人教版九年级数学课时检测:22.3 第1课时 商品利润最大问题

合集下载

【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)

【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)

22.3 实质问题与二次函数第 1课时教课目标:1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y= ax2的关系式。

2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3.让学生体验二次函数的函数关系式的应用,提升学生用数学意识。

要点难点:要点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y= ax2、y= ax2+b x + c 的关系式是教课的要点。

难点:已知图象上三个点坐标求二次函数的关系式是教课的难点。

教课过程:一、创建问题情境如图,某建筑的屋顶设计成横截面为抛物线型( 曲线 AOB)的薄壳屋顶。

它的拱高AB 为4m,拱高 CO为 0.8m。

施工前要先制造建筑模板,如何画出模板的轮廓线呢?分析:为了画出吻合要求的模板,平时要先建立合适的直角坐标系,再写出函数关系式,而后依据这个关系式进行计算,放样画图。

以下列图,以AB的垂直均分线为y 轴,以过点 O 的 y 轴的垂线为 x 轴,建立直角坐标系。

这时,屋顶的横截面所成抛物线的极点在原点,对称轴是 y 轴,张口向下,所以可设它的函数关系式为:y = ax2 (a< 0) (1)AB因为 y 轴垂直均分AB,并交 AB于点 C,所以 CB2= 2(cm) ,又 CO= 0.8m,所以点 B =的坐标为 (2 ,- 0.8) 。

因为点 B 在抛物线上,将它的坐标代人(1) ,得-0.8=a×22所以a=-0.2所以,所求函数关系式是y=- 0.2x 2。

二、引申拓展问题 1:能不可以以A点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系 ?让学生认识建立直角坐标系的方法不是独一的,以 A 点为原点, AB所在的直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系也是可行的。

问题 2,若以 A 点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂直为y 轴,建立直角坐标系,你能求出其函数关系式吗?分析:按此方法建立直角坐标系,则 A 点坐标为 (0 , 0) ,B 点坐标为 (4 , 0),OC 所在直线为抛物线的对称轴,所以有AC=CB, AC=2m, O点坐标为 (2 ; 0. 8) 。

人教版九年级数学上册 22.3 第2课时 商品利润最大问题 教案

人教版九年级数学上册 22.3  第2课时  商品利润最大问题 教案

第2课时 商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入 红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题 【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润(2014·福建莆田)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图①所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数关系式y 2=mx 2-8mx +n ,其变化趋势如图②所示. (1)求y 2的解析式; (2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎨⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。

