国内外高性能热塑性复合材料发展概况

合集下载

热塑性复合材料的加工技术现状应用及发展趋势

热塑性复合材料的加工技术现状应用及发展趋势

热塑性复合材料的加工技术现状应用及发展趋势热塑性复合材料是指由热塑性树脂基体和增强材料(如玻璃纤维、碳纤维等)组成的材料。

它具有良好的机械性能、化学稳定性和耐磨性,广泛应用于航空航天、汽车、电子、建筑等领域。

随着科学技术的发展,热塑性复合材料的加工技术也不断推进,应用范围也在不断扩大。

在热塑性复合材料的加工技术方面,目前主要有预浸法、树脂浸渍法和树脂缠绕法等。

预浸法是将热塑性树脂浸渍到增强材料中,形成预浸料,然后通过压塑和热固化等工艺进行成型。

这种加工技术具有成型周期短、生产效率高、成本低等优点,适用于大批量生产。

但是预浸法的工艺控制要求较高,需要保持一定的工艺温度和压力,以确保产品的质量。

树脂浸渍法是将增强材料浸渍到热塑性树脂中,形成蜂巢结构后加热熔融,然后采用压塑成型。

这种加工技术具有成型性能好、质量稳定等优点,适用于复杂产品的生产。

但是树脂浸渍法需要较长的热固化时间,加工周期较长。

树脂缠绕法是将热塑性树脂涂覆在纤维上,通过控制缠绕角度和缠绕层数,形成复杂的形状。

这种加工技术具有成型灵活、节约材料等优点,适用于空间限制较大的产品。

但是树脂缠绕法需要掌握一定的工艺技巧,以确保产品质量。

热塑性复合材料的加工技术在航空航天、汽车等行业得到了广泛的应用。

在航空航天领域,热塑性复合材料可以用于制造机翼、机身等零部件,以提高飞机的载重能力和燃油效率。

在汽车行业,热塑性复合材料可以用于制造车身、底盘等部件,以提高汽车的安全性和节能性能。

随着科学技术的不断进步,热塑性复合材料的加工技术也在不断发展。

一方面,加工工艺越来越精细化和自动化,提高了生产效率和产品质量。

另一方面,新型材料的研发和应用也为热塑性复合材料的加工技术带来了新的发展方向。

例如,纳米级增强材料的应用可以改善热塑性复合材料的力学性能和耐热性能;3D打印技术的应用可以实现复杂形状的制造,提高产品的适应性和精度。

综上所述,热塑性复合材料的加工技术在应用和发展方向上都取得了很大的进展。

8高性能复合材料发展现状与发展方向

8高性能复合材料发展现状与发展方向

8高性能复合材料发展现状与发展方向高性能复合材料是一种由两种或更多种不同物质组成的材料,具有比单一材料更优异的性能。

随着科技和工业的发展,高性能复合材料在各个领域得到了广泛应用,如航空航天、汽车、建筑、电子等。

本文将对高性能复合材料的发展现状和发展方向进行探讨。

目前,高性能复合材料在航空航天领域的应用最为广泛。

例如,碳纤维复合材料在飞机制造中得到了广泛应用,能够显著减轻飞机自重,提高燃油效率。

此外,高性能复合材料还具有高强度、高刚度、耐热性好等特点,可以用于制造发动机零部件、导弹、卫星等。

此外,高性能复合材料还在广泛应用于汽车制造,如碳纤维增强聚合物复合材料可以减轻汽车的重量,提高燃油经济性。

在高性能复合材料的发展方向方面,需要进一步提高材料的性能和制备工艺。

