人教版中考数学考纲 最新 可下载 可修改 优质文档
九年级数学总复习提纲-人教新课标版

第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类"的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数: ①定义及表示法②性质:A 。
a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C 。
0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B 。
a 与—a 在数轴上的位置;C 。
和为0,商为—1。
5.数轴:①定义(“三要素”)实数 无理数(无限不循环小数)正分数 负分数正整数 0负整数 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)②作用:A 。
直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系.6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n —1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││"是“非负数"的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A 。
高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中"到“大”。
最新人教版初中数学讲义大纲(适用于中考复习)

人教版初中中考数学复习提纲 1第一章 有理数 2一、正数和负数 31、 正数、负数: 大于零的数叫做正数,小于零的数叫做负数。
4应用:生产收入,海拔高低,气温的冷热,方位的指向,比赛的胜负,比例的增长等等。
5二、有理数 61、概念:整数和分数统称为有理数。
7 2、分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负数零正分数正整数正数或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 8注:分数和小数可以互化,所以小数可以归为分数类。
93、“0”表示的意义: 10(1)0既不是正数也不是负数(2)0是整数(3)0不是表示没有,有时表示一种趋于正负11的状态(4)0是最小的自然数,即是最小的非负整数(5)0不能作为分母(6)0等相反数是120(7)0的绝对值是0(8)0没有倒数(9)0乘以任何数都为0(10)0除以任何不为0的数13都为0. 144、数轴:通常用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素:原点,正方15向,单位长度。
16数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左17边的数小于右边的数。
185、相反数:只有符号不同的两个数叫做互为相反数。
与原点距离相等的两个数互为相反数。
19互为相反数的两个数相加得0(a ,b 互为相反数,则a+b=0) 206、绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a| 21 |a|=⎩⎨⎧<-≥)0()0(a a a a22 两个负数,绝对值大的反而小。
23 三、有理数的加减法24 1、有理数的加法:25 (1)加法法则:26 同号两数相加,取相同的符号,并把绝对值相加;27 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去28 较小的绝对值。
互为相反数的两个数相加得0.29 一个数同0相加,仍得这个数。
30 (2)运算律:加法交换律:a+b=b+a ;加法结合律:(a+b )+c=a+(b+c )31 2、有理数的减法:32 减法法则:减去一个数,等于加上这个数的相反数。
九年级数学总复习提纲-人教新课标版

第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负数均为0. 3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B 。
1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A 。
a ≠0时,a ≠—a ;B.a 与—a 在数轴上的位置;C.和为0,商为—1。
5.数轴:①定义(“三要素”)实数 无理数(无限不循环小数)正分数 负分数正整数 0负整数 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)②作用:A 。
直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││"是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││"出现,其关键一步是去掉“││”符号.二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右"(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b —a 。
九年级数学总复习提纲-人教新课标版

第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类"的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a(a ≠±1);B 。
1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠—a;B.a 与—a 在数轴上的位置;C 。
和为0,商为-1。
5.数轴:①定义(“三要素")实数 无理数(无限不循环小数)正分数 负分数正整数 0负整数 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)②作用:A 。
直观地比较实数的大小;B 。
明确体现绝对值意义;C 。
建立点与实数的一一对应关系.6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n —1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数"的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号.二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A 。
高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x —a │+│x —b │ =b —a.2。
九年级数学总复习提纲人教新课标版

九年级数学总复习提纲人教新课标版Last updated at 10:00 am on 25th December 2020第一章 实数★重点★ 实数的有关概念及性质,实数的运算☆内容提要☆一、 重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数: ①定义及表示法实无理数(无限不循环小有理数 正分数 负分数正整数 0 负整数 (有限或无限循环性整数 分正无理数 负无理数 0 实负数整数 分无理数有理数正数整数分无理数有理数│a │ a (a ≥(a 为一切实数)②性质:≠1/a (a ≠±1);a 中,a ≠0;<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:≠0时,a ≠-a;与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
a(a≥-│a │=二、 实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
中考数学考试大纲(最新版).doc

