气相色谱分析中地化参数的意义

合集下载

油源对比及运移的地化指标

油源对比及运移的地化指标

油源对比及运移地化指标参考1.1气相色谱(GC)气相色谱广泛用于油与沥青的筛选和对比研究。

气相色谱对于有机质输入,生物降解、热熟化等次生作用是很敏感的。

1.1.1老鲛烷/植烷(Pr/Ph)Powell和Mckirdy(1973)指出,非海相源岩生成的高蜡原油和凝析油,Pr/Ph比的范围为5到11,而海相源岩生成的低蜡原油,Pr/Ph的范围只有1到3。

Pr/Ph比值会随成熟作用增加而象征性地增加(Alexander 等,1981)有些老鲛烷和植烷在成岩作用期间还可能来自除植醇以外的一些母源(ten Haven ,1987)1.1.2类异戊二烯烷烃类/正石蜡烃类在开阔水体条件下沉积岩石生成的石油,Pr/nC17 小于0.5,而源于内陆泥炭-沼泽相沉积的石油,该比值小于1。

Pr/nC17和Ph/nC18都随石油热成熟度而增加。

这比值也容易受生物降解等次生作用的影响。

通常正构石蜡烃类要先于类异戊二烯烷烃类受到喜氧菌的吞食。

1.1.3气相色谱“指纹”正构烷烃的双峰群分布,以及偏nC23至nC30的正构烷烃分布,通常与陆生高等植物腊有关。

与碳酸盐岩生油岩有关的沥青和油,通常表现为偶碳数正构烷烃优势;而与泥岩(页岩)相关的沥青和油一般表现为低于nC20的奇数碳正构烷烃优势。

正构烷烃的奇数碳优势通常见于许多源于页岩类生油岩的湖相油和海相油。

包括生物降解作用、熟化作用和运移作用在内的一些次生过程很容易改变这些化合物。

正构烷烃的双峰群分布以及偶碳数或奇碳数优势,会随着热成熟度的增加而消失。

1.1.4稳定同位素(1)相关的石油之间,成熟度差异引起同位素的变化可达2-3‰(2)碳同位素差值大于约2-3%的油,一般来说是不同油源的(3)一般来说,沥青的13C含量要比源岩干酪根低0.5-1.5‰,同理,石油要比相应的沥青低0-1.5%。

一种元素由重同位素形成的键发生断裂所需要的能量要比轻同位素形成的键要多。

这是同位素动力学效应的基础。

色谱法的意义

色谱法的意义

色谱法的意义由于现代色谱分析技术具有分离和分析两种功能,即能排除复杂组分间的相互干扰,逐个将组分进行定性和定量分析,因此,现代色谱分析技术非常适合成分复杂的生药的有效性评价。

色谱法根据其分离原理可分为:吸附色谱法、分配色谱法、离子交换色谱法与排阻色谱法等。

吸附色谱法是利用被分离物质在吸附剂上吸附能力的不同,用溶剂或气体洗脱使组分分离;常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。

分配色谱是利用被分离物质在两相中分配系数的不同使组分分离;其中一相被涂布或键合在固体载体上,称为固定相,另一相为液体或气体,称为流动相;常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。

离子交换色谱是利用被分离物质在离子交换树脂上交换能力的不同使组分分离;常用的树脂有不同强度的阳离子交换树脂、阴离子交换树脂,流动相为水或含有机溶剂的缓冲液。

分子排阻色谱法又称凝胶色谱法,是利用被分离物质分子大小的不同导致在填料上渗透程度不同使组分分离;常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,根据固定相和供试品的性质选用水或有机溶剂作为流动相。

常用色谱法又可根据分离方法分为:薄层色谱法、气相色谱法和高效液相色谱法等。

采用薄层色谱法分离有色物质时,可根据其色带进行区分;分离无色物质时,可在短波(254nm) 或长波(365n m) 紫外光灯下检视,也可喷以显色剂使之显色,或在薄层色谱中用加有荧光物质的薄层硅胶,采用荧光猝灭法检视。