同步测评解析数学(人教九年级上)22.3.1

同步测评解析数学(人教九年级上)22.3.1

22.3实际问题与二次函数第1课时实际问题与二次函数(1)1.如图,用12 m长的木方做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的高AB(木方粗细忽略不计)为()A.1 mB.2 mC.3 mD.4 m2.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中每月获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月3.某商场购进一批L型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件.根据市场调研,若每件每降价1元,则每天销售数量比原来多3件.现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数).在促销期间,商场要想每天获得最大销售毛利润,每件应降价元,每天最大销售毛利润为元.(注:每件服装销售毛利润是指每件服装的销售价与进货价的差)4.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s 的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.5.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室长为x(单位:m),占地面积为y(单位:m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.6.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园多种x 棵橙子树.(1)直接写出平均每棵树结的橙子数y (单位:个)与x 之间的函数解析式. (2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?7.如图,在▱ABCD 中,AB=4,BC=3,∠BAD=120°,E 为BC 上一动点(不与B 重合),作EF ⊥AB 于点F ,FE ,DC 的延长线交于点G ,设BE=x ,△DEF 的面积为S.(1)求用x 表示S 的函数解析式,并写出x 的取值范围. (2)当E 运动到何处时,S 有最大值,最大值为多少?8.某城镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润P=-1100(x-60)2+41(单位:万元).当地政府拟在五年规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划五年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的三年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润Q=-99100(100-x )2+2945(100-x )+160(单位:万元). (1)若不进行开发,求五年所获利润的最大值是多少.(2)若按规划实施,求五年所获利润(扣除修路后)的最大值是多少. (3)根据(1)(2),该方案是否具有实施价值?9.某校校园内有一个大正方形花坛,如图甲所示.由四个边长均为3 m的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1 m,AE=AF=x m,在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()10.某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:已知护眼灯每天的生产量y(单位:台)是等级x(单位:级)的一次函数,若工厂将当日所生产的护眼灯全部售出,工厂应生产等级的护眼灯,才能获得最大利润元.11.每年六、七月份某市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少钱才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(单位:千克)与销售单价x(单位:元/千克)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?12. (2018·湖南衡阳中考)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件.市场调查发现,该产品每天的销售量y(单位:件)与销售价x(单位:元/件)之间的函数关系如图所示.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)求每天的销售利润W(单位:元)与销售价x(单位:元/件)之间的函数解析式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?★13.由于受干旱的影响,5月份,某市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:进入6月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(单位:元/千克)从6月第1周的2.8元/千x2+bx+c.克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-120(1)请观察题中的表格,用所学过的一次函数或二次函数的有关知识直接写出5月份y与x的函数解析式,并求出6月份y与x的函数解析式.x+1.2,6月份此种蔬(2)若5月份此种蔬菜的进价m(单位:元/千克)与周数x所满足的函数关系为m=14x+2.试问5月份与6月份分别在哪一菜的进价m(单位:元/千克)与周数x所满足的函数关系为m=-15周销售此种蔬菜1千克的利润最大?且最大利润分别是多少?★14.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(单位:万件)与销售单价x(单位:元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(单位:万元)与销售单价x(单位:元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?课后作业·测评 夯基达标1.C 设窗子的面积为y m 2,AB 的长为x m,根据题意,得y=13(12-2x )x=-23x 2+4x , 显然,当x=-42×(-23)=3时,函数y 有最大值.2.C ∵y=-n 2+14n-24=-(n-2)(n-12), ∴当y=0时,n=2或n=12.又该函数的图象开口向下,∴1月,y<0;2月、12月,y=0. ∴该企业一年中应停产的月份是1月、2月、12月.故选C . 3.7 533 设促销期间每天销售L 型服装所获得的毛利润为W 元, 由题意得W=(20+3x )(60-40-x )=-3x 2+40x+400=-3(x -203)2+1 6003. 