中考数学考试大纲考试目标【数与代数】有理数有理数的意义用数轴上的点表示有理数及有理数的相反数和绝对值有理数的大小比较求有理数的相反数与绝对值(绝对值内不含字母)乘方的意义有理数的加、减、乘、除、乘方运算及混合运算(以三步为主)实数平方根、算术平方根、立方根和二次根式的概念用根号表示平方根、立方根开方和乘方互为逆运算求某些非负数的算术平方根,求实数的立方根无理数和实数的概念实数与数轴上的点一一对应关系对含有较大数字的信息作出合理的解释和推断用有理数估计一个无理数的大致范围近似数与有效数字的概念二次根式的加、减、乘、除运算法则实数的简单四则运算代数式用字母表示数的意义用代数式表示简单问题的数量关系解释一些简单代数式的实际背景或几何意义求代数式的值整数指数幂的意义和基本性质用科学记数法表示数整式和分式的概念简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘)平方差、完全平方公式的推导及运用提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解运用分式基本性质进行约分和通分简单的分式加、减、乘除运算方程与方程组根据具体问题中的数量关系,列出方程或方程组解一元一次方程和二元一次方程组解可化为一元一次方程的分式方程(方程中分式不超过两个)用因式分解法、公式法和配方法解简单的数字系数的一元二次方程用观察、画图或计算等方法估计方程的解根据具体问题的实际意义,检验结果是否合理不等式与不等式组不等式的意义不等式的基本性质解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集不等式与不等式组的简单应用函数常量、变量的意义举出函数的实例函数的概念及函数的三种表示方法结合图象对简单实际问题中的函数关系进行分析求简单整式、分式和简单实际问题中的函数的自变量的取值范围求函数值用适当的函数表示法刻画某些实际问题中变量之间的关系结合对函数关系的分析,尝试对变量的变化规律进行初步预测一次函数、反比例函数和二次函数的意义根据已知条件确定一次函数和反比例函数的表示法通过对实际问题情境的分析确定二次函数表达式画一次函数、反比例函数的图象用描点法画二次函数的图象理解一次函数和反比例函数的性质通过图象认识二次函数的性质根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆)运用一次函数图象求二元一次方程组的近似解利用二次函数图象求一元二次方程组的近似解利用一次函数、反比例函数和二次函数解决实际问题【空间与图形】图形的认识认识点、线、面角的概念与表示认识度、分、秒,能进行度、分、秒的简单换算角的大小比较或估计角度的和差计算角平分线及其性质相交线与平行线补角、余角、对顶角等概念等角的余角相等、等角的补角相等、对顶角相等垂线、垂线段等概念,了解垂线段最短点到直线的距离和两跳平行线之间的距离过一点有且仅有一条直线垂直于已知直线用三角尺或量角器过一点画一条直线的垂线线段垂直平分线及其性质两直线平行同位角相等过直线外一点有且只有一条直线平行于已知直线用三角尺和直尺过已知直线外一点画这条直线的平行线三角形三角形的有关概念(内角、外角、中线、高、角平分线)画任意三角形的角平分线、中线和高三角形中线及其性质全等三角形的概念三角形全等的条件等腰三角形、等边三角形和直角三角形的有关概念等腰三角形、等边三角形和直角三角形的性质判定等腰三角形、直角三角形的条件勾股定理及其简单运用四边形多边形的概念多边形的内角和与外角和公式平行四边形、矩形、菱形、正方形、梯形的概念平行四边形、矩形、菱形、正方形、梯形的性质平行四边形、矩形、菱形、正方形、梯形之关系间的判定平行四边形、矩形、菱形、正方形的条件等腰梯形的有关性质判定等腰梯形的依据圆圆及其有关概念弧、弦、圆心角的关系点与圆、直线与圆以及圆与圆的位置关系圆的简单性质圆周角与圆心角的关系,直径所对圆周角的特征三角形的内心和外心切线的概念切线与过切点的半径之间的关系,会过圆上一点画圆的切线判定一条直线是否为圆的切线计算弧长和扇形的面积,计算圆锥的侧面积和全面积尺规作图基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线利用基本作图作三角形;已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形过不在同一直线上的三点作圆对于尺规作图题,应保留作图痕迹视图与展开图画基本几何体(直棱柱、圆柱、圆锥、球)的三视图判断简单物体(基本几何体地简单组合)的三视图根据三视图描述简单几何体或简单物体的实物原型直棱柱、圆锥的侧面展开图基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)根据展开图判断立体模型图形与变换轴对称、平移和旋转的概念轴对称、平移和旋转的基本性质按要求作出简单平面图形经过一次或两次轴对称后的图形;作出简单图形平移后的图形;作出简单图形旋转后的图形找出成轴对称的两个图形或轴对称图形的对称轴等腰三角形、矩形、菱形、等腰梯形、正多边形、圆的轴对称性及相关性质平行四边形、圆是中心对称图形探索图形之间的变换关系(轴对(3)运用三角函数解决与直角称、平移、旋转及其组合)三角形有关的简单实际问题应用轴对称、平移、旋转或他们17.图形与坐标的组合进行图案设计(1)平面直角坐标系的概念欣赏现实生活中的轴对称,欣赏(2)在给定的直角坐标系中,平移、旋转在现实生活中的应用由坐标描出点的位置,由点的位图形的相似置写出它的坐标比例的基本性质、线段的比、成(3)在方格纸上建立适当的直比例线段角坐标系,描述物体的位置黄金分割(4)在同一坐标系中感受图形图形相似、三角形相似的概念变换后点的坐标的变化图形相似的简单性质(5)运用不同的方式确定物体两个三角形相似的判定依据的位置观察和认识现实生活中的物体相18.图形与证明似(1)证明的作用、反例的作用利用图形的相似解决一些实际问(2)定义、命题、定理的含义题(3)命题的构成(区分条件与16.三角函数结论)(1)锐角三角函数 sinA,cosA,(4)逆命题的概念tanA 的概念(5)两个互逆命题的关系(2) 30°, 45°, 60°角的(6)反证法的含义三角函数值(7)综合法证明的格式(8)掌握下列“证明的依据”垂直平分线性质定理及逆定理,一条直线截两条平行直三角形三边的垂直平分线交与一线所得的同位角相等;两条直线点(外心)被第三条直线所截,若同位角相三角形中位线定理等,那么这两条直线平行;若两等腰三角形、等边三角形、直角个三角形的两边及其夹角(或两三角形的性质和判定定理角及其夹边,或三边)分别相等,平行四边形、矩形、菱形、正方则这两个三角形全等;全等三角形、等腰梯形的性质和判定定理形的对应边、对应角分别相等(9)利用“证明的依据” (上【统计与概率】一条目)中的基本事实证明下列19.统计命题:(1)收集、整理、描述和分析平行线的性质定理(内错角相等、数据同旁内角互补)(2)抽样的意义平行线的判定定理(内错角相等(3)总体、个体、样本的概念或同旁内角互补,则两直线平行)(4)用样本估计总体的思想三角形的内角和定理及推论(5)用扇形统计图表示数据直角三角形全等的判定定理(6)加权平均数的概念角平分线性质定理及逆定理,三(7)加权平均数的计算角形三个内角的平分线交于一点(8)选择合适的统计量表示数(内心)据的集中程度(9)用样本的平均数估计总体的平均数(10)极差和方差的概念(11)极差和方差的计算(12)用极差和方差表示数据的离散程度(13)用样本的方差估计总体的方差(14)频数、频率的概念(15)频数分布的意义和作用(16)列频数分布表、画频数分布直方图和频数折线图及其应用(17)根据统计结果作出合理的判断和预测(18)从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法(19)运用统计知识解决一些简单的实际问题20.概率(1)概率的意义(2)运用列表、画树状图计算简单事件发生的概率(3)用概率知识解决一些实际问题(4)通过实验获得事件发生的概率(5)理解大量重复实验的频率可作为事件发生概率的估计值【实践与综合运用(课题学习)】结合“数与代数” “空间与图形”“统计与概率”三个学习领域的内容进行课题学习内容的考核,要求如下:有初步的研究问题的方法和经验。
初三数学中考试卷考纲

