铁路牵引网的供电方式与接触网结构
铁路供电系统介绍

一次设备介绍
牵引变压器
牵引变压器是将三相电力系统的电能传输给二个各自带负载的单相牵引线 路。二个单相牵引线路分别给上下行机车供电。在理想的情况下,二个单相 负载相同。所以,牵引变压器就是用作三相变二相的变压器。 根据变压器绕组数量及接线方式,主要有: (1)单相变压器 (2)平衡变压器 (3)YN,d11变压器 (4)V/V变压器 (5) V/X变压器 (6)SCOTT变压器
不同运行状态下具有明显差异的电气量有:流过电力元件的相电流、序 电流、功率及其方向;元件的运行相电压幅值、序电压幅值;元件的电压与 电流的比值即“测量阻抗”等。 第二步: 通过比较,保护装置按一定的逻辑关系判定故障的类型和范围,最 后确定是否应该使断路器跳闸、发出信号或不动作,并将对应的指令传给执 行输出部分。 第三步:执行输出元件根据逻辑判断部分传来的指令,发出跳开断路器的跳 闸脉冲及相应的动作信息、发出警报或不动作。
(二)牵引供电系统简介
1 2
3
4 5
7
9
6
2 8
G1 2
3 10
牵引供电系统示意图
1—区域变电所或发电厂;2—高压输电线;3—牵引变电所; 4—馈电线;5—接触网;6—钢轨;7—回流线; 8—分区所;9—电力机车;10—开闭所
(二)牵引供电系统简介
牵引所亭分类 (1)牵引变电所 (2)分区所 (3)开闭所 (4)AT所
进线1
进线2
1QF
2QF
7QF
3QF
4QF
5QF
6QF
8QF
(4)AT所
采用AT供电方式时,在沿线间隔10km左右设置一个自耦变压器站(AT所)
1AT
2AT
接JD
接JD
接触网结构

四) 支柱和基础
是用来承受接触悬挂和支持装置的负荷,并将接触悬挂固定 在规定的高度
1. 支柱按材质分为钢柱和钢筋混凝土支柱; 2. 按用途分为中间柱、转换柱、中心柱、锚柱、定
位柱、道岔柱、软横跨柱、硬横跨柱和桥支柱。
二 接触网的结构
简单悬挂 简单链形悬挂 弹性链形悬挂 复链形悬挂
弹性吊索 接触线
右线:右DK1+601至 DK5+636 左线:DK0+000至 DK5+636 盘锦北至 右DK1+601 与哈大联络线
线 材 用途
线材规格
正线(承力索+接触线) JTM-120+CTMH–150
正线(承力索+接触线) JTM-120+CTMH–150
正线(承力索+接触线) JTM -95+ CTHA-120
硬
横
吊
柱
跨
横 梁 钢 柱
硬横跨
三) 定位装置
是使电力机车受电弓滑板在运行中与接触线始终良好 地接触取流,将接触线按受电弓运行要求进行定位的 装置。
作用:
1. 使接触线始终在受电弓滑板的工作范围内,保证 电车机车良好的取流,避免脱弓,造成成事故。
2. 将接触线在直线区段的“之”字力、曲线区段的 水平力及风力传递给腕臂
方式,其中硬横跨也是以腕臂结构安装的一种。 3. 隧道和桥梁等大型建筑物处则据其内部结构而有不
同的设计形式,必要时采用特殊结构(如大限界框 架、多线路腕臂等方式)。
腕
臂
是安装在支柱上(由平腕臂、斜腕臂、支持等组成),用 以支持接触悬挂,并起传递负荷的作用腕臂管一般采用圆
结 钢管制成。目前常速铁路一般采用无缝型热镀锌钢管,客
高速铁路牵引供电概述

1.1 牵引供电方式
2.BT供电方式
BT供电方式就是在牵引供电系统中加 装吸流变压器(3~4 km安装一台)和 回流线。这种供电方式由于在接触网 同高度的外侧增设了一条回流线,回 流线上的电流与接触网上的电流方向 相反,因此大大减轻了接触网对邻近 通信线路的干扰。采用BT供电方式的 电路是由牵引变电所、接触悬挂、回 流线、轨道及吸上线等组成。牵引变 电所作为电源向接触网供电;动车组 列车运行于接触网与轨道之间;吸
正馈线与轨道之间的电压也是25 kV。自 耦变压器是并联在接触悬挂和正馈线之间 的,其中性点与钢轨(保护线)相连接。 彼此相隔一定距离(一般间距为10~16 km)的自耦变压器将整个供电区段分成 若干个小的区段,叫作AT区段,从而形 成了一个多网孔的复杂供电网络。接触悬 挂是去路,正馈线是回路。接触悬挂上的 电流与正馈线上的电流大小相等、方向相 反,因此其电磁感应影响可以互相抵消, 故对邻近的通信线有很好的防护作用。