因为x 为正整数,所以当x=7时,每天销售毛利润最大,最大值为533元. 4.3 18 设运动时间为t s(0≤t ≤6),则AE=t ,AH=6-t ,根据题意得S 四边形EFGH =S 正方形ABCD -4S △AEH =6×6-4×12t (6-t )=2t 2-12t+36=2(t-3)2+18, 所以当t=3时,四边形EFGH 的面积取最小值,最小值为18 cm 2. 5.解 (1)y=x ·50-x2=-12(x-25)2+6252, 当x=25时,y 最大,即饲养室长x 为25 m 时,占地面积y 最大. (2)由题意得y=x ·50-(x -2)2=-12(x-26)2+338,当x=26时,占地面积y 最大,即饲养室长x 为26 m 时,占地面积y 最大; 因为26-25=1≠2,所以小敏的说法不正确. 6.解 (1)y=600-5x.(2)设橙子的总产量为W 个, 由题意得W=(600-5x )(100+x ),∵W=-5x 2+100x+60 000=-5(x-10)2+60 500, ∴当x=10时,W 取得最大值且W 最大=60 500.∴果园多种10棵橙子树时,可以使橙子的总产量最大,最大总产量为60 500个. 7.解 (1)在▱ABCD 中,AB ∥CD ,EF ⊥AB ,故有DG ⊥FE ,即DG 为△DEF 中EF 边上的高. ∵∠BAD=120°,∴∠B=60°. ∴∠BEF=∠CEG=30°.在Rt △BEF 与Rt △EGC 中,EF=√32x ,CG=12CE=12(3-x ),∴DG=CD+CG=11-x2.于是S=12EF ·DG=-√38x 2+11√38x ,其中0<x ≤3.(2)由(1)知,当0<x ≤3时,S 随x 的增大而增大, 故当x=3,即E 与C 重合时,S 有最大值,且S 最大=3√3. 8.分析 (1)利用二次函数顶点公式即可求解.(2)前两年,0≤x ≤50,在对称轴的左侧,P 随x 的增大而增大,当x 最大为50时,P 值最大且为40万元, 所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地投资额为x 万元,则外地投资额为(100-x )万元.关键要注意此时的自变量只有一个,共投资100万元,将x 和(100-x )分别代入相应的关系式即可得到y 与x 的二次函数解析式,进而利用配方法或顶点公式求出最值.(3)把(1)(2)中的最值作比较即可发现该方案有极大的实施价值. 解 (1)当x=60时,P 取最大值41, 故五年获利的最大值是41×5=205(万元).(2)前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以当x=50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地投资额为x 万元,则外地投资额为(100-x )万元, 所以y=P+Q=[-1100(x -60)2+41]+(-99100x 2+2945x +160)=-x 2+60x+165=-(x-30)2+1 065,当x=30时,y 最大且为1 065,那么后三年获利最大值为1 065×3=3 195(万元),故五年获利的最大值为80+3 195-50×2=3 175(万元).(3)由(1)(2)可知该方案有极大的实施价值. 培优促能9.A S △AEF =12AE ·AF=12x 2,S △DEG =12DG ·DE=12×1×(3-x )=3-x 2,S 五边形EFBCG =S 正方形ABCD -S △AEF -S △DEG =9-12x 2-3-x 2=-12x 2+12x+152, 则y=4×(-12x 2+12x +152)=-2x 2+2x+30. ∵0<AE<AD ,∴0<x<3.综上,可得y=-2x 2+2x+30(0<x<3).故选A .10.十 1 800 设所获利润为W 元,由题意,得W=(80-2x )(x+20)=-2x 2+40x+1 600 =-2(x-10)2+1 800.由a=-2<0,知当x=10时,W 最大=1 800.故当每天生产十级护眼灯时,可获得最大利润1 800元. 11.解 (1)设荔枝售价定为y 元/千克时,水果商才不会亏本. 由题意得y (1-5%)≥(5+0.7),解得y ≥6.所以,水果商要把荔枝售价至少定为6元/千克才不会亏本. (2)由(1)可知,每千克荔枝的平均成本为6元, 由题意得w=(x-6)m=(x-6)(-10x+120)=-10(x-9)2+90.因此,当x=9时,w 有最大值.所以,当销售单价定为9元/千克时,每天获得的利润w 最大. 12.解 (1)设y 与x 的函数解析式为y=kx+b , 将(10,30),(16,24)代入y=kx+b , 得{10k +b =30,16k +b =24,解得{k =-1,b =40.故y 与x 的函数解析式为y=-x+40(10≤x ≤16). (2)W=(x-10)y=(x-10)(-x+40)=-x 2+50x-400=-(x-25)2+225, ∵a=-1<0,∴当x<25时,W 随x 的增大而增大. ∵10≤x ≤16,∴当x=16时,W 取得最大值,最大值为144.∴每件销售价为16元时,每天的销售利润最大,最大利润是144元. 13.解 (1)通过观察可见5月份价格y 与周数x 符合一次函数解析式, 即y=0.2x+1.8.将(1,2.8),(2,2.4)代入y=-120x 2+bx+c , 可得{2.8=-120+b +c ,2.4=-15+2b +c , 解之,得{b =-14,c =3.1,即y=-120x 2-14x+3.1.(2)设5月份第x 周销售此种蔬菜1千克的利润为W 1元,6月份第x 周销售此种蔬菜1千克的利润为W 2元,W 1=(0.2x+1.8)-(14x +1.2)=-0.05x+0.6, 因为-0.05<0,所以W 1随x 的增大而减小.所以当x=1时,W 1最大=-0.05+0.6=0.55.W 2=(-0.05x 2-0.25x+3.1)-(-1x +2)=-0.05x 2-0.05x+1.1. 因为对称轴为x=--0.052×(-0.05)=-0.5,且-0.05<0, 所以当x>-0.5时,y 随x 的增大而减小. 所以当x=1时,W 2最大=1.所以5月份销售此种蔬菜1千克的利润在第1周最大,最大利润为0.55元;6月份销售此种蔬菜1千克的利润在第1周最大,最大利润为1元. 创新应用14.解 (1)z=(x-18)y=(x-18)(-2x+100)=-2x 2+136x-1 800,所以z与x之间的函数解析式为z=-2x2+136x-1 800.(2)由z=350,得350=-2x2+136x-1 800,解这个方程得x1=25,x2=43.所以销售单价定为25元或43元.将z=-2x2+136x-1 800配方,得z=-2(x-34)2+512,因此,当销售单价为34元时,厂商每月能获得最大利润,最大利润是512万元.(3)结合(2)及函数z=-2x2+136x-1 800的图象(如图)可知,当25≤x≤43时,z≥350.又由这种电子产品的销售单价不能高于32元,得25≤x≤32.根据一次函数的性质,得y=-2x+100中y随x的增大而减小,所以当x=32时,每月制造成本最低.最低成本是18×(-2×32+100)=648(万元),即所求每月最低制造成本为648万元.。