一、考试目的本次考试旨在检测学生对初中阶段数学知识的掌握程度,检验学生的数学思维能力、运算能力和解决问题的能力,为高中阶段的学习奠定基础。
二、考试范围1. 数与代数(1)实数:实数的概念、性质、运算;绝对值;平方根;立方根;实数的大小比较。
(2)代数式:代数式的概念、运算;单项式、多项式、分式的概念、运算;因式分解。
(3)方程与不等式:一元一次方程、一元二次方程、二元一次方程组、不等式及其解集;方程与不等式的应用。
2. 几何(1)平面几何:点、线、面、角、三角形、四边形、圆等基本概念;三角形全等、相似、勾股定理;平行四边形、矩形、菱形、正方形、圆的性质和判定。
(2)空间几何:长方体、正方体、棱柱、棱锥、球的性质和判定;三视图;空间几何问题的计算。
3. 统计与概率(1)统计:统计图表的制作、分析;平均数、中位数、众数、方差、标准差的概念及计算。
(2)概率:概率的基本概念、概率的求法;古典概型、几何概型;随机事件的独立性。
三、考试题型1. 基础题:包括选择题、填空题,主要考查学生对基本概念、性质、公式的掌握程度。
2. 应用题:包括计算题、证明题、应用题,主要考查学生的运算能力、逻辑推理能力、解决问题的能力。
3. 综合题:包括综合应用题、探究题,主要考查学生的综合运用知识的能力、创新思维能力。
四、考试时间本次考试时间为120分钟。
五、评分标准1. 基础题:每题3分,共15分。
2. 应用题:每题5分,共20分。
3. 综合题:每题10分,共30分。
总分:65分。
六、考试注意事项1. 考生在考试过程中应遵守考场纪律,保持安静,认真作答。
2. 考生在考试过程中如遇问题,应及时向监考老师求助。
3. 考生在考试结束后,应将试卷、答题卡和草稿纸交回给监考老师。
4. 考生在考试过程中应保持卷面整洁,字迹清晰。
5. 考生应认真审题,确保答题准确无误。
七、考试说明1. 本试卷严格按照《初中数学课程标准》和《中考数学考试大纲》编写。
中考数学考试大纲(最新版) 可下载 可修改 优质文档 最新