高
速 铁
项目
高速铁路牵引供电概述
路
高速铁路牵引供电概述
高速铁路的牵引供电系统,其本身没有发电设备,而是从电力系统获取电能。 目前,牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、 同轴电力电缆(coaxial cable,CC)供电方式、直供加回流线供电方式、单 边供电方式和双边供电方式等。
1.1 牵引供电方式
3.AT供电方式
随着铁路电气化技术的发展及动车组的投 入运行,传统的供电方式已不能适应铁路 发展的需要,各国开始采用AT供电方式。 AT供电方式就是在牵引供电系统中并联 自耦变压器的供电方式。实践证明,AT 供电方式是一种既能有效地减弱接触网对 邻近通信线的电磁感应影响,又能适应高
牵引网供电方式

• 直接供电方式
单边和双边供电为正常的供电方式,还有一种非 正常供电方式(也称事故供电方式)叫越区供电, 如下图所示。
1—故障牵引变电所;2—越区供电分区。
• 直接供电方式
越区供电是当某一牵引变电所因故障不能正 常供电时,故障变电所担负的供电臂,经开关设备 与相邻供电臂接通,由相邻牵引变电所进行临时供 电。这种供电方式称越区供电。因越区供电增大了 该变电所主变压器的负荷,对电器设备安全和供电 质量影响较大,因此,只能在较短时间内实行越区 供电,是避免中断运输的临时性措施。
1 3 5 2
1
4
2
I2
I1
5
•1—接触网; •2—为轨道; •3—为回流线; •4—为吸流变压器,变比1:1,一次线圈串接入接触网, 二次线圈串接入回流; •5—为吸上线,一端接回流线,另一端与轨道或吸流变压 器线圈中点连接,以提供从电力机车到轨道的返回电流流 到回流线中去的通路。
这种装置的防护作用在于:把本来是尺寸很大的接触 网—轨道大地回路改变成尺寸相对很小的接触网—回流线 回路。 当牵引电流流经吸流变压器原边时,副边在回流线中 产生很大的互感电势。吸流变压器的作用也就是在接触网 和回流线之间集中地加大互感。即: 设吸流变压器原边电流为I1,匝数为ω 1;副边电流I2, 匝数为ω 2。根据磁势平衡关系: I 2 ω 2 ≈ I1 ω 1 又因为变比为1:1,则ω 1=ω 2,所以 I2≈I1 说明:采用吸流变后,只有变压器原边的激磁电流仍 流经轨道和大地,且电流数量很小。 如果不设吸流变,单凭接触网和回流线之间的分布互 感,仅约10-20%牵引电流经回流线流回。
自耦变压器供电方式(AT) 日本铁路为防止通讯干扰,在实行交流电气 化的前期,在牵引网中普遍应用了BT供电方式。 但当高速、大功率机车在这种电路中通过吸 流变压器分段时,在受电弓上会产生强烈电弧, 为了克服此缺点,后来发展了一种新的牵引网供 电方式—自耦变压器供电方式。
牵引变电所的几种供电方式

电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而就是从电力系统取得电能。
目前我国一般由110kV以上得高压电力系统向牵引变电所供电。
目前牵引供电系统得供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆与直供加回流线供电方式四种,京沪、沪杭、浙赣都就是采用得直供加回流线方式。
一、直接供电方式直接供电方式(T—R供电)就是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所得供电方式。
这种供电方式得电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低。
但由于接触网在空中产生得强大磁场得不到平衡,对邻近得广播、通信干扰较大,所以一般不采用。
我国现在多采用加回流线得直接供电方式。
二、BT供电方式所谓BT供电方式就就是在牵引供电系统中加装吸流变压器(约3~4km 安装一台)与回流线得供电方式。