首先,需要加强对高性能纤维的研发,开发新型纤维材料,提高其强度和热稳定性。

同时,还需要研究新型基体材料,改善材料的耐腐蚀性、耐磨性以及耐高温性能。

其次,需要改进复合材料的制备工艺,提高材料的成型效率和质量稳定性。

例如,可以探索新型的层压技术、自动化制造和快速固化方法,以提高生产效率和降低制造成本。

另外,高性能复合材料的再生利用也是一个重要的发展方向。

目前,复合材料的废弃物处理成本较高,而且对环境造成负面影响。

因此,研究人员需要寻找有效的再生利用方法,将废弃的复合材料回收再利用。

例如,可以通过热解、化学回收等方法将复合材料分解成其原始组分,进行再利用。

此外,高性能复合材料的多功能化也是一个重要的发展方向。

传统的复合材料通常具有单一功能,例如强度高、刚度高等。

而多功能材料在具备传统功能的基础上,还具有其他新的功能,如导电、阻燃、自修复等。

多功能复合材料可以在不同领域展现出更广泛的应用前景,例如用于电子器件、传感器等。

总体而言,高性能复合材料的发展方向主要包括提高材料性能和制备工艺,进一步推动复合材料的再生利用以及实现多功能化。

未来,随着科技和工业的不断进步,高性能复合材料有望在更多领域得到应用,为人类社会的发展做出更大贡献。

国外纤维增强热塑性塑料发展概况

国外纤维增强热塑性塑料发展概况
在 成 型作 业 中经 过 螺 杆 、注 嘴 、模 腔
L T粒 料 可 使 用 玻璃 纤 维 、碳 纤 F 维 、芳 纶纤 维 或 不 锈 钢 纤 维 等 为 增 强 材 料 ,多种 聚 合 物 为 基 体 。 制 造 方法
有 拉挤 法 、改 进 的 线 材 包 皮 法 等 。 纤
1 概述
C mp e@ P 6 o lt A6 :4种 品 种
用玻 璃 纤 维增 强 , 3 %~6 %) 3种 品 (0 0 ,
种用 碳 纤 维增 强 (0 3 %~5 %) 0 ;
— —
司 由 韩 国 韩 华 公 司 收 购 后 改 为 现名 。 其 GMT 产 品 有 两 类 : ① 热 成 型 用 轻 质 片 材 (w RT) L ;② 多层 ? 片 昆杂 材 ( L RT 为芯 ,外 覆增 强热 塑 性 以 w 塑料 带 ,主 要 用真 空袋法 成 型 制 品) 。
— —
用 连 续 纤 维 无 捻 粗 纱 与 热 塑 性 塑 料 通 过挤 出 、造 粒 或 制 片 方 法 制 成 粒 料 半 成 品 ,再 经 注 射 或模 压 成 型 为 制
品 。 长 纤 维 粒 料 长 度 为 1 rm 以 上 2 a
C mp l : 所 用 纤 维 为 玻 o e@
宽 度 14 , 度 2 5 .m 厚 .mm ~5 4 .mm。 韩 华 A d l 司 原美 国 Az e 公 ze公 dl
聚 乙烯 、 聚 丙 烯 或 P T 浸 渍 E 玻 璃 E 纤 维 形 成 的 带 /片 ,宽 度 为 3 8 1 mm 或 66 3 mm ,纤 维 含 量 为 5 %~7 %。 0 0 典 型 产 品 形 式有 纵 向纤 维 单 向带 、 0/ 0 0 9 0双 向 纤 维 带 ( 为 X- l ) 称 Py 。

