M imumNAofeye === 另一种描述方法是分辨率极限的比率 lim ()200200800lim ()0.610.25itofresolution eye m m M NA NA itofresolution microscope NA m μμλμ====

功能高分子材料复习题

《功能高分子材料》复习题 一、功能高分子材料按其功能性可以分为几类? 功能高分子可从以下几个方面分类: 1.力学功能材料: 1)强化功能材料,如超高强材料、高结晶材料等; 2)弹性功能材料,如热塑性弹性体等。 2.化学功能材料: 1)分离功能材料,如分离膜、离子交换树脂、高分子络合物等; 2)反应功能材料,如高分子催化剂、高分子试剂; 3)生物功能材料,如固定化酶、生物反应器等。 3.物理化学功能材料: 1)耐高温高分子,高分子液晶等; 2)电学功能材料,如导电性高分子、超导高分子,感电子性高分子等; 3)光学功能材料,如感光高分子、导光性高分子,光敏性高分子等; 4)能量转换功能材料,如压电性高分子、热电性高分子等。 4.生物化学功能材料: 1)人工脏器用材料,如人工肾、人工心肺等; 2)高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等; 3)生物分解材料,如可降解性高分子材料等。 二、说明离子交换树脂的类型及作用机理?试述离子交换树脂的主要用途。 1.阳离子交换树脂。机理:解离出阳离子、并与外来阳离子进行交换; R-SO3H+M+——R-SO3M+H+ 2.阴离子交换树脂。机理:解离出阴离子、并与外来阴离子进行交换。 RN+H3OH-+X-——RN+H3X-+OH- 3.应用: 1)水处理:包括水质的软化、水的脱盐和高纯水的制备。 2)冶金工业:分离、提纯和回收铀、钍等超铀元素、稀土金属、重金属、轻金属、贵金属和过渡金属。 3)原子能工业:包括核燃料的分离、提纯、精制、回收等,还是原子能工业废水去除放射性污染处理的主要方法。 4)海洋资源利用:从海洋生物(例如海带)中提取碘、溴、镁等重要化工原料,用以海水制取淡水。 5)食品工业:制糖、酿酒、烟草、乳品、饮料、调味品等食品加工中都有广泛地应用。 6)医药工业:例如在药物生产中用于药剂的脱盐、吸附分离、中和及中草药有效成分的提取等。 7)化学工业:在化学实验、化工生产上是重要的单元操作,普遍用于多种无机、有机化合物的分离、提纯、浓缩和回收等。 8)环境保护:在废水、废气的浓缩、处理、分离、回收及分析检测上都有重要应用,已普遍用于电镀废水、造纸废水、矿冶废水、生活污水、影片洗印废水、工业废气等治理。

功能高分子材料发展概述

功能高分子材料发展概述 1.速干衣 速干的由来:所谓速干实际上是由英文QUICK-DRY或DRY-EASY等类似单词直译过来的,而速干是指该面料的衣物与毛质或棉质的衣物相比时,在外界条件相同的情况下,更容易将水分挥发出去,干得更快。速干衣顾名思义就是干的比较快的衣服,它并不是把汗水吸收,而是将汗水迅速地转移到衣服的表面,通过空气流通将汗水蒸发,从而达到速干的目的,一般的速干衣的干燥速度比棉织物要快50%。 速干衣物最初的设计理念主要是 基于两个方面的考虑:A、内部因素, 由于从事野外活动的人比较容易出 汗。如果运动量大的时候,全身则会 大汗淋漓。如果此时你穿的是普通的 衣物,那么它们会紧紧贴在你的皮肤 上,特别难受。但速干衣物呢,它们 能使挥发的汗水迅速得以挥发到体 外;B、外部因素,野外行走时,早 晨的露珠或是毛毛细雨都会将你的 衣物打湿,如果裤腿紧贴在腿上,那 会带来不舒服的感觉。如果是速干衣 物,那么它们的速干性能及防泼水性 能就会使你免除这些不必要的麻烦。 速干的面料:市场上的速干衣物 品牌林林总总,所使用的面料也 是数不胜数,更是令人眼花缭 乱。其实常见的户外速干衣物所 采用的面料无非是以下几种常见 面料,COOLMAX这是一种最为常 见,使用范围相对较为广泛的一 种面料,由杜邦公司研制。该面 料的突出特点是具有很强的吸汗 排汗功能,这得归功于COOLMAX 的中空结构,但选购时必须看清 楚COOLMAX在面料中所含的比 例;THEMOLITE这种聚脂纤维的保 暖性能不错,属于中空涤纶纤维 系列,但缺点是排汗性能相对要 差一些;MONI-DRY属于吸湿速干 面料,有COLUMBIA公司研制出品。其主要特点是超强的挥发性和吸水性,比一般的棉布要强2--3倍,从而有效地保持穿着者的舒适干爽;CIBAULTRAPHIL这