气相色谱法和高效液相色谱法可用接于色谱柱出口处的各种检测器检测。

近年来随着各种色谱仪器自动化程度的提高,特别是各种联用技术的发展,使得用现代色谱分析技术进行生药有效性评价和质量控制变得越来越快速、简便和灵敏。

(一)薄层色谱法(thin laye r chromatog raph y, TLC)薄层色谱法系将供试品溶液点于薄层板上,在展开容器内用展开剂展开,使供试品所含成分分离,所得色谱图与适宜的对照物按同法所得的色谱图对比,并可用薄层扫描仪进行扫描,用于鉴别、检查或含量测定。

气相色谱定性和定量分析实验报告

气相色谱定性和定量分析实验报告

气相色谱定性和定量分析实验报告气相色谱(Gas Chromatography,简称GC)是一种常用的分离和分析技术,广泛应用于化学、生物、环境等领域的定性和定量分析。

本实验旨在通过气相色谱仪对样品进行定性和定量分析,并探讨其在实际应用中的意义和局限性。

实验一:定性分析在定性分析中,我们使用了一台高效液相色谱仪(HPLC)进行实验。

首先,我们准备了一系列标准品和未知样品,包括有机化合物和无机化合物。

然后,将样品注入气相色谱仪中,并设置好适当的温度和流速条件。

样品在色谱柱中被分离,并通过检测器检测到其相对峰面积和保留时间。

通过对比标准品和未知样品的色谱图,我们可以确定未知样品中的化合物成分。

根据保留时间和相对峰面积的对比,我们可以推断未知样品中的化合物种类和含量。

这种定性分析方法可以帮助我们快速准确地确定样品中的化学成分,为后续的定量分析提供依据。

实验二:定量分析在定量分析中,我们使用了气相色谱-质谱联用仪(GC-MS)进行实验。

与定性分析类似,我们首先准备了一系列标准品和未知样品,并将其注入GC-MS 中。

通过GC-MS的联用分析,我们可以获得更加准确和详细的样品信息。

GC-MS技术结合了气相色谱和质谱技术的优势,可以对样品中的化合物进行高效、灵敏的定量分析。

通过质谱仪的检测,我们可以获得化合物的分子量和结构信息,进一步确定样品中的化合物种类和含量。

这种定量分析方法可以广泛应用于环境监测、食品安全、药物研发等领域,为科学研究和工业生产提供有力支持。

实验结果与讨论在实验中,我们成功地对标准品和未知样品进行了定性和定量分析。

通过对比色谱图和质谱图,我们准确地确定了未知样品中的化合物种类和含量。

实验结果表明,气相色谱技术在化学分析中具有较高的分辨率和灵敏度,能够有效地分离和检测复杂的样品。

然而,气相色谱技术也存在一些局限性。

首先,样品的挥发性和稳定性对分析结果有一定影响。

某些化合物可能在分析过程中发生分解或损失,导致定性和定量分析的误差。

气相色谱报告

气相色谱报告

气相色谱报告摘要:一、气相色谱报告概述二、气相色谱报告的用途三、气相色谱报告的编制步骤四、气相色谱报告的解读方法五、提高气相色谱报告的可读性和实用性正文:一、气相色谱报告概述气相色谱报告是一种分析化学领域的重要报告,主要通过气相色谱技术对样品进行定性、定量分析,为科研、生产、质量控制等领域提供数据支持。