复合材料技术的研究现状与发展趋势

复合材料技术的研究现状与发展趋势

复合材料技术的研究现状与发展趋势复合材料技术在过去几十年中有了较大的发展,创造了大量的应用场景,也极大地推动了相关行业的进步。

本文将从研究现状以及未来的发展趋势两个方面来探讨复合材料技术的发展。

一、研究现状1.复合材料的定义复合材料是指将两种或两种以上不同材料结合在一起所形成的材料,通过对其进行复合,可以有效提高其力学性能和其他性能指标。

2.制造复合材料的方法目前制造复合材料的方法有很多种,其中最常见的方法是:手工铺层法、机器成型、自动复合机材法、自动纺织机法等。

每种方法都有其特点和适用范围。

3.复合材料的应用复合材料的应用领域非常广泛,如航空航天、汽车、船舶、建筑、电子等领域。

例如,碳纤维复合材料被广泛应用于航空领域中,可以制作轻量化的飞行器部件,如机翼、尾翼、机身等。

4.复合材料的优缺点复合材料具有较高的强度、刚度和韧性,同时还具有重量轻、易成型、良好的耐腐蚀性等优点,因此得到了广泛的应用。

但是,相对于传统材料来说,复合材料的成本较高,并且其开发和制造过程中还存在一些技术难点。

二、发展趋势1.材料的多样化和复合材料的集成在未来的发展趋势中,复合材料材料的多样化和复合材料的集成将是其中的关键点。

由于不同的材料具有不同的特性,因此它们可以用于不同的应用领域。

例如,钛合金和钢可以用于制造大型飞行器,而纤维素和树脂可以用于制造家具和纸质制品。

2.制造过程的自动化和数字化制造过程的自动化和数字化也是未来发展的重要方向。

通过在制造过程中引入自动化和数字化技术,如3D打印技术,可以提高制造效率和质量,同时降低成本。

3.绿色复合材料的开发随着环保意识的不断提高,绿色复合材料的开发也将成为一个重要的方向。

目前已有一些绿色复合材料得到了广泛应用,如生物基复合材料和可降解的聚酯复合材料等。

这些材料既具有较高的性能,又能够快速降解,并对环境产生较小的污染。

4.应用领域的扩大未来,复合材料的应用领域也将不断扩大。

例如,目前一些复合材料已经被用于制造电池、太阳能电池板和医疗器械等领域。

国内外复合管材的研究现状

国内外复合管材的研究现状

国内外复合管材的研究现状全文共四篇示例,供读者参考第一篇示例:国内外复合管材是一种具有多种优秀性能的新型管材,其由不同材料的层间结构构成,各层材料之间通过粘结剂或者机械锁合等方式进行连接。

复合管材的研究与应用在水利、石油化工、建筑等领域具有广泛的应用前景。

本文将对国内外复合管材的研究现状进行详细介绍。

一、国内复合管材研究现状在国内,复合管材的研究开始较晚,但近年来得到了飞速发展。

目前,国内研究机构和企业在复合管材领域的研究涉及到材料的选择、结构设计、制备工艺等多个方面。

在复合材料的选择方面,国内研究机构主要关注于炭纤维、玻璃纤维、碳纳米管等高强度材料的应用,以及聚合物、金属等基体材料的选择。

在结构设计方面,国内研究机构尝试不同的层间结构与连接方式,以提高管材的性能。

在制备工艺方面,国内研究机构致力于开发新的管材生产工艺,以提高管材的生产效率和质量。

三、国内外复合管材的应用前景国内外复合管材具有优异的性能,如高强度、耐腐蚀、耐磨损等特点,适用于各种领域的管道输送和结构支撑。

在水利工程领域,复合管材能够提高管道输送效率,减少管道堵塞和泄漏问题;在石油化工领域,复合管材能够提高管道的耐化学腐蚀性能,延长管道的使用寿命;在建筑领域,复合管材能够降低结构的重量,提高结构的抗震性能。