最新中考数学考试大纲考试目标【数与代数】1.有理数(1)有理数的意义(2)用数轴上的点表示有理数及有理数的相反数和绝对值(3)有理数的大小比较(4)求有理数的相反数与绝对值(绝对值内不含字母)(5)乘方的意义(6)有理数的加、减、乘、除、乘方运算及混合运算(以三步为主)2.实数(1)平方根、算术平方根、立方根和二次根式的概念(2)用根号表示平方根、立方根(3)开方和乘方互为逆运算(4)求某些非负数的算术平方根,求实数的立方根(5)无理数和实数的概念(6)实数与数轴上的点一一对应关系(7)对含有较大数字的信息作出合理的解释和推断(8)用有理数估计一个无理数的大致范围(9)近似数与有效数字的概念(10)二次根式的加、减、乘、除运算法则3(11)实数的简单四则运算3.代数式(1)用字母表示数的意义(2)用代数式表示简单问题的数量关系(3)解释一些简单代数式的实际背景或几何意义(4)求代数式的值(5)整数指数幂的意义和基本性质(6)用科学记数法表示数(7)整式和分式的概念(8)简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘)(9)平方差、完全平方公式的推导及运用(10)提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解(11)运用分式基本性质进行约分和通分(12)简单的分式加、减、乘除运算4.方程与方程组(1)根据具体问题中的数量关系,列出方程或方程组(2)解一元一次方程和二元一次方程组(3)解可化为一元一次方程的分式方程(方程中分式不超过两个)(4)用因式分解法、公式法和配方法解简单的数字系数的一元二次3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可下载可修改优质文档
杭州初中毕业升学文化考试实施细则
数学
依据教育部制定的《义务教育数学课程标准》(2011年版)的要求,参考《浙江省初中毕业生学业考试说明》,结合本市数学教学实际,制订2016年杭州市初中毕业升学文化考试数学学科的相关说明。
一、考试笵围和要求
【考试范围】
《义务教育数学课程标准》(2011年版)中七至九年级的基本内容。
内容涉及“数与代数”、“空间与图形”、“统计与概率”和“综合与实践(课题学习)”四个领域。
【考试要求】
考试着重考查七至九年级数学的基础知识、基本技能、基本数学思想方法,以及数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想等数学思考和解决问题的能力。
注重对学生应用意识和创新意识的考查。
同时结合具体情境考查对学生情感与态度方面的培养效果。
学生在《义务教育数学课程标准》(2011年版)所确立的数学课程目标诸方面的进一步发展状况也是数学学习能力考试的重要内容。
数学学习能力考试对考试内容掌握程度的要求分为四个方面,依次用a、b、c、d表示。
其含义如下:
a——辨认。
能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象;能感受经历过的有关数学活动,并从中辨认数学对象。
b——描述。
能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系;能感受和体会有关数学活动,并能描述数学对象的有关特征。
c——运用。
能在理解的基础上,把对象运用到新的情境中;能体会具有新情境的数学活动,并通过观察、实验、推理等活动,探索、发现数学对象的一些简单特征或与其他对象的区别和联系。
d——综合。
能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务;能在数学思维活动的基础上,发现、提出数学问题并加以解决,或探索、发现数学对象的某些特征和活动中隐含的数学规律,提出猜想并加以验证等。
二、考试方式
1。