高考数列递推公式题型归纳解析完整答案版

高考数列递推公式题型归纳解析完整答案版
高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版

类型1

)

(1n f a a n n +=+

解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 变式1.1:(2004,全国I ,个理22.本小题满分14分)

已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;

(II )求{ a n }的通项公式.

解:Θk k k a a )1(122-+=-,k

k k a a 3212+=+

∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+

∴)1(313-+=-a a ,2235)1(3-+=-a a …… ……k k k k a a )1(31212-+=--+

将以上k 个式子相加,得

]1)1[(2

1

)13(23])1()1()1[()333(22112--+-=-+???+-+-++???++=-+k k k k k a a

将11=a 代入,得1)1(21321112--+?=++k

k k a ,

1)1(2

1

321)1(122--+?=-+=-k k k k k a a 。

经检验11=a 也适合,∴???????--?+?--?+?=-+)(1)1(2132

1)(1)1(21321222

1

21为偶数为奇数n n a n

n n n n

类型2

n n a n f a )(1=+

解法:把原递推公式转化为

)(1

n f a a n

n =+,利用累乘法(逐商相乘法)求解。 例3:已知31=a ,n n a n n a 2

31

31+-=

+ )1(≥n ,求n a 。 解:12

31

32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---=

3437526331348531n n n n n --=

????=---L 。

变式2.1:(2004,全国I,理15)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),

则{a n }的通项1

___

n a ?=?

? 12n n =≥

解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32,用此式减去已知式,得

当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,

n a a a a a a a a a n n =???====∴-13423121,,4,3,1,

1,将以上n 个式子相乘,得2!

n a n =)2(≥n 类型3 q pa a n n +=+1(其中

p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p

q

t -=1,再利用换元法转化为等比数列求解。

变式3.1:(2006,重庆,文,14)

在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =___________ 321

-=+n n a 变式3.2:(2006. 福建.理22.本小题满分14分)已知数列{}n a 满足*

111,21().n n a a a n N +==+∈

(I )求数列{}n a 的通项公式;(II )若数列{b n }滿足12111

*44

4(1)(),n n b b b b n a n N ---=+∈L 证明:数列{b n }

是等差数列;(Ⅲ)证明:

*122311...().232

n n a a a n n

n N a a a +-<+++<∈ (I )解:*

121(),n n a a n N +=+∈Q 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的

等比数列 12.n

n a ∴+=

即 *

21().n n a n N =-∈

(II )证法一:12111

44

...4(1).n n k k k k n a ---=+Q 12(...)42.n n k k k n nk +++-∴=

122[(...)],n n b b b n nb ∴+++-= ①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ②

②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+= 21(1)20.n n nb n b ++-++=

③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+= *211(),n n n n b b b b n N +++∴-=-∈

{}n b ∴是等差数列

证法二:同证法一,得 1(1)20n n n b nb +--+= 令1,n =得1 2.b = 设22(),b d d R =+∈下面用数学归纳法证明 2(1).n b n d =+-

(1)当1,2n =时,等式成立 (2)假设当(2)n k k =≥时,2(1),k b k d =+-那么

122[2(1)]2[(1)1].1111k k k k b b k d k d k k k k +=

-=+--=++----- 这就是说,当1n k =+时,等式也成立 根据(1)和(2),可知2(1)n b n d =+-对任何*

n N ∈都成立

{}1,n n n b b d b +-=∴Q 是等差数列

(III )证明:Q

1121211

,1,2,...,,1212

2(2)2

k k k k k k a k n a ++--==<=-- 12231....2n n a a a n a a a +∴+++<

111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k k

k a k n a +++-==-=-≥-=--+-Q

1222311111111

...(...)(1),2322223223

n n n n a a a n n n a a a +∴

+++≥-+++=-->-

*122311...().232

n n a a a n n

n N a a a +∴-<+++<∈ 变式3.3:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异.

类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1

+n q

,得:

q q a q p q

a n n n n 1

1

1+?=++引入辅助数列{}n b (其中n

n n q a b =

),得:q b q p b n

n 1

1+=+再待定系数法解决。 变式4.1:(2006,全国I,理22,本小题满分12分)

设数列{}n a 的前n 项的和1412

2333

n n n S a +=

-?+,1,2,3,n =g g g (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n

n n T S =,1,2,3,n =g g g ,证明:1

32n

i i T =<∑

解:(I )当1=n 时,3

2

3434111+-==a S a 21=?a ; 当2≥n 时,)3

2

23134(3223134111+?--+?-=

-=-+-n n n n n n n a a S S a ,即n n n a a 241+=-,利用n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,

q, r 均为常数)的方法,解之得:n

n n a 24-=

(Ⅱ)将n

n n a 24-=代入①得

S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2) = 2

3×(2n+1-1)(2n -1)

T n = 2n S n = 32×2n (2n+1-1)(2n -1) = 32×(12n -1 - 1

2n+1-1

)

所以,

1

n

i i T =∑

= 32

1

(n

i =∑1

2i

-1 - 12

i+1

-1) = 32×(121-1 - 12i+1-1

) < 3

2

类型5 递推公式为n n n qa pa a

+=++12

(其中

p ,q 均为常数)。

解法一(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中s ,t 满足??