人教版数学九年级上册22.3.1《实际问题与一元二次方程》说课稿1

人教版数学九年级上册22.3.1《实际问题与一元二次方程》说课稿1

人教版数学九年级上册22.3.1《实际问题与一元二次方程》说课稿1一. 教材分析《实际问题与一元二次方程》是人教版数学九年级上册第22章的一部分,这一章节的主要内容是让学生通过解决实际问题,学会建立一元二次方程,并掌握求解一元二次方程的方法。

在九年级学生的学习过程中,这是从具体形象思维向抽象逻辑思维过渡的重要环节,对于培养学生的数学素养,提高解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程有了一定的理解,这为学习一元二次方程打下了基础。

但是,由于一元二次方程的抽象性,学生可能在学习过程中存在一定的困难。

因此,在教学过程中,需要关注学生的学习困难,引导学生逐步理解一元二次方程的实质。

三. 说教学目标1.知识与技能目标:学生能理解一元二次方程的概念,学会列出一元二次方程,掌握一元二次方程的解法。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:一元二次方程的概念,列方程的方法,求解一元二次方程的算法。

2.教学难点:一元二次方程的实际应用,对一元二次方程解法的理解。

五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,引导学生通过解决实际问题,发现一元二次方程,学习一元二次方程。

同时,利用多媒体教学手段,展示实际问题的图像,帮助学生更直观地理解问题。

六. 说教学过程1.导入:通过一个实际问题,引入一元二次方程的概念。

2.新课导入:讲解一元二次方程的定义,列出一元二次方程的一般形式。

3.实例解析:通过具体的实际问题,引导学生学会列方程,理解方程的含义。

4.方法讲解:讲解一元二次方程的解法,包括因式分解法、配方法、求根公式等。

5.练习巩固:学生独立解决一些实际问题,巩固所学知识。

6.总结拓展:引导学生思考一元二次方程在实际生活中的应用,提高学生的应用能力。

人教版九年级数学上册22.3 第2课时 商品利润最大问题同步测试题附答案

人教版九年级数学上册22.3 第2课时 商品利润最大问题同步测试题附答案

第2课时 商品利润最大问题知识点1、二次函数常用来解决最优化的问题,这个问题实质是求函数的最大(小)值。

2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a - 时,二次函数有最大(小)值y=244ac b a-。

一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。

若每件商品的售价为x元,则可卖处(350-10x)件商品。

商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.54.9h t t =-(t 单位s ,h 单位m )可用来描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是( )A 、0.71sB 、0.70sC 、0.63sD 、0.36s5、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数图像大致为( )A B 第5题 C D6、已知二次函数2(0)y ax bx c a =++≠的图像如图所示,现有下列结论:①abc >0;②24b ac -<0;③c <4b ;④a+b >0.则其中正确的结论的个数是( )A 、1B 、2C 、3D 、47、如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A 、x=10,y=14B 、x=14,y=10C 、x=12,y=15D 、x=15,y=12第6题 第8题二、填空题1、已知卖出盒饭的盒数x (盒)与所获利润y (元)满足关系式:21200357600y x x =-+-,则卖出盒饭数量为 盒时,获得最大利润为 元。

(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(1)