这种供电方式由于在接触网同高度得外侧增设了一条回流线,回流线上得电流与接触网上得电流方向相反,这样大大减轻了接触网对邻近通信线路得干扰、BT供电得电路就是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成。
由图可知,牵引变电所作为电源向接触网供电;电力机车(EL)运行于接触网与轨道之间;吸流变压器得原边串接在接触网中,副边串接在回流线中。
吸流变压器就是变比为1:1得特殊变压器、它使流过原、副边线圈得电流相等,即接触网上得电流与回流线上得电流相等。
因此可以说就是吸流变压器把经钢轨、大地回路返回变电所得电流吸引到回流线上,经回流线返回牵引变电所。
这样,回流线上得电流与接触网上得电流大小基本相等,方向却相反,故能抵消接触网产生得电磁场,从而起到防干扰作用。
以上就是从理论上分析得理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线得电流总小于接触网上得电流,因此不能完全抵消接触网对通信线路得电磁感应影响。
另外,当机车位于吸流变压器附近时回流还就是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上得电流会小于接触网上得电流,这种情况称为“半段效应”。
牵引变电所的几种供电方式

电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而是从电力系统取得电能。
目前我国一般由110kV以上的高压电力系统向牵引变电所供电。
目前牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆和直供加回流线供电方式四种,京沪、沪杭、浙赣都是采用的直供加回流线方式。
一、直接供电方式直接供电方式(T—R供电)是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所的供电方式。
这种供电方式的电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低。
但由于接触网在空中产生的强大磁场得不到平衡,对邻近的广播、通信干扰较大,所以一般不采用。
我国现在多采用加回流线的直接供电方式。
二、BT供电方式所谓BT供电方式就是在牵引供电系统中加装吸流变压器(约3~4km安装一台)和回流线的供电方式。
这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,这样大大减轻了接触网对邻近通信线路的干扰。
BT供电的电路是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成。
由图可知,牵引变电所作为电源向接触网供电;电力机车(EL)运行于接触网与轨道之间;吸流变压器的原边串接在接触网中,副边串接在回流线中。
吸流变压器是变比为1:1的特殊变压器。
它使流过原、副边线圈的电流相等,即接触网上的电流和回流线上的电流相等。
因此可以说是吸流变压器把经钢轨、大地回路返回变电所的电流吸引到回流线上,经回流线返回牵引变电所。
这样,回流线上的电流与接触网上的电流大小基本相等,方向却相反,故能抵消接触网产生的电磁场,从而起到防干扰作用。
以上是从理论上分析的理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线的电流总小于接触网上的电流,因此不能完全抵消接触网对通信线路的电磁感应影响。
另外,当机车位于吸流变压器附近时回流还是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上的电流会小于接触网上的电流,这种情况称为“半段效应”。
铁路牵引网的供电方式与接触网结构

铁路牵引网的供电方式与接触网结构1 牵引网的供电方式铁路牵引供电系统的主要功能是将地方电力系统的电能引入牵引变电所,通过牵引变电所和接触网等,向电力机车提供持续电能。