有机高分子材料

聚焦新型有机高分子材料 在近几年的高考中,有机高分子的命题大都以合成纤维、橡胶和塑料为背景,并和生产实际相结合。主要形式包括:一是由一种或几种单体加聚成高分子化合物或由加聚产物反推其单体;二是由一种或几种单体缩聚成高分子化合物或已知高分子的链节求其组成的单体。由于大多数合成材料的废弃物会给环境造成污染,因此“白色污染”与治理等都是高考命题的热点。 一、塑料 1.塑料的成分 塑料的主要成分是合成树脂,它的组成中还要根据需要加入某些具有特定用途的添加剂,如能提高塑料的增塑剂、防止老化的防老化剂等。 二、纤维 1.用木材、草类的纤维经化学加工制成的黏胶纤维又叫人造纤维。利用石油、天然气、煤和农副产品作原料制成单体,再经聚合制成的是合成纤维。二者均称化学纤维。

三、橡胶 1.根据来源不同,橡胶可分为天然橡胶和合成橡胶。 2.合成橡胶的原料:以石油、天然气为原料,以二烯烃和烯烃为单体聚合而成的高分子。 应用举例: 【例题1】某高分子化合物的部分结构如下: ,下列说法不正确的是 A.聚合物的结构单元为 B.聚合物的分子式为(C2H2Cl2)n

C.聚合物的单体为CHCl=CHCl D.若n表示结构单元重复的次数,其相对分子质量为97n 解析:因为高分子主链上均为碳原子,又由于单体是重复的结构单元,且碳碳单键, 单键可以旋转,所以链节是 ,单体是CHCl=CHCl。 答案:A 点拨:有机高分子几个概念比较 【例题2】卤代烃分子里的卤原子易与活泼金属阳离子结合,发生下列反应(X代表卤原子): R-X + 2Na + X-R' R-R' + 2NaX R-X + NaCN R-CN + NaX 根据下列各物质的转化关系:

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征 摘要:高分子材料在光学领域得到了广泛的应用,作为大型光学元器件的背投屏幕更是利用先进的高分子材料技术获得了各种优异的性能。简单介绍了背投屏幕的分类、材料和制造工艺,以及光学高分子材料的历史、分类和新的发展,以及主要性能表征。 前言:背投屏幕是背投显示的终端,在很大程度上影响整个光学显示系统的性能。背投屏幕分为背投软质屏幕、背投散射屏幕和背投光学屏幕。背投软质屏幕具备廉价、运输安装方便等优点,但是亮度均匀性比较差、严重的“亮斑效应”、光能利用率低、可视角度小等。分辨率低和对比度低。散射屏幕视角大、增益低、“亮斑效应” 明显。采用不同的工艺制造。有些采用在压克力板材表面进行雾化处理,增加散射。有些应用消眩光玻璃模具复制表面结构,基材内添加光扩散剂及调色剂制造。有些为降低成本直接在透明塑料板材表面粘贴背投软质屏幕制造。现在应用最广泛的就是微结构光学型背投影屏幕。光学型背投影屏幕指的是利用微细光学结构来完成光能 分布、实现屏幕功能的这一类屏幕。主要有FL