气相色谱(GC)是一种分离和检测气体或易挥发物质的分析方法,具有高灵敏度、高分辨率、快速分析等特点。

二、气相色谱报告的用途气相色谱报告广泛应用于石油、化工、环保、食品、医药等行业。

例如,在石油行业,可以对原油、馏分油、润滑油等进行分析,以评价其质量;在环保领域,可以对大气、废水等样品进行分析,为污染治理提供依据。

三、气相色谱报告的编制步骤1.样品处理:根据不同样品的特点,选择合适的处理方法,如萃取、吹扫、顶空等,确保样品制备干净、完整。

2.仪器分析:将处理好的样品放入气相色谱仪,进行分离和检测。

3.数据处理:采集色谱图,利用色谱工作站对数据进行处理,得出定性、定量结果。

4.编写报告:根据分析结果,编写气相色谱报告,包括样品信息、分析方法、仪器参数、数据处理结果等。

四、气相色谱报告的解读方法1.定性分析:通过色谱图,判断样品中的成分种类,对照标准谱图库,初步鉴别各成分。

2.定量分析:根据色谱峰面积、校准曲线等,计算各成分的含量。

3.分析结果判断:结合实验目的,评价分析结果是否符合要求,如纯度、含量等。

五、提高气相色谱报告的可读性和实用性1.规范报告格式:统一报告模板,清晰标注各项内容,便于阅读和理解。

2.完善数据处理:采用可靠的data analysis 软件,确保数据分析准确、稳定。

3.加强沟通交流:报告撰写人与客户保持密切联系,了解需求,针对性地提供分析建议。

4.注重后续服务:报告出具后,及时解答客户疑问,提供技术支持,提高客户满意度。

综上所述,气相色谱报告在各个领域具有广泛应用。

气相色谱法测定土壤呼吸的原理_概述说明

气相色谱法测定土壤呼吸的原理_概述说明

气相色谱法测定土壤呼吸的原理概述说明1. 引言1.1 概述土壤呼吸是指土壤中的微生物和植物通过供氧与底物反应,释放出二氧化碳(CO2)的过程。

作为土壤生态系统中的一个重要过程,土壤呼吸对全球碳循环和气候变化具有重要影响。

因此,准确测定土壤呼吸速率对于了解生态系统功能、理解碳循环流通以及评估人类活动对环境的影响具有重要意义。

随着科学技术的不断发展,许多方法用于测定土壤呼吸速率。

其中,气相色谱法作为一种常用的分析手段,在测定土壤呼吸方面展现出广泛应用价值。

本文将详细介绍气相色谱法测定土壤呼吸的原理、实验方法与步骤,并分析结果与讨论其在环境保护和农业生产方面的意义。

1.2 文章结构本文共包括引言、原理、实验方法及步骤、结果与讨论、结论五个部分。

在引言部分,将首先概述文章内容,并介绍文章目录结构。

接下来,在原理部分将对气相色谱法概述、土壤呼吸的含义和重要性以及气相色谱法测定土壤呼吸的原理进行详细阐述。

随后,在实验方法及步骤部分将介绍样品收集与处理、仪器设备和条件设置以及分析步骤与操作注意事项。

之后,通过结果与讨论部分对实验结果进行分析解释,并讨论影响土壤呼吸测定结果的因素以及与已有研究的对比。

最后,在结论部分总结文章主要研究发现,讨论研究的局限性和未来发展方向,并探讨这一研究对环境保护和农业生产的意义。

1.3 目的本文旨在介绍气相色谱法在测定土壤呼吸中的应用原理,并提供详细的实验方法与步骤。

通过本文的撰写,可以帮助读者深入了解气相色谱法作为一种常用手段测定土壤呼吸速率的原理,从而更好地评估生态系统碳循环过程和人类活动对环境影响的范围。

同时,本文还致力于探索该研究的局限性,并提出未来发展方向,以期在环境保护和农业生产等领域提供参考依据。

2. 原理:2.1 气相色谱法概述:气相色谱法(Gas Chromatography, GC)是一种常用的分析技术,广泛应用于化学、环境、生物等领域。

其基本原理是通过样品中不同组分在固定相(柱填充物)和流动相(惰性气体)之间的分配与传递过程来实现样品分离和定量分析。

地化录井在油气解释符合率中的意义

地化录井在油气解释符合率中的意义

地化录井在油气解释符合率中的意义地化录井是地球化学录井的简称,是一种随钻测定地球化学参数、油气参数的录井技术。

地化录井技术主要包括岩石热解录井技术、灌顶气分析轻烃求井技术、岩石热解气相色谱分析。

狭义的地化录井是以岩石热解、热解气相色谱分析获得与石油密切相关的参数为基础,通过研究其含量及变化规律,发现油气显示、区分真假油气显示、通过参数法、图版法、数学地质法等一系列方法的综合,结合试油、采油结论,建立油气层、水淹层、低孔低渗储层、非碎屑岩储层评价的方法,进而实现储层解释与评价。