?-==+q

st p

t s

解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程

02=--q px x ,叫做数列{}n a 的特征方程。若21,x x 是特征方程的两个根,当21x x ≠时,数列{}

n a 的通项为1

211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1

211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为

11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。

解法一(待定系数——迭加法)

例4,:数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。

由025312=+-++n n n a a a ,得)(3

2

112n n n n a a a a -=-+++,且a b a a -=-12。 则数列{}n n a a -+1是以a b -为首项,

32为公比的等比数列,于是1

1)3

2)((-+-=-n n n a b a a 。 把n n ,,3,2,1???=代入,得a b a a -=-12,)32()(23?-=-a b a a ,2

34)3

2()(?-=-a b a a ,???

21)3

2

)((---=-n n n a b a a 。把以上各式相加,得

])3

2()32(321)[(21-+???+++-=-n n a b a a )(3

21)32(11

a b n ---=

-。 a b b a a a b a n n n 23)3

2

)((3)]()32(33[11-+-=+--=∴--。

解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:

02532=+-x x 。32,121=

=x x Θ,∴1

211--+=n n n Bx Ax a 1)3

2(-?+=n B A 。又由b a a a ==21,,于是

??

?-=-=???

?

??+=+=)(32332b a B a b A B A b B

A a 故1)32)((323--+-=n n b a a b a

例5:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3

1

3212+=++,求n a 。 解:由n n n a a a 3

1

3212+=

++可转化为)(112n n n n sa a t sa a -=-+++ 即n n n sta a t s a -+=++12

)(???

????

-==+?313

2st t s ?????-==?311t s 或????

?=-=131t s 这里不妨选用??

???-==311t s (当然也可选用????

?

=-

=131t s ,大家可以试一试),则)(3

1112n n n n a a a a --=-+++{}n n a a -?+1是以首项为112=-a a ,公比为31

-的等比数列,所以

11)3

1

(-+-=-n n n a a ,应用类型1的方法,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累

加之,即2101)3

1()31()31(--+??????+-+-=-n n a a 3

11)31(11

+--=

-n 又11=a Θ,所以1)3

1

(4347---=n n a 。

变式5.1:(2006,福建,文,22,本小题满分14分)已知数列{}n a 满足*

12211,3,32().n n n a a a a a n N ++===-∈

(I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式;(III )若数列{}n b 满足

12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列

(I )证明:2132,n n n a a a ++=-Q

*21

2111212(),1,3,2().n n n n n n n n

a a a a a a a a n N a a ++++++-∴-=-==∴

=∈-Q

{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列

(II )解:由(I )得*

12(),n n n a a n N +-=∈

112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+

1

2*2

2...2121().n n n n N --=++++=-∈

(III )证明:12111

44

...4(1),n n b b b b n a ---=+Q 12(...)42,n n b b b nb +++∴=

122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+②

②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20.n n n b nb +--+= ③

21(1)20.n n nb n b ++-++= ④

④-③,得2120,n n n nb nb nb ++-+=即2120,n n n b b b ++-+=*

211(),n n n n b b b b n N +++∴-=-∈

{}n b ∴是等差数列

类型6 递推公式为n S 与n a 的关系式。(或()n n S f a =)

解法:这种类型一般利用???≥???????-=????????????????=-)2()

1(11n S S n S a n n

n 与)()(11---=-=n n n n n a f a f S S a 消去n S

)2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。

例:已知数列{}n a 前n 项和2

2

14--

-=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .

解:(1)由2

21

4---=n n n a S 得:1

1121

4-++-

-=n n n a S 于是)2

12

1(

)(1

2

11--++-

+-=-n n n n n n a a S S

所以111

21-+++-=n n n n a a a n n n a a 2

1

211+=?+.

(2)应用类型4(n

n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ))的方法,上式

两边同乘以1

2

+n 得:222

11

+=++n n n n a a 由12

1412

1111=?-

-==-a a S a .于是数列{}n n

a 2是以2为首项,2为公差的等差数列,所以n n a n n

2)1(222=-+=12

-=?n n n a

变式:(06陕西,理,) 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数

列{a n }的通项a n

解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②

由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 ,

∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列 ∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3

变式: (05,江西,文,已知数列{a n }的前n 项和S n 满足S n -S n -2=3,2

3

,1),3()

2

1(211

-==≥--S S n n 且求数列

{a n }的通项公式.

解:Θ12--+=-n n n n a a S S ,∴)3()2

1(31

1≥-?=+--n a a n n n ,两边同乘以n

)1(-,可得

1111)21

(3)21()1(3)1()1(----?-=--?=---n n n n n n n a a 令

n n n a b )1(-=∴)3()2

1

(311≥?-=---n b b n n n

221)21(3---?-=-n n n b b …… ……223)2

1

(3?-=-b b

∴2

11)

21(41413])2

1()21()21[(3222

212-?-?-=+???++?-=---n n n n b b b )3()21(32312≥?+-=-n b n

又Θ111==S a ,25123122-=--

=-=S S a ,∴1)1(111-=-=a b ,25

)1(222-=-=a b ∴)1()2

1

(34)2

1

(3232511

≥?+-=?+--=--n b n n n 。

∴???

???

?

?+-?-=?-?+--=-=---.,)21(34,,)21(34)2

1()1(3)1(4)1(111

为偶数为奇数n n b a n n n n n n n n 类型7

b an pa a n n ++=+1)001(≠≠,a 、p

解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。 变式:(2006,山东,文,22,本小题满分14分)

已知数列{n a }中,111

22

n n a n a a +=

-、点(、)

在直线y=x 上,其中n=1,2,3… (Ⅰ)令{}是等比数列;求证数列n n n n b a a b ,31--=-

(Ⅱ)求数列{}的通项;n a

(Ⅲ)设分别为数列、n n T S {}

、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+??