(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第22章二次函数22.3实际问题与二次函数一、选择题(本大题共15小题,共45分)1.用60m长的篱笆围成矩形场地,矩形的面积S随着矩形的一边长L的变化而变化,要使矩形的面积最大,L的长度应为()A.63B.15 C.20 D.1032.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120∘.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()2A.182B.1832C.2432D.45323.把一个边长为3cm的正方形的各边长都增加x cm,则正方形增加的面积y(cm2)与x(cm)之间的函数表达式是()A.=(+3)2B.=2+6+6C.=2+6D.=24.为了节省材料,某工厂利用岸堤MN(岸堤足够长)为一边,用总长为80米的材料围成一个由三块面积相等的小长方形组成的长方形ABCD区域(如图),若BC=(x+20)米,则下列4个结论:AB=(10-1.5x)米;BC=2CF;AE=2BE;长方形ABCD的最大面积为300平方米.其中正确结论的序号是()A. ① ②B. ① ③C. ② ③D. ③ ④5.某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-22+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元6.某商店销售某种商品所获得的利润y(元)与所卖的件数x(件)之间的关系是y=-2+1000x-200000,则当0<x⩽450时,销售该商品所获得的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150B.160C.170D.1808.一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件需降价()A.3.6元B.5元C.10元D.12元9.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天的销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示,最大利润是()A.180元B.220元C.190元D.200元10.某涵洞的截面是抛物线形状,如图所示的平面直角坐标系中,抛物线对应的函数解析式为y=-142,当涵洞水面宽AB为16m时,涵洞顶点O至水面的距离为()A.−6 B.12 C.16 D.24 11.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为=−1252,当水面离桥拱顶的高度DO是4时,这时水面宽度AB为()A.−20B.10C.20D.−1012.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数解析式为()A.=266752B.=−266752 C.=1313502 D.=−131350213.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(−80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,且AC ⊥x 轴.若OA =10米,则桥面离水面的高度AC 为()A.16940米 B.174米 C.16740米 D.154米14.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是()15.A.2 B.3 C.4 D.5 16.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米二、填空题(本大题共3小题,共9分)17.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.18.19.已知一个直角三角形两直角边的和为20cm,则这个直角三角形的最大面积为2.20.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价金额x(元)之间满足函数关系式y=-22+60x+800,则获利最多为元.三、解答题(本大题共10小题,共66分)21.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为50m,设中间隔墙长为x(m),总占地面积为y(2).(墙的厚度忽略不计)22.(1)求y关于x的函数解析式和自变量的取值范围.(2)请给出一种设计方案,使两间饲养室的占地总面积最大,并求出这个最大面积.23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x米,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)设计费能达到24000元吗?为什么?(3)当x是多少时,设计费最多?最多是多少元?24.如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向终点B运动,同时点Q从点B出发沿BC以1cm/s的速度向终点C运动,它们其中一点到达终点后就都停止运动.25.(1)几秒后,点P,D的距离是点P,Q的距离的2倍.(2)几秒后,△DPQ的面积达到最小,最小面积为多少?26.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件.已知这种商品的零售价在一定范围内每降低1元,其日销售量就增加1件,为了促销决定对其降价x元销售,则每件的利润为____________元,每日的销售量为____________件,每日的利润y=____________(写出自变量的取值范围),所以当每件降价____________元时,每日获得的利润最大,为____________元.27.28.29.30.31.32.33.34.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降低1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式.