一、地化录井的基本原理及油气层解释1.1地化录井的基本原理及工作流程。

石油勘探中地化录井主要提高油气层的录井解释符合率是我们所必须达到的质量目标。

地化录井是应油气田勘探开发的需要,根据钻井现场实际情况设计制造的一种仪器。

其原理是在特殊裂解炉中对生储油岩进行程序升温,使岩石样品中的烃类和干酪根在不同干的温度下发挥和裂解,通过氢气的吹洗使其与岩石样品进行物理分离,并由氢气携带直接进入氢焰离子化检测器进行定量检测,将烃类含量大小转变为相应的电流信号,经放大和微机处理,得到样品中液态烃量和裂解烃类和最高裂解温度,依据以上所得的基本热解参数定量评价生储油岩的优劣。

1.2油气层解释。

发现油气显示是录井评价的基础。

油气层录井解释方法研究是随着录井技术的进步而逐步发展起来的,最初主要以气测录井评价技术为主,结合常规录井手段,定性或半定量地对储集层进行简单评价,属于以发现油气显示为主的录井评价阶段[1] 。

随着勘探的深入,一些油田重点探区陆续出现了大量录井特征复杂的油气层,如常规录井低显示、无显示,气测录井低显示、无显示,油层增多,一些层段出现高显示、高含油饱和度的试油出水层,低显示、低阻油层的出现等,这给资料解释带来了很大困难。

二、地化录井油层解释常用方法目前地化录井的主要样品类型为岩屑,由于岩屑样品受泥浆冲刷严重,颗粒大小不一,而且有时样品放置时间长短不同,再加上油质的差异,岩屑样品的烃损失情况不同[2] 。

气相色谱归一化法定量分析

气相色谱归一化法定量分析

气相色谱归一化法定量分析、实验目的1. 掌握气相色谱中利用保留值定性及校正面积归一化法定量的分析方法。

2. 理解相对校正因子的意义及测定方法。

3. 熟悉岛津GC-14C型气相色谱仪的使用,掌握微量注射器进样技术。

、实验原理气相色谱方法是利用试样中各组份在气相和固定相间的分配系数不同将混合物分离、测定的仪器分析方法,特别适用于分析含量少的气体和易挥发的液体。

在色谱条件一定时,任何一种物质都有确定的保留参数,如保留时间、保留体积及相对保留值等。

因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数,即可确定未知物为何种物质。

气相色谱的定量分析方法有归一化法、内标法和外标法等,其中归一化法定量准确,但它要求样品中所有组分均出峰,而且在实际应用中,由于各组分在检测器上的响应不同,因此不能用单一组分峰面积占各组分峰面积的总和之比值来确定各组分含量。

为了使各组分的峰面积能相互比较,必须先确定各组分单位量所得峰面积的相互比例关系,具体操作时可选用某一标准组分s的绝对校正因子f s '作为相对标准,按f j = f j'/ f s计算待测试样的相对校正因子fi ,而在操作条件保持不变的前提下,在一定范围内存在如下关系式:mj= f i'A,据此式可计算试样的绝对校正因子f i'三、实验仪器及试剂1. 仪器:GC-14C气相色谱仪(日本岛津);FID 检测器;毛细管柱:DB-5(30m X0.25mmX0.25 g),1 止微量进样器2. 试剂:正己烷(AR),环己烷(AR),甲苯(AR),丙酮(AR),高纯N2,高纯f,高纯O2四、实验步骤1. 开机(1 )开载气并设定相关参数逆时针旋转打开载气(氮气)钢瓶主阀,调节钢瓶减压阀至0.5-0.6MPa ;调节气相色谱仪的载气压力调节器(流量控制器上层右二位的P表)使压力达到200Kpa;调节载气压力调节器(流量控制器下层右二位的P表)至120Kpa左右;按上述条件通15分钟氮气后打开仪器主机。

气相色谱归一化法定量分析

气相色谱归一化法定量分析

气相色谱归一化法定量分析一、实验目的1.掌握气相色谱中利用保留值定性及校正面积归一化法定量的分析方法。

2.理解相对校正因子的意义及测定方法。

3.熟悉岛津GC-14C 型气相色谱仪的使用,掌握微量注射器进样技术。

二、实验原理气相色谱方法是利用试样中各组份在气相和固定相间的分配系数不同将混合物分离、测定的仪器分析方法,特别适用于分析含量少的气体和易挥发的液体。

在色谱条件一定时,任何一种物质都有确定的保留参数,如保留时间、保留体积及相对保留值等。

因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数,即可确定未知物为何种物质。

气相色谱的定量分析方法有归一化法、内标法和外标法等,其中归一化法定量准确,但它要求样品中所有组分均出峰,而且在实际应用中,由于各组分在检测器上的响应不同,因此不能用单一组分峰面积占各组分峰面积的总和之比值来确定各组分含量。