????

为等差数列?若存在,试求出λ 若不存在,则说明理由

解:(I )由已知得 111,2,2n n a a a n +=

=+2213313,11,4424

a a a =--=--=-Q 又11,n n n

b a a +=--1211,n n n b a a +++=--

11112111(1)1

11222.1112

n n n n n n n n n n n n n n a n a n a a b a a b a a a a a a +++++++++++---

--∴====------ {}n b ∴是以34-为首项,以1

2

为公比的等比数列

(II )由(I )知,13131

(),4222n n n b -=-?=-?

1311,22n n n a a +∴--=-?21311,22a a ∴--=-?32231

1,22a a --=-???????

11311,22n n n a a --∴--=-?将以上各式相加得:1213111

(1)(),2222

n n a a n -∴---=-++???+

11111(1)

31313221(1)(1) 2.12222212

n n n n a a n n n ---∴=+--?=+---=+-- 3 2.2n n a n ∴=+-

(III )解法一:存在2λ=,使数列{}n

n

S T n

λ+是等差数列

12121113()(12)2222n n n S a a a n n =++???+=++???++++???+-Q 11(1)

(1)2

2321212

n n n n -+=?+-- 2213333(1) 3.

2222

n n n n n n

--=-+=-++

12131

(1)

313342(1).1222212

n n n n n T b b b +--=++???+==--=-+- 数列{}n n S T n λ+是等差数列的充要条件是,(n n

S T An B A n

λ+=+、B 是常数)

即2

,n n S T An Bn λ+=+

又2133333()2222n n n n n n S T λλ+-+=-+

++-+231

3(1)(1)222n n n λ-=+-- ∴当且仅当102

λ

-

=,即2λ=时,数列{

}n n

S T n

λ+为等差数列 解法二:存在2λ=,使数列{

}n n

S T n

λ+是等差数列 由(I )、(II )知,22n n a b n +=- (1)222n n n S T n +∴+=-(1)

222n n

n n n n n T T S T n n

λλ+--++=

322n n T n λ--=+又121

31(1)

313342(1)1222212

n n n n n T b b b +--=++???+==--=-+- 13233

()222n n n S T n n n λλ++--=+-+∴当且仅当2λ=时,数列{}n n S T n

λ+是等差数列 类型8 r

n n pa a =+1)0,0(>>n a p

解法:这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。 变式:(05江西,理)已知数列:,}{且满足的各项都是正数n a .),4(2

1

,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n . 解:用数学归纳法并结合函数)4(2

1

)(x x x f -=

的单调性证明: (1)方法一 用数学归纳法证明:1°当n=1时,,2

3

)4(21,10010=-==a a a a ∴210<

正确.2°假设n =k 时有.21<<-k k a a 则)4(2

1

)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时

11112()()()2k k k k k k a a a a a a ---=---+111

()(4).2

k k k k a a a a --=---

而.0,04.

0111<-∴>--<----k k k k k k a a a a a a

又.2])2(4[2

1

)4(2121<--=-=

+k k k k a a a a ∴1+=k n 时命题正确. 由1°、2°知,对一切n ∈N 时有.21<<+n n a a 方法二:用数学归纳法证明:

1°当n=1时,,2

3

)4(21,10010=-=

=a a a a ∴2010<<

1

)(x x x f -=,)(x f 在[0,2]上单调递增,

所以由假设有:),2()()(1f a f a f k k <<-即),24(22

1

)4(21)4(2111-??<-<---k k k k a a a a

也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有 (2)解法一:],4)2([2

1

)4(2121+--=-=

+n n n n a a a a 所以 21)2()2(2--=-+n n a a n

n n n n n n n n b b b b b a b 2

22121

2222211

2

)21()21(21)21(2121,2-+++----==?-=--=-=-=ΛΛ则令, 又b n =-1,所以1212)2

1(22,)21(---=+=-=n

n n n n b a b 即

解法二:Θ,2)2(2

1)4(2121+--=-=+n n n n a a a a ∴2

1)2(212n n a a -=-+

由(I )知,02>-n a ,两边取以2为底的对数,∴)2(log 21)2(log 212n n a a -+-=-+

令=n b )2(log 2n a -,则n n b b 211+-=+n

n b 21-=?∴n

n a 2122--=或1

2

)2

1(2--=n

n a

变式:(06山东理)已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,…

(1)证明数列{lg(1+a n )}是等比数列;(2)设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项;

(3)记b n =

211++n n a a ,求{b n }数列的前项和S n ,并证明S n +1

32-n T =1 解:(Ⅰ)由已知2

12n n n a a a +=+, 211(1)n n a a +∴+=+ 12a =Q 11n a ∴+>,两边取对

数得1lg(1)2lg(1)n n a a ++=+,即

1lg(1)

2lg(1)

n n a a ++=+{lg(1)}n a ∴+是公比为2的等比数列

(Ⅱ)由(Ⅰ)知1

1lg(1)2lg(1)n n a a -+=?+ 1122lg3lg3n n --=?= 1

213n n a -∴+= (*)