国内外复合管材的研究现状处于快速发展阶段,未来将有更广泛的应用前景。

随着先进的材料与制备技术的不断推进,复合管材将在各个领域展现出更大的潜力和应用价值。

希望国内外研究机构和企业能够共同努力,加快复合管材领域的研究与开发,推动管材领域的创新与发展。

第二篇示例:国内外复合管材的研究现状复合管材是由两种或两种以上不同材料组成的管材,具有优良的综合性能,广泛应用于管道输送、建筑工程、汽车制造等领域。

随着科技的发展和材料工艺的进步,复合管材在国内外的研究和应用也取得了长足的进步。

在国内,复合管材的研究主要集中在材料的组合和工艺的改进上。

目前,广泛应用的复合管材主要有玻璃钢管、碳纤维管、聚乙烯复合管等。

2024年热塑性树脂基复合材料市场分析现状

2024年热塑性树脂基复合材料市场分析现状

2024年热塑性树脂基复合材料市场分析现状简介热塑性树脂基复合材料是一种由热塑性树脂基体和增强材料组成的复合材料。

它具有重量轻、高强度、耐热性好等特点,在许多领域有广泛的应用。

本文将对热塑性树脂基复合材料市场的现状进行分析。

市场规模热塑性树脂基复合材料市场在过去几年里取得了快速的发展。

根据市场研究数据,2019年全球热塑性树脂基复合材料市场规模达到了XX亿美元,并预计未来几年内将保持持续增长的趋势。

应用领域热塑性树脂基复合材料在各个行业有广泛的应用。

其中,汽车行业占据了热塑性树脂基复合材料市场的一大份额。

汽车制造商逐渐意识到热塑性树脂基复合材料的优势,如轻质化、节能环保等,因此在车身、底盘等部位广泛应用。

此外,电子、航空航天、建筑等领域也都对热塑性树脂基复合材料有着较高的需求。

市场驱动因素热塑性树脂基复合材料市场的快速增长有多个因素推动。

首先,全球对轻质材料的需求不断增加,热塑性树脂基复合材料正是一个良好的选择,能够满足产品轻量化的需求。

其次,环保意识的提高也促进了热塑性树脂基复合材料市场的发展。

热塑性树脂基复合材料具有可回收再利用的特点,符合环保要求。

市场竞争态势热塑性树脂基复合材料市场竞争激烈。

当前市场上主要的竞争者包括国内外的复合材料制造商和热塑性树脂生产商。

这些企业通过不断创新和提高产品质量来争夺市场份额。

此外,市场上还存在一些新进入者,它们利用新技术和材料不断挑战传统市场。

市场前景热塑性树脂基复合材料市场前景广阔。

随着科技的进步和应用领域的不断扩大,市场上对高性能热塑性树脂基复合材料的需求将会增加。

同时,行业标准和法规的出台也将推动热塑性树脂基复合材料市场的发展。

预计未来几年内,热塑性树脂基复合材料市场规模将继续增长。

结论热塑性树脂基复合材料市场目前正处于快速发展阶段。

随着全球对轻质、高强度材料的需求不断增加,热塑性树脂基复合材料将在各个领域得到广泛应用。

在激烈的竞争环境下,企业需不断创新,提高产品质量来争夺市场份额。

2023年复合材料行业市场发展现状

2023年复合材料行业市场发展现状

2023年复合材料行业市场发展现状随着科技的不断进步和人们对质量和性能要求的提高,复合材料作为一种新型的材料已经逐渐成为制造业的重要组成部分。

复合材料因其优异的特性,在众多领域中得以广泛应用并取得了良好的经济效益和社会效益。

目前,全球复合材料行业的市场规模不断扩大,未来也将继续保持良好的发展态势。

一、全球复合材料市场需求不断增加随着可持续发展理念的深入人心,环保、节能、轻量化等成为社会关注的热点问题。

而复合材料有利于实现这些目标,具有轻质、高强度、耐腐蚀、抗疲劳等优势,使其成为航空、汽车、建筑、能源等领域中的首选材料。

目前,全球复合材料市场的需求量不断增加,预计未来几年将保持稳定的增长趋势。

根据IHS Markit最新预测数据显示,2023年全球复合材料市场规模将达到1240亿美元。

二、新兴市场的快速发展成为复合材料业的新突破口能源、交通、医疗、体育等领域中的新材料应用不断拓展,成为复合材料的新市场。

尤其是新兴经济体的快速崛起,带动逐年上升的科技投入和中产阶级的崛起,使得这些市场更加广阔。

据数据显示,近年来亚太地区的合成树脂产能持续增加,为全球复合材料市场注入新动力。

同时,新材料在环保、城市化、制造业等方面的应用也在中国、印度、东南亚等地区得到蓬勃发展,这将为全球复合材料市场注入更强有力的需求和发展动力。

三、复合材料行业技术创新助力产业快速升级高性能复合材料开发、绿色制造技术创新、智能生产设备的应用等方面的技术突破将进一步推动复合材料的生产领域的升级。

当前复合材料行业关注的“工业4.0”、高端装备制造业、新能源汽车等领域,都将为复合材料行业发展带来巨大的机遇和挑战。

除此之外,数字化技术在复合材料等材料领域的应用也起到了不小的助力,加速了新材料的科技研发和推广应用。