牵引网主要由馈电线、接触网、钢轨、回流线组成。
馈电线(Feeder)是指从牵引变电所母线连接出来连接到接触网之间的传输导线。
接触网(Catenary)悬挂在铁道钢轨线正上方,对地标称电压27.5kV,是沿电气化铁路架空敷设的供电网,通过受电弓向电力机车或动车组提供电能。
接触网主要由承力索、吊弦、接触线组成,接触线与路轨轨面的高度通常为 6.5m。
牵引网供电方式主要有:直接供电方式、BT供电方式、AT供电方式、CC供电方式。
目前我国高速铁路和客运专线普遍采用带回流线的AT 供电方式。
1.1 AT供电方式AT(Auto-Transformer)供电方式的即自耦变压器供电方式,AT 供电方式具有更好的防干扰效果和更大的牵引能力,目前我国高速铁路和载重铁路基本使用AT 供电模式,牵引变电所的进线电源为交流110kv或220 kV,出线电压为交流2×27.5 kV。
牵引变电所主变压器输出二次侧分别接于牵引馈线(T)相和(F)相,每隔10~15km 设立一个自耦变压器所,并联接入牵引网中,变压器的首端和尾端与接触网的(T)相和(F)相相连,绕组的中点与钢轨相连接。
接触网和正馈线中的电流大小相等,方向相反,且电流大小仅为电力机车电力的一半,减少了电弧对接触网烧伤和受电弓滑板等问题,对邻近通信线路的干扰大大降低。
与其它供电方式相比,线路上的电压降可以减少一半,因此供电臂可延长一倍,达到50km—60km。
采用AT 供电方式无需加强绝缘就能使供电回路的电压提高一倍,在AT 区段电力机车是由前后两个AT 所同时并联供电,因此适宜与高速铁路和重载铁路等大负载电流运行。
图1 A T供电方式2 接触网结构高速铁路接触网功能是从牵引变电所引入电能,并将电能输送到沿铁路钢轨运行的电力机车的受电弓上。
牵引供电系统基本原理1-1

1 牵引供电系统的构成 2 牵引网供电方式(直供,BT, AT); 3 变压器、压互、流互原理
4 电气化铁路接地系统
5 扼流变压器工作原理
6 继电保护原理
参考书籍
1.《牵引供电系统分析》李群湛 贺建闽 2.《电气化铁道供电系统》曹建猷 3.《交流电气化铁道牵引供电系统》谭秀炳
1 牵引供电系统的构成
轨道: 在非电牵引情形下只作为列车的导轨。在电力牵引时,轨道除仍 具有导轨功能外,还需要完成导通回流的任务。因此,电力牵引的轨道, 需要具有良好的导电性能。
回流线:是连接轨道和牵引变电所的导线。通过回流线把轨道中的 回路电流导入牵引变电所的主变压器。
电气化铁路三大技术课题
① 负序电流:
动态单相取流,产生负序电流输入电力系统; 措施:三相-两相变压器;变电所换向连接;
牵引变电所
把电力系统供应的电能变换成适合电力机车牵引要求的电能
牵引变电所: 把电力系统供应的电能变换成适合电力机车牵引要求的电 能。
馈电线: 连接牵引变电所和接触网的导线。它将牵引变电所变换后的 电能送到接触网。
接触网: 是一种悬挂在轨道上方,沿轨道敷设的、和铁路轨顶保持一 定距离的输电网。通过电动车组的受电弓和接触网的滑动接触,牵引电能 就由接触网进入电动车组,从而驱动牵引电动机使列车运行。
电力系统向牵引供电系统供电示意图
牵引变电所:核心元件为变压器 (1) 三相YNd11接线; (2)单相Ii接线; (3)单相Vv接线; (4) Scott接线。
牵引网: 由馈线、接触网、轨(地)、回流线组 成。
(1) 直接供电方式 (2) 带回流线的直接供电方式 (3) 吸流变压器(BT)供电方式 (4) 自耦变压器(AT)供电方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁路牵引网的供电方式与接触网结构
1 牵引网的供电方式
铁路牵引供电系统的主要功能是将地方电力系统的电能引入牵引变电所,通过牵引变电所和接触网等,向电力机车提供持续电能。
牵引网主要由馈电线、接触网、钢轨、回流线组成。
馈电线(Feeder)是指从牵引变电所母线连接出来连接到接触网之间的传输导线。