12(1)(1)n T a a ∴=++n …(1+a ) 012222333=????n-12…3 2

122

3+++=n-1

…+2=n 2-1

3

由(*)式得1

23

1n n a -=-

(Ⅲ)2

102n n a a a +=+Q , 1(2)n n n a a a +∴=+,11111()22

n n n a a a +∴

=-+ 11122n n n a a a +∴

=-+,又112n n n b a a =++,1

11

2()n n n b a a +∴=-

12n S b b ∴=++n …+b 122311111112(

)n n a a a a a a +=-+-+-…+11

112()n a a +=- 1

22113

1,2,31n n

n n a a a -+=-==-Q 2

2131

n

n S ∴=-

-,又2

1

3n

n T -=,2

131

n n S T ∴+

=-

类型9 )

()()(1n h a n g a n f a n n

n +=

+

解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。 例:已知数列{a n }满足:1,1

3111

=+?=

--a a a a n n n ,求数列{a n }的通项公式。

解:取倒数:

1111

3131---+=+?=n n n n a a a a ?

?????∴n a 1是等差数列, 3)1(111?-+=n a a n 3)1(1?-+=n 2

31-=?n a n 变式:(2006,江西,理,22,本大题满分14分)已知数列{a n }满足:a 1=

3

2

,且a n =n 1

n 13na n 2n N 2a n 1

*≥∈--(,)+-

(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n ,不等式a 1?a 2?……a n <2?n ! 解:(1)将条件变为:1-

n n a =n 11n 113a --(-),因此{1-n

n

a }为一个等比数列,其首项为

1-11a =13,公比13

,从而1-n n a =n 1

3,据此得a n =n n n 331?-(n ≥1)…………1?

(2)证:据1?得,a 1?a 2?…a n =

2n n 111111333

?!

(-)(-)…(-)

为证a 1?a 2?……a n <2?n !

只要证n ∈N *时有2n 111

111333?(-)(-)…(-)

>12

…………2? 显然,左端每个因式都是正数,先证明,对每个n ∈N *,

2n 111

111333?(-)(-)…(-)≥1-(2n 111333++…+)…3? 用数学归纳法证明3?式:n =1时,3?式显然成立,设n =k 时,3?式成立,

2k 1

111113

33?(-)(-)…(-)≥1-(2k 111333

++…+) 则当n =k +1时,

2k k 1111111113333???+(-)(-)…(-)(-)≥〔1-(2k 111333++…+)〕?(k 11

13+-)

=1-(2k 111333++…+)-k 113++k 113+(2k 111

333

++…+)

≥1-(2k 111333+

+…++k 1

1

3

+)即当n =k +1时,3?式也成立 故对一切n ∈N *,3?式都成立 利用3?得,

2n 111111333?(-)(-)…(-)

≥1-(2n 111333++…+)=1-n 11133113

〔-()〕

- =1-n n 11111123223〔-()〕=+()

>12

故2?式成立,从而结论成立 类型10

h

ra q

pa a n n n ++=

+1 解法:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h

ra q

pa a n n n ++=

+1(其中p 、q 、r 、h

均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程h

rx q px x ++=,当特征方程有且仅有一根0x 时,则01n a x ?

?

?

?-??是等差数列;当特征方程有两个相异的根1x 、2x 时,则12n n a x a x ??-??-??

是等比数列。

例:已知数列}{n a 满足性质:对于,3

24

,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.

解: 数列}{n a 的特征方程为,3

24

++=

x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有

.N ,)2

21211(2313)(1

1212111∈?-?-?+-=--?--=

--n r p r p a a c n n n λλλλ

∴.N ,)5

1(521

∈-=

-n c n n ∴.N ,1)5

1(521

)51

(5221

1112∈----?-=--=--n c c a n n n n n

λλ 即.N ,)

5(24

)5(∈-+--=n a n

n n 例:已知数列}{n a 满足:对于,N ∈n 都有.3

25

131+-=

+n n n a a a

(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.3

25

13+-=

x x x 变形得,025102=+-x x

特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答.

(1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a (2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=

)1(11 51131)1(531?-?-+-=n ,8

1

21-+-=n

令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在, 当n ≤4,N ∈n 时,5

17

51--=+=

n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,8

1

1)1(11N n n r p r n a b n ∈-+=--+-=

λλ

令,0=n b 则.7n n ?-=∴对于.0b N,n ≠∈n ∴.N ,743

558

1111

∈++=+-+

=+=

n n n n b a n

n λ (4)显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8

1

51)1(111∈-+-=--+-=

n n a r p r n a b n λλ令

,0=n b 则得N ,1

13

51∈--=

n n n a 且n ≥2. ∴当1

13

51--=

n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1

13

5N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.

变式:(2005,重庆,文,22,本小题满分12分)

数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(2

11≥-

=n a b n n

(Ⅰ)求b 1、b 2、b 3、b 4的值;

(Ⅱ)求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S 解法一:由已知,得n n n a a a 816521-+=

+,其特征方程为x x x 81652-+=解之得,211=x 或4

5

2=x

∴n n n a a a 816)21(6211--=-+,n

n n a a a 816)45(12451--=-+

∴452121452111--?=--

++n n n n a a a a , ∴n n n n a a a a 24)21(4521

4521111-=?-

-

=---∴42521++=-n

n n a 解法二:

(I );22

111

,111=-

=

=b a 故22718

,;718382a b ==

=-故 3331

,4;31442a b ===-故441320,.203a b ==故

(II )因231)3

4

(3832)34)(34(=?=--b b ,

2231222)3

4()34)(34(,)34()34(-=--=-b b b b

故猜想.2,3

2

}34{的等比数列公比是首项为=-q b n

因2≠n a ,(否则将2=n a 代入递推公式会导致矛盾)

,

034,34361620382

12)34(2,3

616203436816342

1

1

3

4).