总体而言,从全球市场需求和发展动态来看,复合材料行业有着广阔的市场前景和宏观发展趋势。

随着技术创新和新兴市场的发展,行业将迎来飞跃式的转变。

热塑性聚氨酯发展历程

热塑性聚氨酯发展历程

热塑性聚氨酯发展历程热塑性聚氨酯(Thermoplastic Polyurethane, TPU)是一种具有良好机械性能和化学性能以及高弹性的聚合物材料。

它广泛应用于各个领域,包括汽车工业、建筑工业、体育用品、鞋材、纺织品、医疗器械等。

热塑性聚氨酯的发展可以追溯到20世纪30年代的德国。

当时,德国化学工程师奥顿·施雷拿(Otto Bayer)在拜耳公司的研究实验室中进行了一系列的实验,试图将聚氨酯合成为一种可塑性材料。

经过多年的努力,他成功地发现了一种将聚醋酸与己二酸酯(Adipate)进行反应的方法,得到了具有良好韧性和耐候性的聚氨酯弹性体。

在接下来的几十年里,热塑性聚氨酯得到了不断的改进和发展。

20世纪50年代,研究人员引入了一种叫做分散相反应的新技术,使聚氨酯具有更好的强度和耐磨性。

这项技术将多元醇和多异氰酸酯以及增韧剂混合在一起,通过控制反应条件和材料的配比,形成了一种具有更高耐磨性和强度的聚氨酯合金。

在20世纪70年代,热塑性聚氨酯得到了广泛的商业应用。

这一时期,热塑性聚氨酯的生产技术得到了进一步的改进,其机械性能和化学性能也得到了提高。

同时,研究人员还开发出了一种新的制备方法,使用有机溶剂将聚氨酯直接成型,从而减少了生产成本。

随着技术的不断进步,热塑性聚氨酯在新材料开发领域得到了广泛的应用。

目前,热塑性聚氨酯已经成为一种重要的工程塑料,并且其应用领域不断扩展。

例如,在汽车工业中,热塑性聚氨酯被用作汽车内饰和外部部件的材料,提高了汽车的安全性能和舒适性。

在医疗器械领域,热塑性聚氨酯被用于制造人工心脏瓣膜和血管支架等器械,具有良好的生物相容性和耐久性。

总的来说,热塑性聚氨酯的发展经历了多年的研究和改进,不断提高了其物理性能和化学性能。

随着技术的发展,热塑性聚氨酯的应用领域将会更加广泛,并在各个领域中发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)碳纤维。碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测碳纤维复合材料在近年内还将扩大开辟新的应用领域,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。
(3)芳纶纤维。1972年美国杜邦公司研究开发成功的全对位芳香族聚酰胺名为Kevlar的商品正式用于高性能夏合材料。1972年的产量仅为45吨,到1977年就增加到4200吨,1982年上升到21000吨,年增长速度为20%。20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。荷兰AKZO公司的子公司恩卡公司的"Twaron"系列纤维在1986年的年生产能力为1000~2000吨,预计2000年能达到15000吨的能力。日本帝人公司及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。
树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。
(1)玻璃纤维。目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。20世纪50年代末美国首先研究开发成功了高强度玻璃纤维(S-994),迄今为止,世界上仅有美、法、日、俄、加及我国六个国家能生产高强度玻璃纤维。由于高强度玻璃纤维性能价格比较优,以年增长率10%以上的速度发展。1991年西方各国的总产量已达到480吨,目前估计已在5000吨以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。
转载自《特种工程塑料网》
热塑性树脂基复合材料是20世纪80年代发展起来的,由于可以回收利用,所以在复合材料总量中的比例呈逐年增长趋势。主要品种有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和纤维热塑性片树(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PEI、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。
[科技] 国内外高性能热塑性复合材料发展概况
发表日期:2011年6月17日 本页面已被访问 823 次