接触网(Catenary)悬挂在铁道钢轨线正上方,对地标称电压27.5kV,是沿电气化铁路架空敷设的供电网,通过受电弓向电力机车或动车组提供电能。
接触网主要由承力索、吊弦、接触线组成,接触线与路轨轨面的高度通常为 6.5m。
牵引网供电方式主要有:直接供电方式、BT供电方式、AT供电方式、CC供电方式。
目前我国高速铁路和客运专线普遍采用带回流线的AT 供电方式。
1.1 AT供电方式
AT(Auto-Transformer)供电方式的即自耦变压器供电方式,AT 供电方式具有更好的防干扰效果和更大的牵引能力,目前我国高速铁路和载重铁路基本使用AT 供电模式,牵引变电所的进线电源为交流110kv或220 kV,出线电压为交流2×27.5 kV。
牵引变电所主变压器输出二次侧分别接于牵引馈线(T)相和(F)相,每隔10~15km 设立一个自耦变压器所,并联接入牵引网中,变压器的首端和尾端与接触网的(T)相和(F)相相连,绕组的中点与钢轨相连接。
接触网和正馈线中的电流大小相等,方向相反,且电流大小仅为电力机车电力的一半,减少了电弧对接触网烧伤和受电弓滑板等问题,对邻近通信线路的干扰大大降低。
与其它供电方式相比,线路上的电压降可以减少一半,因此供电臂可延长一倍,达到50km—60km。
采用AT 供电方式无需加强绝缘就能使供电回路的电压提高一倍,在AT 区段电力机车是由前后两个AT 所同时并联供电,因此适宜与高速铁路和重载铁路等大负载电流运行。
图1 A T供电方式
2 接触网结构
高速铁路接触网功能是从牵引变电所引入电能,并将电能输送到沿铁路钢轨运行的电力机车的受电弓上。
接触网主要包括支柱和导线,导线包括传输线(T 线)、承力索、正馈线(F
线)和保护线(PW 线),其中T线负责电能传输并向列车供电,F 线与T 线一起构成电能传输线。
T 线与F 线架设在同一支柱上,相对距离较小,二者相对中性线的电压均为27.5 kV,但是相位相反,两者的电流大小相等方向相反,对邻近通信线路的电磁干扰大为减少,且二者线路上的电流均为牵引电流的1/2,线路上的电压降可减少1/2。
PW 线为中性线,其主要作用是避免接触网支柱接地部分直接与轨道相连,以减少对轨道电路的干扰,在接触网发生接地故障时,PW 线为短路电流提供通道,有利于提高继电保护动作的可靠性。
图2 接触网结构
图3 接触网结构示意图
架设于高架桥上的接触网上、下行线路对称布置,档距为50m,每侧设有T 线和 F 线两条馈电导线,其中T 线由承力索和悬吊在其下方的接触线构成。
此外,每侧还设有一条起保护回流作用的架空地线(PW 线)。
根据京津城际客运专线的具体设计参数,接触网 F 线、T 线承力索和T 线接触线对轨面的高度分别为7.4、6.9 和5.3m,PW 线的安装位置与T 线承力索等高,架桥跨距为32m,高度为10m~16m。
如下图所示。
图4 高架接触网示意图
高铁接触网的结构特点决定了 F 线是最易遭受雷击的,F 线位于接触网外侧最高点,构成了对T线、PW 线的屏蔽,直击雷和感应雷都主要对F 线造成威胁。
因此为提高接触网的耐雷水平,新型的接触网结构如下图所示。
在立杆支柱顶端假设一条架空避雷地线(GW 线),架空地线直接固定在支架上,并与钢柱相连。
图5 带架空地线接触网示意图
3 接触网雷击
高速铁路接触网防雷设计是依电力系统35kv输电线路和普速铁路接触网的规范为依据的,在整个接触网防雷线中几乎不架避雷线,只把避雷针加在几个比较关键的设备处。
直击雷主要从三个地方侵入接触网,第一是雷击正馈线,使悬式绝缘子发生闪络;第二是雷击承力索,使腕臂绝缘子发生闪络;第三是雷击保护线,两种绝缘子均可能闪络。
根据实测结果可知,牵引网AF线悬式绝缘子雷击闪络概率远高于腕臂绝缘子雷击闪络的概率。
京津线2009年统计数据表明AF线绝缘子的破坏概率超过了T线绝缘子破坏概率的30倍;此外,在京沪等其他高速铁路中也有同样的现象。
造成这种现象的原因是:AF 线位于承力索外侧,且略高于承力索,对承力索有屏蔽保护作用,雷击两侧AF线的概率比雷击承力索的概率要大得多。