1(8162511111≠--=--=--

=---=---=-

-

=-

≥-+=++++b b a a a b a a a a a b n a a

a n n n n n n n n n n n n n 因故

故2|34

|=-

q b n 确是公比为的等比数列. n n b b 23134,32341?=-=-故因, )1(34231≥+?=n b n n ,12

1

2

1

1+=

-

=

n n n n n b b a a b 得由 n n n b a b a b a S +++=Λ2211故

121()2

n b b b n

=++++L 1

(12)

53123n n -=+-1(251)3n n =+- 解法三: (Ⅰ)由,052168,2

1

12

1

111=++-+=

-

=

++n n n n n n n n a a a a b a a b 代入递推关系得 整理得

,3

4

2,0364111-==+-+++n n n n n n b b b b b b 即 .320,4,38,2,143211=====b b b b a 所以有由

(Ⅱ)由,03

2

34),34(234,342111≠=--=--=++b b b b b n n n n

所以故的等比数列公比是首项为,2,3

2}34

{=-q b n

4114

2,2(1).3333

n n n n b b n -

=?=?+≥即 1

1

1,122

n n n n n b a b b a =

=+-由得 1122n n n S a b a b a b =+++L 故121

()2

n b b b n =++++L

1

(12)

5

3123

n n -=+-1(251).3n n =+-

解法四:

(Ⅰ)同解法一 (Ⅱ)2342312)3

4(3832,38,34,32=?=-=-=

-b b b b b b 因此

故又因的等比数列公比是首项为猜想).1(81625,2231

,2,32}{111≥-+=≠?=-=-+++n a a a a b b q b b n

n

n n n

n n n n 1

22

2

18162512

112

1111---

-+=

-

-

-

=

-++n n n n n n n a a a a a b b

;3

6810366

36816--=----=

n n n n n a a a a a

3

6816368162

112

11111212-----=

-

-

-

=

-++++++n n

n n n n n n a a a a a a b b

).(23

61620368163624361n n n n

n n n n b b a a a a a a -=--=-----=

+

,23

1,2}{,0321112n n n n n b b q b b b b ?=-=-≠=

-++的等比数列是公比因 从而112211)()()(b b b b b b b b n n n n n +-++-+-=---Λ

1211(222)23n n --=++++L 114

(22)22(1).333

n n n =-+=?+≥ 11

1,122

n n n n n b a b b a ==+-由得

1122n n n S a b a b a b =+++L 故121

()2

n b b b n =++++L

1

(12)

5

3123

n n -=+-1(251).3n n =+-

类型11 q pn a a n n +=++1或n

n n pq a a =?+1

解法:这种类型一般可转化为{}12-n a 与{}n a 2是等差或等比数列求解。 例:(I )在数列}{n a 中,n n a n a a -==+6,111,求n a

(II )在数列}{n a 中,n

n n a a a 3,111==+,求n a

类型12 归纳猜想法 解法:数学归纳法

变式:(2006,全国II,理,22,本小题满分12分)设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有

一根为S n -1,n =1,2,3,…(Ⅰ)求a 1,a 2;(Ⅱ){a n }的通项公式

提示:1 1,1,2,3,...n S n -=为方程的根,代入方程可得2

(1)(1)0n n n n S a S a ----=

将n=1和n=2代入上式可得112a = 216

a = 2 求出1234,,,a a a a 等,可猜想1

(1)

n a n n =

+并用数学归纳法进行证明,本题主要考察 一般数列

的通项公式与求和公式间的关系 3 方程的根的意义(根代入方程成立)

4.数学归纳法证明数列的通项公式(也可以把1

(1)

n a n n =

+分开为

111

,,(1)1

n a n n n n =

=-++然后求和中间项均抵消只剩下首项和末项,可得n S

解:(Ⅰ)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,

于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12 当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-1

2

于是(a 2-12)2-a 2(a 2-12)-a 2=0,解得a 1=1

6

(Ⅱ)由题设(S n -1)2-a n (S n -1)-a n =0,即S n 2-2S n +1-a n S n =0 当n ≥2时,a n =S n -S n -1,代入上式得

S n -1S n -2S n +1=0 ①由(Ⅰ)知S 1=a 1=12,S 2=a 1+a 2=12+16=23 由①可得S 3=3

4

由此猜想S n =

n

n +1

,n =1,2,3,… ……8分 下面用数学归纳法证明这个结论

(i )n =1时已知结论成立 (ii )假设n =k 时结论成立,即S k =

k k +1

, 当n =k +1时,由①得S k +1=1

2-S k ,即S k +1=k +1k +2

,故n =k +1时结论也成立 综上,由(i )、(ii )可知S n =

n

n +1

对所有正整数n 都成立 ……10分 于是当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1

n (n +1),

又n =1时,a 1=12=1

1×2

,所以

{a n }的通项公式a n =

n

n +1

,n =1,2,3,… ……12分 本题难度较大,不过计算较易,数列的前面一些项的关系也比较容易发现

类型13双数列型

解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。

例:已知数列

{}

n a 中,11=a ;数列

{}

n b 中,01=b 。当2≥n 时,

)2(3111--+=n n n b a a ,)2(3

1

11--+=n n n b a b ,求n a ,n b .