为了使各组分的峰面积能相互比较,必须先确定各组分单位量所得峰面积的相互比例关系,具体操作时可选用某一标准组分s 的绝对校正因子f s ’作为相对标准,按 计算待测试样的相对校正因子fi ,而在操作条件保持不变的前提下,在一定范围内存在如下关系式: ,据此式可计算试样的绝对校正因子f i ’。

三、实验仪器及试剂1.仪器:GC-14C 气相色谱仪(日本岛津);FID 检测器;毛细管柱:DB-5(30m×0.25mm×0.25μm),1μL 微量进样器2.试剂:正己烷(AR ),环己烷(AR ),甲苯 (AR ),丙酮(AR ),高纯N 2,高纯H 2,高纯O 2四、实验步骤1.开机(1)开载气并设定相关参数逆时针旋转打开载气(氮气)钢瓶主阀,调节钢瓶减压阀至0.5-0.6MPa ;调节气相色谱仪的载气压力调节器(流量控制器上层右二位的P 表)使压力达到200Kpa ;调节载气压力调节器(流量控制器下层右二位的P 表)至120Kpa 左右;按上述条件通15分钟氮气后打开仪器主机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.主峰碳数:
即一组色谱峰中的质量分数最大的正构烷烃碳数。

此值的大小表示岩样中有机质或油样中烃类的轻重、成熟度和演化程度的高低。

数值小的烃类轻、成熟度和演化程度高。

2.碳数范围及分布曲线:
前者指一组色谱峰的最低至最高碳数的容量峰,后者是反映这组容量峰的分布形态。

通过这两个参数可以了解岩石有机质或油样中烃类的全貌,反映出其有机质丰度、母质类型和演化程度。

烃类丰富、低碳烃含量高、无明显奇偶优势者一般多为海相生油母质和演化程度高,反之亦为陆相生油母质和演化程度低。

若色谱峰分布曲线基本上是条直线,则说明无油气显示。

3.碳优势指数(CPI)和奇偶优势(OEP):
这两个参数的意义相同,表示方法有上述两种。

都是说明一组色谱峰中,正烷烃奇数碳的质量分数与偶数碳的质量分数之比。

因为生物体内的正烷烃中奇数碳高于偶数碳,存在着明显的奇偶优势,而有机质在演化过程中是大分子变成小分子,结构复杂的分子变成结构简单的分子,正烷烃奇数优势消失。

所以奇偶优势值越接近于“ >1”,则说明该样品的演化程度和成熟度越高,反之越低。

4.∑C21-/∑C22+:
即一组色谱峰中,>C21以前烃的质量分数总和与C22以后烃的质量分数总和之比。

是碳数范围和分布曲线的具体描述,它是一个有机质丰度、母质类型和演化程度的综合参数。

5.(C21+C22)/(C28+C29):
这是指一组色谱峰中C21+C22烃的质量分数之和与C28+C29烃的质量分数之和的比。

此值高低是个有机质类型指标,因为海生生物有机质中的正烷烃检测结果以(C21+C22)烃类为主,而陆源植物有机质中的正烷烃则以(C28+C29)居多。

所以其比值高是海相沉积的象征,而比值低多为陆相沉积环境。

6.Pr/Ph即姥鲛烷比植烷:
其比值在成岩和运移过程中比较稳定,所以是一个追踪运移的指标。

在海陆相成因问题上,一般认为陆相成因的有机质>Pr/Ph>1,而海相成因的有机质则>Pr/Ph>1,所以也是个有机质类型参数。

7.Pr/nC17、Ph/nC18:
这是两个运移参数,因为埋藏在地层中的有机质,在运移过程中这些组份均按比例丢失,其比值保持不变。

它们也是两个很好的成熟度指标,因为随着演化程度的加深,这两个比值均逐步变小。

相关文档
最新文档