在各类技术和工程高速发展的今天,对新材料的要求也达到了很高的要求。特别以是热塑性塑料为基体的复合材料已经成为复合材料大家庭中重要的一员。对于聚合物材料的聚合改性,技术难度高,需要长时间的基础知识积累和大量而烦琐的实验来实现。但是如果利用无机填料和各类金属填料或者高聚物填料来对原有的材料进行复合改性的话,进度快,见效好,成本低,且配方灵活易为客户提供多种解决方案。聚合物基体的复合材料改性已经在各类高端领域取得很好效果,且在工业领域和民用领域也已经得到非常广泛且有效的应用。
滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件。仪表盘和自动刹车控制杠等。汽车装磺类零部件多用于普通PP和添加滑石粉等无机填充材料的复合聚丙烯。美国HPM公司用20%滑石粉填充PP制成168m2、重5kg的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。
欧美发达国家热塑性树脂基复合材料占树脂基复合材料总量的3O%以上。2000年酉欧热固性树脂基复合材料产量为106万吨,热塑性复合材料为54万吨,占树脂基复合材料总量的34%。
高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型的管道、GMT(热塑性片状模塑料)模压制品如吉普车座椅支架、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。
对于热塑性复合材料如PA、PP等一般基体,由于其耐热性差一直未能得到普及应用。近年来,一方面通过对现有热塑性树脂的改性,另一方面开发高性能热塑性树脂如PPO、PEEK、PEI、PPS、PSF等,使得热塑性复合材料的应用越来越多。
我国的热塑性树脂基复合材料开始于20世纪80年代末期,近十年来取得了快速发展(见表3),2000年产量达到12万吨,约占树脂基夏合材料总产量的17%,与发达国家尚有差距。所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合Байду номын сангаас料方面未能有重大突破。我国纳米科技为聚合物改性及应用提供了良好的机遇,如纳米改性PA等,但目前仍存在复合体系单一,工业化程度不高,大多数只处于实验室研究阶段,没有完全推广实用,聚合物纳米复合材料所具备的特性和潜能,在今后很长一段时间内都要靠纳米科技开创先河和提高。
21世纪高性能树脂基复合材料技术是赋予复合材料自修复性、自分解性、自诊断性、自制功能等为一体的智能化材料。以开发高刚度、高强度。高湿热环境下使用的复合材料为重点,构筑材料、成型加工、设计、检查一体化的材料系统。组织系统上将是联盟(如美国汽车联盟)和集团化。这将更充分的利用各方面的资源(技术资源、物质资源),紧密联系各方面的优势,以推动复合材料工业的进一步发展。
(4)超高分子量聚乙烯纤维。目前市场上出售产品主要有美国Ailled公司的Spectra900和1000、DSM(荷)-Toyoba(日)联合生产的Dyneema SK60以及Mitsui(日)公司的Tekmilon I等。超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。在海上油田应用的高性能轻质复合材料方面都显示出极大的优越性,除在军事应用领域发挥举足轻重的作用外,在汽车制造、船舶制造、医疗器械、体育运动器材等领域也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视,美国1989年增长率为26%,远远高于其他高性能纤维。芳纶纤维、高分子量聚乙烯纤维在国内迄今均未实现商品化。尽管在1972年我国就开始研究芳纶纤维,1981年2月与1985年底分别对芳纶工、芳纶Ⅱ进行了技术鉴定,其高纯度料块在南通合成树脂厂试制、由上海合成纤维研究所拉制成纤维,由于单丝直径均匀性、集束性方面均存在一些问题,到20世纪90年代初的产量也仅为几吨,与国外的差距很大。
云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲事、尺寸稳定以及与金属相比的低密度、低价格等特点,利用云母/pp复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、热闹外壳、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。
目前丰田汽车工业公司与三菱化学公司共同开发成功的PP/EPR/滑石粉纳米复合材料制造汽车的前、后保险杠,已于1991年实现了商用化,由此丰田汽车上的保险杠厚度可以由4mm减少到3mm,质量约减轻1/3。丰田公司在1994年又开发出用于汽车内装饰的TSOP-2、TSOP-3等纳米复合材料。
相关文档
最新文档