解:因=+n n b a ++--)2(3111n n b a )2(3

1

11--+n n b a 11--+=n n b a

所以=+n n b a 11--+n n b a 1112222=+=+=???=+=--b a b a b a n n 即1=+n n b a (1)

又因为=

-n n b a -+--)2(3111n n b a )2(3

111--+n n b a )(31

11---=n n b a

所以=-n n b a )(3

111---n n b a =-=--))31(222n n b a ……)()31(111

b a n -=-

1)31(-=n .即=-n n b a 1)31(-=n ………(2)由(1)、

(2)得:])31(1[211-+=n n a , ])3

1(1[211

--=n n b 类型14周期型

解法:由递推式计算出前几项,寻找周期。

例:若数列{}n a 满足???

????

<≤-≤≤=+)

121(,12)210(,21

n n n n n a a a a a ,若761=a ,则20a 的值为___________。(76)

变式:(2005,湖南,文,5) 已知数列}{n a 满足)(1

33,0*11N n a a a a n n n ∈+-=

=+,则20a =

( ) (B)

A .0

B .3-

C .3

D .

2

3

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版 类型1 ) (1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 变式1.1:(2004,全国I ,个理22.本小题满分14分) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式. 解:Θk k k a a )1(122-+=-,k k k a a 3212+=+ ∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+ ∴)1(313-+=-a a ,2235)1(3-+=-a a …… ……k k k k a a )1(31212-+=--+ 将以上k 个式子相加,得 ]1)1[(2 1 )13(23])1()1()1[()333(22112--+-=-+???+-+-++???++=-+k k k k k a a 将11=a 代入,得1)1(21321112--+?=++k k k a , 1)1(2 1 321)1(122--+?=-+=-k k k k k a a 。 经检验11=a 也适合,∴???????--?+?--?+?=-+)(1)1(2132 1)(1)1(21321222 1 21为偶数为奇数n n a n n n n n 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例3:已知31=a ,n n a n n a 2 31 31+-= + )1(≥n ,求n a 。 解:12 31 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437526331348531n n n n n --= ????=---L 。 变式2.1:(2004,全国I,理15)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2), 则{a n }的通项1 ___ n a ?=? ? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32,用此式减去已知式,得

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

数列的递推公式练习

数列的递推公式练习 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

课时作业5数列的递推公式(选学) 时间:45分钟满分:100分 课堂训练 1.在数列{a n}中,a1=,a n=(-1)n·2a n-1(n≥2),则a5=() A.- C.- 【答案】 B 【解析】由a n=(-1)n·2a n-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=. 2.某数列第一项为1,并且对所有n≥2,n∈N,数列的前n项之积为 n2,则这个数列的通项公式是() A.a n=2n-1 B.a n=n2 C.a n=D.a n= 【答案】 C 【解析】∵a1·a2·a3·…·a n=n2,a1·a2·a3·…·a n-1=(n-1)2,∴两式相除,得a n=. 3.已知数列{a n}满足:a4n-3=1,a4n-1=0,a2n=a n,n∈N+,则a2009= ________,a2014=________. 【答案】10 【解析】考查数列的通项公式. ∵2009=4×503-3,∴a2009=1, ∵2014=2×1007,∴a2014=a1007,

又1007=4×252-1,∴a1007=a4×252-1=0. 4.已知数列{a n},a1=0,a n+1=,写出数列的前4项,并归纳出该数列的通项公式. 【解析】a1=0,a2==,a3===,a4===. 直接观察可以发现,把a3=写成a3=, 这样可知a n=(n≥2,n∈N+). 当n=1时,=0=a1, 所以a n=(n∈N+). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n}满足:a1=-,a n=1-(n≥2),则a4=() C.- 【答案】 C 【解析】∵a1=-,a n=1-(n≥2), ∴a2=1-=1-=5, a3=1-=1-=, a4=1-=1-=1-=-. 2.数列{a n}满足a1=,a n=-(n≥2,n∈N+),则a2013=() B.- C.3 D.-3 【答案】 A