型(Fresnel lens-lenticular lenses)、FD型(Frensnel lens-Diffusion cover)、FLD型(Fresnel lens-Lenticular lenses-Diffusion cover)、BS型(Fresnel lens-Lenticular lenses-Black strips)。 微光学结构复制主要采用模压或铸造等复制技术。铸塑又称浇铸,它是参照金属浇铸方法发展而来的。该成型方法是将已准备好的浇铸原料(通常是单体,或经初步聚合或缩聚的浆状聚合物与单体的溶液等)注入一定的模具中,使其发生聚合反应而固化,从而得到与模具型腔相似的制件。这种方法也称为静态铸塑法。静态铸塑技术可用来将电铸镍模具板上的微光学图形转移到塑料表面。铸塑法得到的制件无针眼,无内力应变,无分子取向。重要的是,对于非晶态塑料来说,静态铸塑得到的制件相对于其它工艺一般具有更高的透光率,表现出优越的光学性质。背投光学屏幕属于大尺寸微光学元件,由于体积较大用模压工艺生产存在加工设备复杂、成本高、合格率低的缺点,主要用浇铸工艺来生产。 正文:高分子材料应用于光学领域最早由Arthur Kingston开始,他于1934年取得了注

光学材料特性

光学材料特性表:

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5% 常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢

耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定 耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响 日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定 耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定 耐有机溶剂性:溶于氯化烃和部分酮,酯及芳香烃中,不溶于脂肪族,碳氢化合物,醚和醇类 日光及耐气候性:日光照射微脆化 常用光学塑料-烯丙基二甘碳酸酯CR39 密度(kg/m3):25 1.32×10E3 nD ν:1.498 53.6~57.8 透过率(%):92 吸水率(%):0.2 24h 25 玻璃化温度:

高分子材料简介

康尔高分子复合板板材结构及技术特点分析介绍 1、基材是用福人牌中密度板,密度为 710-730 ,达到欧洲环保的 E1 级标准。不含任何有害的易挥发性物质。 2、背面用进口耐污的纯三聚氢氨面材贴面,耐磨且更易清洗。 3、表面用世界先进的 PUR 胶水粘合一层高分子复合材料,胶水特性:目前航天部门指定胶水,永远不脱胶。高分子复合材料特性:是我公司用两年时间反复试验后,开发出的一种 PVC 、 PET 、 Acrylic 等高分子材料的聚合体,在抗黄变、抗冲击、阻燃、耐变形、耐污和耐磨等方面在同类产品上有显著提高,是目前国际上最优质的产品。 4、使用全中国引进的第一条欧洲最先进的贴合设备,有效提高了板材表面的平整度,克服了同类产品表面不平整的缺点。 5、高分子复合材料是在原先 UV 类产品上的改良产品,除拥有原先 UV 产品的特性外,还解决了 UV 类产品常见的色差、起皱等问题,而且颜色更趋于流行时尚。 6、门板封边采用欧式的封边技术,使门板更具完美品质。铝合金封边:简洁、大方、质感分明;同色封边:幽雅、柔和、浑然一体; 高分子复合材料产品与传统类 UV 产品的理化性能对比 PET材料,其化学名称是聚对苯二甲酸乙二酯。分子结构高度对称,具有很好的光学性能和耐侯性,PET做成的各种材料均具有强度大、透明性好、无毒、防渗透、高环保等优点。因此,被广泛应用在各类食品、药品、无毒无菌的包装材料,包装瓶,电子电器,汽车配件等方面。 PET板材是目前最为环保的橱柜、衣柜门板用材料之一,其性能解析如下: 一、材料解析:

PET材料因其高环保性、无毒、达到食品级(PET材料具有强度大、透明性好、无毒、防渗透、高环保等优点。被广泛应用在各类食品、药品、无毒无菌的包装材料:像保鲜膜、饮料瓶、食用油包装瓶均是由PET材料做成)而广泛受到国内外装饰业界的关注,这也是PET 材料的最大卖点,因为现在的消费者越来越关注环保,也愿意为这类产品多花价钱买单。现在国内知名品牌像海尔高端F0橱柜(即海尔零甲醛橱柜门板全面选用PET)、柯乐芙、东方邦太等厂家的PET产品也已全面上市。 二、面材构成: 表层材料由两层构成,上层采用PET材料(表面透明部分),下层为PVC颜色膜材料。采用当今世界耐磨、耐污的美国杜邦化工原料进口添加剂,使用当今流行的德国真空覆膜技术制作而成,具有耐磨、耐压、耐高温、抗腐蚀、耐老化等特点;基材为经过国家环保认证的高环保型E0/E1级优质中密度纤维板。 PE T复合材料具有强度大、透明性好、无毒、防渗透、高环保达到食品级等优点。因此,被广泛应用在各类食品、药品、无毒无菌的包装材料:像保鲜膜、饮料瓶、食用油包装瓶均是由PE T材料做成)现在国内很多知名品牌像海尔高端F0橱柜(即海尔零甲醛橱柜门板全面选用PE T)、柯乐芙、科宝等厂家的PE T产品已全面上市。 产品优势:

07370420功能高分子材料盛维琛

功能高分子材料 Fun cti onal Polymer Materials 课程编号:07370420 学分:2 学时:45 (其中:讲课学时:30自学学时:15 实验学时:0上机学时:0)先修课程:有机化学、无机化学、分析化学、物理化学、高分子物理、高分子化学适用专业:高分子材料与工程、金属材料工程、无机非金属材料工程、复合材料与工程、化学工程与工艺、化学等专业本科四年级学生选修课 教材:王国建.功能高分子材料?北京:化学工业出版社,2010年第一版开课学院:材料科学与工程学院 一、课程的性质与任务: 功能高分子课程是一门高分子材料专业的专业选修课。它是建立在高分子物理,高分子化学和高分子结构与性能基础上,并与物理学、医学、甚至生物学密切联系的一门学科。它是研究功能高分子材料化学规律的一门科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域,对于设计和制备高性能高分子材料起着指导作用。 功能高分子课程的基本任务: 通过课堂讲授和研究进展介绍,使学生能了解几种重要的功能高分子材料的制备方法、性能与结构的一般关系等,对功能高分子材料科学有一个概括性认识,能理解功能的产生机理,并可根据所需功能设计出一些简单的具有相应功能基团的高分子材料。 本课程主要介绍功能高分子材料的发展状况,功能高分子的种类与功能,功能高分子材料的结构与性能的关系,功能高分子材料的制备策略,并结合近年来国际,国内在功能高分子材料方面的研究成果详细介绍常用的物理化学功能高分子(高吸水性树脂、离子交换树脂、高分子试剂及催化剂等)、电功能高分子(复合导电型、电子导电型、离子导电型等导电高分子材料、电致发光、电致变色等电活性高分子材料)、光功能高分子(感光性树脂、光致变色高分子、光降解、光转换高分子材料等)、生物医用高分子(生物惰性、生物降解、组织工程、药物高分子材料等)、高分子助剂(高分子絮凝剂、高分子电解质、高分子染料、高分子食品添加剂等)其它一些类型功能高分子材料制备方法,机理,应用。 二、课程的基本内容及要求:第一章功能高分子材料概述 1. 教学内容 1)功能高分子材料的研究对象和研究内容 2)功能高分子材料的发展历程