(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,则该休闲裤的销售单价应定为____________元.35.某商场销售一款成本为40元的可控温杯,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=-x+120.36.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额-成本);37.(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?38.39.40.41.42.43.44.45.在乡村振兴政策的帮扶下,某农户欲通过电商平台销售自家农产品,已知这种产品的成本价为10元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)之间大致有如下关系:w=-4x+80.设这种产品每天的销售利润为y(元).(1)当销售价定为多少时,每天销售的利润最大?最大利润是多少?(2)如果物价部门规定这种产品的销售价不得高于20元/千克,该农户要想每天获得84元的销售利润,销售价应定为多少?46.如图,有一座抛物线型拱桥,桥下面在正常水位时AB宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.47.(1)在如图所示的平面直角坐标系中,求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?48.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图2+bx+c表示,且抛物线上的点中所示的平面直角坐标系,抛物线可以用y=-16m.C到墙面OB的水平距离为3m,到地面OA的距离为17249.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离.(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?50.如图,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图所示方式建立平面直角坐标系.51.52.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.2.C3.C4.D5.B6.B7.A8.B9.D10.C11.C12.B13.B14.B15.A16.15017.5018.125019.解:(1)y=x(50-3x)=-32+50x,(0<x<503).(2)y=-32+50x=-3(−253)2+6253,当x=253时,max=6253,253m,平行于墙的围墙长度为25m,6253m2.20.解:(1)∵矩形的一边长为x米,周长为16米,∴另一边长为(8-x)米.∴S=x(8-x)=-2+8x(0<x<8).理由:当设计费为24000元时,广告牌的面积为24000÷2000=12(平方米),即-2+8x=12,解得x=2或x=6.∵x=2和x=6在0<x<8范围内,∴设计费能达到24000元.(3)∵S=-2+8x=-(−4)2+16,0<x<8,∴当x=4时,最大=16.则16×2000=32000(元).∴当x=4时,设计费最多,最多是32000元.21.解:(1)3秒后,点P,D的距离是点P,Q的距离的2倍.(2)4秒后△DPQ的面积最小,最小面积为242.22.解:(30-x),(20+x),-2+10x+600(0≤x≤30,且x为整数),5,625.23.解:(1)由题意,得y=100+5(80-x)=-5x+500.(2)由题意,得w=y(x-40)=(-5x+500)(x-40)=-52+700x-20000=-5(−70)2+4500.∵a=-5<0,∴当x=70时,w有最大值,最大=4500.(3)60.24.解:(1)根据题意得S=y(x-40)=(-x+120)(x-40)=-x2+160x-4800;(2)∵S=-x2+160x-4800=-(x-80)2+1600,∴当x=80时,S取得最大值,最大值为1600,答:当销售单价定为80元时,该公司每天获取的利润最大,最大利润是1600元.25.解:(1)根据题意可得y=w(x-10)=(x-10)(-4x+80)=-42+120x-800=-4(−15)2+100,∴当x=15时,y有最大值,为100.故当销售价定为15元/千克时,每天最大销售利润为100元.(2)当y=84时,可得84=-42+120x-800,整理,得2-30x+221=0,解得1=13,2=17.经检验,符合题意.故当销售价定为13元/千克或17元/千克时,该农户每天可获得销售利润84元.26.解:(1)设所求抛物线的解析式为y=2(a≠0).由CD=10m,可设D(5,b).∵AB=20m,水位上升3m就达到警戒线CD,∴B(10,b-3).把点D,B的坐标分别代入y=2,得25=,100=−3,解得=−125,=−1.∴y=-1252.(2)∵b=-1,∴拱桥顶O到CD的距离为1m.∴10.2=5(小时).∴再持续5小时到达拱桥顶.27.解:(1)由题意,得点B的坐标为(0,4),点C的坐标为(3,172),∴,=−16×32+3+.解得=2,=4.∴该抛物线的函数关系式为y=-162+2x+4.∵y=-162+2x+4=-16(−6)2+10,∴拱顶D到地面OA的距离为10m.(2)当x=6+4=10时,y=-162+2x+4=-16×102+2×10+4=223>6,∴这辆货车能安全通过.(3)当y=8时,-162+2x+4=8,即2-12x+24=0,∴1=6+23,2=6-23.∴两排灯的水平距离最小是6+23-(6-23)=43(m).28.解:(1)由题意得:A(-4,0),C(0,4),设抛物线的解析式为y=2+k(a≠0),则16+=0,=4,解得=−14=4,∴抛物线对应的函数关系式为y=-142+4.(2)2+0.42=2.2,当x=2.2时,y=-14×2.22+4=2.79,2.79-0.5=2.29(m).答:该货车能够安全通过的最大高度为2.29m.。