几种常见的递推数列通项的求法之教学反思

《几种常见的递推数列通项的求法》之教学反思 数学是一门研究数量关系和空间形式的科学。数列恰好是研究数量关系的一个章节。 数列通项公式直接表述了数列的本质,是给出数列的一种重要方法。数列通项公式具备两大功能,第一,可以通过数列通项公式求出数列中任意一项;第二,可以通过数列通项公式判断一个数是否为数列的项以及是第几项等问题;因此,求数列通项公式是高中数学中最为常见的题型之一,它既考察等价转换与化归的数学思想,又能反映学生对数列的理解深度,具有一定的技巧性,是衡量考生数学素质的要素之一,因而经常渗透在高考和数学竞赛中。 我在这几年的高中教学中,从每年各省的高考真题和模拟题中,发现“数列通项公式”求法在高中解题中占有很大的比重。求数列(特别是以递推关系式给出的数列)通项公式的确具有很强的技巧性,与我们所学的基本知识与技能、基本思想与方法有很大关系,因而在平日教与学的过程中,既要加强基本知识、、基本方法、基本技能和基本思想的学习,又要注意培养和提高数学素质与能力和创新精神。这就要求无论教师还是学生都必须提高课堂的教与学的效率,注意多加总结和反思,注意联想和对比分析,做到触类旁通,将一些看起来毫不起眼的基础性命题进行横向的拓宽与纵向的深入,通过弱化或强化条件与结论,揭示出它与某类问题的联系与区别并变更为出新的命题。这样无论从内容的发散,还是解题思维的深入,都能收到固本拓新之用,收到“秀枝一株,嫁接成林”之效,从而有利于形成和发展创新的思维。 高考改革的的变化趋势是强调基础,提高能力。相对于旧版教材,当前的新课标教材以意大利著名数学家斐波那契在兔子繁殖问题中提出的“斐波那契数列12(3)n n n a a a n --=+≥”,专门定义了数列的递推公式的概念,并由此产生出了怎样应用递推关系求解数列通项公式. 正是基于数列通项求法的重要性,我决定在赛课选题中把这个知识点作为切入点。 一、要有明确的教学目标 教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。高三备课时要依据考纲,但又不拘泥于考纲,灵活运用变通。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。本节课的重点在数形结合,所以我选择的每一道例题和练习题都以数形结合为中心。 二、要能突出重点、化解难点 每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,我应该加强学生在课堂上对习题过程的展示,对数形结合思想的领悟,以图解题,让学生在黑板上亲自演练,或用投影仪展示其做题的思路和过程。 三、要善于应用现代化教学手段 在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量,从而把原来40

递推数列通项公式求法(教案)讲解学习

递推数列通项公式求 法(教案)

由递推数列求通项公式 马鞍中学 --- 李群花 一、课题:由递推数列求通项公式 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出叠加法的试用题型。 ③学生分组讨论完成叠乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、 认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法:激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾:

1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1: 在数列{a n }中 a 1=1,a n -a n-1=2n-1(n ≥ 2),求数列{a n } 的通项公式。 活动:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学生细致讲解整个解题过程。 总结:类型1:)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。 问题2:例2在数列{a n }中 a 1=1, (n ≥ 2),求数列{a n } 的通项公式。 方法归纳:利用叠乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 练习2设{a n }是首项为1的正项数列,且(n+1)a n 2+1 –na n 2 +a n+1a n =0, n n n a a 21 =-

数列题型及解题方法归纳总结99067

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

必修5--数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… (3)数列的函数特征与图象表示: 4 5 6 7 8 9 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式 二、等差数列 题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。 例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-; 等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,124971 16a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 题型三、等差中项的概念: 定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2 a b A +=

人教新课标版数学高二B版必修5素材 预习学案 2.1.2数列的递推公式(选学)

预习导航 1.体会递推公式是数列的一种表示方法. 2.理解递推公式的概念及含义,能够根据递推公式写出数列的前几项. 3.掌握由一些简单的递推公式求数列的通项公式. 1.数列的递推公式 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项1n a (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 名师点拨:(1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式. (2)递推公式也是给出数列的一种重要方法.事实上,递推公式与通项公式一样,都是关于n 的恒等式,我们可用符合要求的正整数依次去替换n ,从而可以求出数列的各项. 【做一做1】 数列2,4,6,8,10,…的递推公式是( ) A .a n =a n -1+2(n ≥2) B .a n =2a n -1(n ≥2) C .a n =a n -1+2,a 1=2(n ≥2) D .a n =2a n -1,a 1=2(n ≥2) 答案:C 2.通项公式与递推公式的区别与联系 区别 联系 通项公式 项a n 是序号n 的函数式a n =f (n ) 都是给出数列的方法,可 求出数列中任意一项 递推公式 已知a 1(或前几项)及相邻项(或相邻几项) 间的关系式 但并不是所有的数列都有递推公式.例如\r(2)精确到1,0.1,0.01,0.001,…的不足近似值排列成一列数:1,1.4,1.41,1.414,…就没有递推公式. 【做一做2-1】 已知在数列{a n }中,a 1=2,a n =a n -1+2(n ≥2),则{a n }的通项公式是 ( ) A .3n B .2n C .n D .n 2 答案:B 【做一做2-2】 在数列{a n }中,a 1=1,a 2=2,且a n +1-a n =1+(-1)n (n ≥2),则a 10=________. 解析:由题意,知a 10-a 9=1+(-1)9,a 9-a 8=1+(-1)8,a 8-a 7=1+(-1)7,…,a 3

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

数列的递推公式练习

课时作业5 数列的递推公式(选学) 时间:45分钟 满分:100分 课堂训练 1.在数列{a n }中,a 1=1 3,a n =(-1)n ·2a n -1(n ≥2),则a 5=( ) A .-16 3 C .-83 【答案】 B 【解析】 由a n =(-1)n ·2a n -1知a 2=23,a 3=-2a 2=-4 3,a 4=2a 3 =-83,a 5=-2a 4=163. 2.某数列第一项为1,并且对所有n ≥2,n ∈N ,数列的前n 项之积为n 2,则这个数列的通项公式是( ) A .a n =2n -1 B .a n =n 2 C .a n =n 2 n -12 D .a n =n +12 n 2 【答案】 C 【解析】 ∵a 1·a 2·a 3·…·a n =n 2,a 1·a 2·a 3·…·a n -1=(n -1)2,∴两式相除,得a n =n 2 n -12 . 3.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N +,则a 2 009=________,a 2 014=________. 【答案】 1 0 【解析】 考查数列的通项公式.