功能高分子材料

《功能高分子材料》复习 1、说明离子交换树脂的类型及作用机理?试述离子交换树脂的主要用途。 类型与作用机理:(1)离子交换树脂分为阳离子交换树脂和阴离子交换树脂两大类。能解离出阳离子、并能与外来阳离子进行交换的树脂被称作阳离子交换树脂;能解离出阴离子、并能与外来阴离子进行交换的树脂被称作阴离子交换树脂。 (2)按其物理结构的不同,可将离子交换树脂分为凝胶型、大孔型和载体型三类。 (3)氧化还原树脂。指带有能与周围活性物质进行电子交换、发生氧化还原反应的一类树脂。在交换过程中,树脂失去电子,由原来的还原形式转变为氧化形式,而周围的物质被还原。 (4)两性树脂。两性树脂中的两种功能基团是以共价键连接在树脂骨架上的,互相靠得较近,呈中和状态。但遇到溶液中的离子时,却能起交换作用。树脂使用后,只需大量的水淋洗即可再生,恢复到树脂原来的形式。 (5)热再生树脂。在同一树脂骨架中带有弱酸性和弱碱性离子交换基团。(6)螯合树脂。 用途:(1)水处理。水处理包括水质的软化、水的脱盐和高纯水的制备等。(2)冶金工业。离子交换是冶金工业的重要单元操作之一,离子交换树脂还可用于选矿。(3)原子能工业。利用离子交换树脂对核燃料进行分离、提纯、精制、回收等。离子交换树脂还是原子能工业废水去除放射性污染处理的主要方法。(4)海洋资源利用。利用离子交换树脂,可从许多海洋生物中提取碘、溴、镁等重要化工原料。(5)化学工业。离子交换树脂普遍用于多种无机、有机化合物的分离、提纯,浓缩和回收等。离子交换树脂用作化学反应催化剂,可大大提高催化效率。(6)食品工业。离子交换树脂在制糖、酿酒、烟草、乳品、饮料、调味品等食品加工中都有广泛的应用。(7)医药卫生。离子交换树脂在医药卫生事业中被大量应用。(8)环境保护。离子交换树脂在废水,废气的浓缩、处理、分离、回收及分析检测上都有重要应用。 2、按膜的功能简述高分子分离膜的分类及其分离机理。 (1)分离功能膜(包括气体分离膜、液体分离膜、离子交换膜、化学功能膜)

有机高分子材料概述

有机高分子材料概述和发展趋势 陈彪 2011327120112 材料科学与工程11(1)班 摘要:有机高分子材料包括木材、棉花、皮革等天然高分子材料和朔料、合成纤维及合成橡胶等有机聚合物合成材料。它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快。塑料、橡胶和合成纤维是有机高分子材料的典型的代表,此外,还有涂料和粘合剂等。 关键词:有机高分子材料;发展趋势 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机高分子化合物中,除碳原子外,其他主要元素为氢、氧、氮等。在碳原子与碳原子之间、碳原子与其他元素的原子之间能够形成稳定的共价键组成高分子化合物。 人们使用高分子材料的历史很早,由于它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快,自20世纪20年代以来,就已经发展了人工合成的各种高分子材料。 高分子材料有各种不同的分类方法。例如,按来源可以分为天然高分子材料和合成高分子材料。按大分子主连接结构可分为碳链高分子材料、杂链高分子材料及元素有机高分子材料等。最常用的是根据高分子材料的性能和用途进行分类。 根据性能和用途,高分子材料可分为橡胶、塑料、纤维、粘合剂、涂料、功能高分子材料以及复合材料等不同的类别。 下面以介绍这几大类高分子材料为主。 1橡胶 橡胶是有机高分子弹性化合物。在很宽的温度范围内具有优异的弹性,所以又称为高弹体。按其来源可分为天然橡胶和合成橡胶两大类。天然橡胶是从自然界含胶植物制取的一种高弹物质。合成橡胶是用人工合成的方法制得的高分子弹性材料。 橡胶具有独特的高弹性,还具有良好的疲劳强度、点绝缘性、耐化学腐蚀以及耐磨性等使它成为国民经济中不可缺少和难以代替的重要材料。 2塑料 塑料是以聚合物为主要成分,在一定条件下可塑成一定形状并且在常温下保持其形状不变的材料,习惯上包括塑料的半成品,如压塑粉等。 作为塑料基础组分的聚合物,不仅决定塑料的类型而且决定塑料的主要性能。一般而言,塑料用聚合物的内聚能介于纤维与橡胶之间,使用温度范围在其脆化温度和玻璃化温度之间。应当注意,同一种聚合物,由于制备方法、条件及加工方法的不同,常常既可作塑料用,也可做纤维用。 塑料是一类重要的高分子材料,具有质地轻、电绝缘、耐化学腐蚀、容易加工成型等特点,其性能可调范围宽,具有广泛的应用领域。 3纤维 纤维是指长度比直径大很多倍,并具有一定韧性的纤细物质。纤维的特点是分子间次价力大、形变能力小、模量高,一般为结晶聚合物。 纤维可分为两大类:一类是天然纤维,如棉花、羊毛、蚕丝和麻等,另一类是化学纤维,即用天然或合成高分子化合物经化学加工而制得的纤维。

相关文档
最新文档