人教版2019年初中九年级数学:计算图形面积的最大值、商品利润最大问题、拱桥问题和运动中的抛物线针对提高

人教版2019年初中九年级数学:计算图形面积的最大值、商品利润最大问题、拱桥问题和运动中的抛物线针对提高

)若商场平均
子可以使橙子的总产量在20
某类产品按质量共分为生产最低档次产品每件利润为
奶,
x
万元用于修建一条公路,两年修成,通车前该特产只能在当年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投
代入解析式可得出此抛物
,正
,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。

1m水面的宽度是多少?(结
现测得,当水面宽时,涵洞顶点与水面

.4m.请判断这辆汽车能否
在水池中央垂直于水面处安装一个柱子OA 水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在
处出手时离地面20/9 m,与篮筐中心
4m(B处),设篮球运行的路线
已知乙跳起后摸到的最大高度为 3.19m,他如何做才能盖
有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿
2.4m;集装箱顶部离地面
所示,现测得,当水面宽AB=1.6m
ED是多少?是否会超过。

22.3商品利润最大问题(教案)-2021-2022学年九年级上册初三数学(人教版)

22.3商品利润最大问题(教案)-2021-2022学年九年级上册初三数学(人教版)
22.3商品利润最大问题(教案)-2021-2022学年九年级上册初三数学(人教版)
一、教学内容
《22.3商品利润最大问题》-2021-2022学年九年级上册初三数学(人教版)
1.理解并掌握利润的概念,以及影响利润的因素;
2.利用一元二次方程解决实际问题中的最大利润问题;
3.通过实际案例,分析并建立利润最大化的数学模型;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《商品利润最大问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过如何让商品卖出更高利润的情况?”(例如:商店打折时如何定价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何实现商品利润最大化的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调利润计算公式和一元二次方程求解这两个重点。对于难点部分,我会通过具体例子和直观图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与商品利润最大化相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过改变售价和成本来观察利润的变化。
五、教学反思
今天我们在课堂上探讨了商品利润最大问题,从理论到实践,让学生们尝试解决实际问题。回顾整个教学过程,我觉得有几个地方值得反思。
首先,我发现学生们在理解利润概念和计算公式上并没有太大困难,但在将实际问题抽象成数学模型时,部分学生感到困惑。这说明我们在教学中需要更加注重培养学生的数学建模能力,让他们学会如何将现实问题转化为数学语言。
4.掌握如何从数学角度提出问题、分析问题、解决问题的方法;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 商品利润最大问题知识点1、二次函数常用来解决最优化的问题,这个问题实质是求函数的最大(小)值。

2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a - 时,二次函数有最大(小)值y=244ac b a-。

一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。

若每件商品的售价为x 元,则可卖处(350-10x)件商品。

商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.54.9h t t =-(t 单位s ,h 单位m )可用来描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是( )A 、0.71sB 、0.70sC 、0.63sD 、0.36s5、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数图像大致为( )A B C D6、已知二次函数2(0)y ax bx c a =++≠的图像如图所示,现有下列结论:①abc >0;②24b ac -<0;③c <4b ;④a+b >0.则其中正确的结论的个数是( )A 、1B 、2C 、3D 、47、如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )A B C D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A 、x=10,y=14B 、x=14,y=10C 、x=12,y=15D 、x=15,y=12二、填空题1、已知卖出盒饭的盒数x (盒)与所获利润y (元)满足关系式:21200357600y x x =-+-,则卖出盒饭数量为 盒时,获得最大利润为 元。

2、人民币存款一年期的年利率为x ,一年到期后,银行会将本金和利息自动按一年期定期存款储蓄转存。

如果存款额是a 元,那么两年后的本息和y 元的表达式为 (不考虑利息税)。

11、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。

为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施。

经调查发现:若这种衬衫每降价2元,商场平均每天可多售出4件,则商场降价后每天的盈利y (元)与降价x (元)的函数关系式 。

3、已知正方形ABCD 的边长是1,E 为CD 边的中点,P 为正方形ABCD 边上的一个动点,动点P 从点A 出发,沿A →B →C →E 运动,到达E 点.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当13y =时,x 的值= .4、如图,抛物线y=ax2-4和y=-ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为14、如图,点P在抛物线y=x2-4x+3上运动,若以P为圆心,为半径的⊙P与x轴相切,则点P的坐标为。

5、如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s 的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.三、解答题1、某旅馆有30个房间供旅客住宿。

据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元/天,就会有一个房间空闲。

该旅馆对旅客住宿的房间每间要支出各种费用20元/天(没住宿的不支出)。

当房价定为每天多少时,该旅馆的利润最大?2、最近,某市出台了一系列“三农”优惠政策,使农民收入大幅度增加。

某农户生产经销一种农副产品,已知这种产品的成本价为20元每千克。

经市场调查发现,该产品每天的销售量w (千克)与销售量x (元)有如下的关系:w=-2x+80。

设这种产品每天的销售利润为y (元)。

(1)求y 与x 之间的函数关系式;(2)当销售价定为多少元每千克时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元每千克,该农户想要每天获得150元的销售利润,销售价应定为多少?3、与某雪糕厂由于季节性因素,一年之中产品销售有淡季和旺季,当某月产品无利润时就停产。

经调查分析,该厂每月获得的利润y (万元)和月份x 之间满足函数关系式2y x ax b =-++,已知3月份、4月份的利润分别是9万元、16万元。

问(1)该厂每月获得的利润y (万元)和月份x 之间的函数关系式;(2)该厂在第几个月份获得最大利润?最大利润为多少?(3)该厂一年中应停产的是哪几个月份?通过计算说明。

4、(黄冈)某技术开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买这种新型产品,公司决定商家一次性购买这种新型产品不超过10件时,每件按3000元销售;若一次性购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元。

(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x 件,开发公司所获得的利润为y 元,求y (元)与x (元)之间的函数关系式,并写出自变量的取值范围;(3)该公司的销售人员发现:当商家一次性购买产品的件数超过某一数量时,,会出现随着一次购买数量的增多,公司所获的利润反而减少这一情况。