∵2 009=4×503-3,∴a 2 009=1, ∵2 014=2×1 007,∴a 2 014=a 1 007, 又1 007=4×252-1,∴a 1 007=a 4×252-1=0. 4.已知数列{a n },a 1=0,a n +1=1+a n 3-a n ,写出数列的前4项,并归 纳出该数列的通项公式. 【解析】 a 1=0,a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=1+13 3-13=1 2,a 4=1+a 33-a 3 =1+12 3-12 =3 5. 直接观察可以发现,把a 3=12写成a 3=2 4, 这样可知a n =n -1 n +1(n ≥2,n ∈N +). 当n =1时,1-1 1+1=0=a 1, 所以a n =n -1 n +1 (n ∈N +). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n }满足:a 1=-14,a n =1-1 a n -1(n ≥2),则a 4=( ) C .-14 【答案】 C

高中数列题型大全

高中数列题型大全Newly compiled on November 23, 2020

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a : ),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x 。

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

常见递推数列通项公式求法(教案)

问题 1:已知数列{a } , a 1 = 1 , a n +1 = n + 2 ,求{a n }的通项公式。 2 常见递推数列通项公式的求法 一、课题:常见递推数列通项公式的求法 二、教学目标 (1)会根据递推公式求出数列中的项,并能运用叠加法、叠乘法、待定系数 法求数列的通项公式。 (2) 根据等差数列通项公式的推导总结出叠加法的基本题型,引导学生分 组合作并讨论完成叠乘法及待定系数法的基本题型。 (3)通过互助合作、自主探究培养学生细心观察、认真分析、善于总结的良 好思维习惯,以及积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课时: 1 课时 六、教学手段:黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、区别递推公式与通项公式,从而引入课题 (二)新知探究: a n 变式: 已知数列 {a n } , a 1 = 1 , a n +1 = a n + 2n ,求{a n }的通项公式。 活动 1:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学 生细致讲解整个解题过程。 解:由条件知: a n +1 - a = 2n n 分别令 n = 1,2,3,? ? ? ? ??,(n - 1) ,代入上式得 (n - 1) 个 等式叠加之, 即 (a 2 - a 1 ) + (a 3 - a 2 ) + (a 4 - a 3 ) + ? ? ? ? ? ? +(a n - a n -1 ) = 2 + 2 ? 2 + 2 ? 3 + 2 ? (n - 2) + 2 ? (n - 1) 所以 a - a = (n - 1)[2 + 2 ? (n - 1)] n 1 a = 1,∴ a = n 2 - n + 1 1 n

简单数列递推题型

简单的递推数列 类型一 )(1n f a a n n +=+ 把原递推公式转化为)(1n f a a n n =-+,利用迭加法求解 1.已知数列{}n a 中,* 111,3,1N n a a a n n n ∈+==-+,则n a = 2.在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a = 类型二 n n a n f a ?=+)(1 把原递推公式转化为)(1 n f a a n n =+,利用累乘法求解 1.已知数列{}n a 满足321=a ,n n a n n a 11+=+,则n a = 2.已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,则n a = 类型三 周期型解法:由递推式计算出前几项,寻找周期 1.已知数列}{n a 满足)(1 33,0*11N n a a a a n n n ∈+-= =+,则2014a =( ) A .0 B .3- C .3 D . 2 3 2.已知数列}{n a 满足=??-+==+52012111,11,2a a a a a a a n n n Λ则 类型四. q pa a n n +=+1(其中q p ,均为常数,)0)1((≠-p pq 1.已知数列{}n a 中,11=a ,231+=+n n a a ,则n a = 2.在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则n a = 3.已知数列{}n a 满足* 111,21().n n a a a n N +==+∈则n a =

(长春市普通高中2016届高三质量监测(二)理科数学)设等差数列{}n a 的前n 项和为n S , 10a >且 659 11 a a =,当n S 取最大值时,n 的值为 A. 9 B. 10 C. 11 D. 12 (辽宁省沈阳市2015届高三教学质量监测(一)数 学(理)试题)设等差数列{}n a 满足 27a =,43a =,n S 是数列{}n a 的前n 项和,则使得n S 0>最大的自然数n 是( ) A .9 B.10 C.11 D.12 (辽宁省沈阳市2016届高三教学质量监测(一)数 学(理)试题)设数列{}n a 的前n 项和为n S ,且11a =,123n n a S +=+,则4S =____________. (新疆乌鲁木齐地区2017年高三年级第一次诊断性测试数学(理)试题)等差数列{}n a 中, 365,S 36,a ==则9S = ( ) A. 17 B. 19 C. 81 D. 100 (新疆乌鲁木齐地区2016年高三年级第一次诊断性测试数学(理)试题)设数列{}n a 的各项均为正数,其前n 项和n S 满足21 =346 n n n S a a +-(),则=n a . (甘肃省定西市通渭县榜罗中学2016届高三上学期期末数学(理)试题)已知数列{a n }是递增等比数列,a 2=2,a 4﹣a 3=4,则此数列的公比q=( ) A .﹣1 B .2 C .﹣1或2 D .﹣2或1 (甘肃省张掖市2016届高三第一次诊断考试数学(理科)试题)等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L A .5 B .9 C .3log 45 D .10

相关文档
最新文档