为使商家一次购买的数量越来越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)5、(长沙)在长株潭建设两型社会的过程中。

为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工。

已知生产这种产品的成本价为每件20元。

经过市场调查发现,该产品的销售单价定为25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:40(2530)250.5(3035)x xyx x-≤≤⎧=⎨-≤⎩<。

(年获利=年销售收入-生产成本-投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(件)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分是10万元的固定捐款;另一部分则是每销售一件产品,就抽出一元作为捐款。

若出去第一年的最大获利(或是最小亏损)以及第二年的捐款后,到第二年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的单位。

(选作)参考答案选择题1、D 2、B 3、B 4、D 5、D 6、B 7、B 8、D二.填空题 1、600 240000 2、()21y a x =+ 3、226080y x x =-++ 4、2533或 5、0.16 6、(-2,1)()2+()2 7、3三.解答题1、解:设每天的房价为60+5x 元,则有x 个房间空闲,已住宿了30-x 个房间.∴度假村的利润y=(30-x )(60+5x )-20(30-x ),其中0≤x ≤30.∴y=(30-x )•5•(8+x )=5(240+22x-x2)=-5(x-11)2+1805.因此,当x=11时,y 取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大。

2、解:(1)y=(x-20)w=(x-20)(-2x+80)=-2x2+120x-1600,∴y 与x 的函数关系式为:y=-2x2+120x-1600;(3分)(2)y=-2x2+120x-1600=-2(x-30)2+200,∴当x=30时,y 有最大值200,∴当销售价定为30元/千克时,每天可获最大销售利润200元;(6分)(3)当y=150时,可得方程:-2(x-30)2+200=150,解这个方程,得x1=25,x2=35,(8分)根据题意,x2=35不合题意,应舍去,∴当销售价定为25元/千克时,该农户每天可获得销售利润150元.3、解:(1)把点(3,9),(4,16)代入函数关系式:99316164a b a b =-++⎧⎨=-++⎩解得:1424a b =⎧⎨=-⎩∴y=-x2+14x-24(2)当1472(1)x =-=⨯-时,=25y 最大∴7月份获得最大利润,最大利润是25万元.x2-14x+24=0解得:x1=2,x2=12.所以第二月和第十二月份无利润,根据二次函数的性质,第一月份的利润为负数,因此一年中应停产的是第一月份,第二月份和第十二月份.4、解:(1)设件数为x,依题意,得3000-10(x-10)=2600,解得x=50,答:商家一次购买这种产品50件时,销售单价恰好为2600元;(2)当0≤x≤10时,y=(3000-2400)x=600x,当10<x≤50时,y=[3000-10(x-10)-2400]x,即y=-10x2+700x当x>50时,y=(2600-2400)x=200x∴y=⎧⎪⎨⎪⎩600x(0≤x≤10,且x为整数)−10x2+700x(10<x≤50,且x为整数)200x(x>50,且x为整数)(3)由y=-10x2+700x可知抛物线开口向下,当x=35时,利润y有最大值,此时,销售单价为3000-10(x-10)=2750元,答:公司应将最低销售单价调整为2750元.5、解:(1)∵25<28<30,y=⎧⎨⎩40−x(25≤x≤30)25−0.5x(30<x≤35)∴把x=28代入y=40-x得,∴y=12(万件),答:当销售单价定为28元时,该产品的年销售量为12万件;(2)①当25≤x≤30时,W=(40-x)(x-20)-25-100=-x2+60x-925=-(x-30)2-25,故当x=30时,W最大为-25,即公司最少亏损25万;②当30<x≤35时,W=(25-0.5x)(x-20)-25-100=21356252x x-+-=21(35)12.52x---故当x=35时,W最大为-12.5,即公司最少亏损12.5万;对比①,②得,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万;(3)①当25≤x≤30时,W=(40-x)(x-20-1)-12.5-10=-x2+61x-862.5≥67.5,-x2+61x-862.5≥67.5,化简得:x2-61x+930≤0解得:30≤x≤31,当两年的总盈利不低于67.5万元时,x=30;②当30<x≤35时,W=(25-0.5x)(x-20-1)-12.5-10=2135.5547.567.5 2x x-+-≥化简得:x2-71x+1230≤0当两年的总盈利不低于67.5万元时,30≤x≤35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x≤35.。

相关文档
最新文档