离心泵知识研究

合集下载

离心泵实验报告

离心泵实验报告

离心泵实验报告离心泵实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产和民用领域。

通过离心力将流体从低压区域输送到高压区域,起到加压和输送的作用。

本次实验旨在研究离心泵的性能特点和工作原理,以及其在不同工况下的流量、扬程和效率等参数的变化。

实验目的:1. 了解离心泵的结构和工作原理;2. 研究离心泵在不同转速和进口压力下的性能特点;3. 掌握离心泵的流量、扬程和效率等参数的测试方法。

实验装置:本次实验使用的离心泵实验装置主要包括离心泵、水箱、流量计、压力计等设备。

实验中使用的流体为水。

实验步骤:1. 检查实验装置的连接是否牢固,确保安全;2. 打开水泵和水箱,调节流量计的阀门,使水流量适中;3. 通过调节进水阀门控制进口压力,记录不同进口压力下的流量和扬程;4. 调节电机的转速,记录不同转速下的流量和扬程。

实验结果与分析:通过实验记录和数据分析,我们得到了离心泵在不同工况下的性能参数。

随着进口压力的增加,离心泵的流量和扬程均呈现增加的趋势。

这是因为进口压力的增加会增加离心泵的工作能力,使其能够更多地输送流体。

然而,当进口压力达到一定值后,流量和扬程的增加速度会逐渐减缓,直至趋于稳定。

在转速方面,随着转速的增加,离心泵的流量也会增加,但扬程则呈现先增加后减小的趋势。

这是因为转速的增加会增加离心泵的离心力,使其能够更快地输送流体。

然而,当转速达到一定值后,离心泵的扬程会受到离心力和摩擦阻力的影响,导致扬程逐渐减小。

此外,我们还计算了离心泵在不同工况下的效率。

实验结果显示,离心泵的效率随着流量和扬程的增加而增加,但在一定范围内会达到峰值后逐渐减小。

这是因为离心泵在输送流体过程中会产生一定的能量损失,导致效率的下降。

结论:通过本次实验,我们深入了解了离心泵的性能特点和工作原理。

进口压力和转速是影响离心泵性能的重要因素,它们对流量、扬程和效率等参数都有一定的影响。

在实际应用中,需要根据具体工况选择合适的进口压力和转速,以达到最佳的工作效果。

离心泵知识简介

离心泵知识简介

2、泵输不出液体或出力不足 故障可能发生的原因故障排出方法 ①泵壳或吸气管内有空气,管路漏气- -从排气管排气或重新灌注,拧紧漏气处 ②泵或管路内有杂物堵塞- -检查并清除杂物 ③泵的转速不符或旋转方向不对- -按要求匹配转速或改变驱动机的旋转方向 ④液体在泵内或吸入管内气化- -减少吸入管路阻力、降低输送温度或正压进泵 ⑤泵的杨程不够- -减少排出系统阻力,按液体重度粘度进行换算 ⑥密封环磨损过多或密封件安装不当- -更换密封环或重新安装密封件

3、泵发生振动或燥声 故障可能发生的原因故障排出方法 ①泵壳或吸气管内有空气- -从排气管排气或重新灌泵 ②液体在泵内或吸气管内气化- -减少吸入管路阻力、降低输送温度或正压进泵 ③泵的排量过小,出现喘振- -增大流量或安装旁通循环管 ④泵轴与驱动机轴线不一致,轴弯曲- -调整对正轴线,维修校正泵轴 ⑤泵轴或密封环磨损过多形成转子偏心- -更换轴承、密封环并校正轴线 ⑥轴承盒内油过多或太脏- -按油位计加油或更换新油 ⑦泵或管路内有杂物堵塞- -检查并清除杂物 4、泵或轴承过热 故障可能发生的原因故障排出方法 ①液体在泵内或吸气管内气化- -减少吸入管路阻力、降低输送温度或正压进泵 ②泵的排量过小,出现喘振- -增大流量或安装旁通循环管 ③泵轴与驱动机轴线不一致,轴弯曲- -调整对正轴线,维修校正泵轴 ④泵轴或密封环磨损过多形成转子偏心- -更换轴承、密封环并校正轴线 ⑤轴承盒内油过多或太脏- -按油位计加油或更换新油 ⑥密封件安装不当或密封液压力不当- -正确安装密封件或设置合适的密封液压力
离心泵知识简介
工作原理是:液体首先被灌满泵壳和叶轮内,动 力机通过泵轴带动叶轮旋转时,叶片就带动 叶片间流道中的液体作圆周运动,液体在离 心力的作用下,以较大的速度和较高的压力 ,沿着叶片间的流道,从叶轮中心向外缘运 动,并通过蜗壳和扩散管流向排出管。由于 液体不断被排出,在泵壳内叶轮中心和吸入 管内形成真空,吸入池中的液体在大气压或 液罐内压力的作用下,源源不断地流进吸入 管和叶轮中心,然后又在离心力的作用下被 甩出,从而使泵形成连续的吸入和排出过程 ,不断地排出高能量的液体。蜗壳则收集从 叶轮中高速流出并具有一定压力的液体,并 引向扩散管和排出管;扩散管的过流断面是 逐渐增大的,起着降低液体流速和进一步增 加液体压力的作用。

离心泵的基础知识(定义,原理,分类)

离心泵的基础知识(定义,原理,分类)

一、离心泵的概述离心泵引就是根据离心力原理设计的,高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的。

离心泵有好多种,从使用上可以分为民用与工业用泵;从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。

二.离心泵的工作原理驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。

液体从叶轮获得能量,•使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。

在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。

离心泵的工作原理是:离心泵之所以能把水送出去是由于离心力的作用。

水泵在工作前,泵体和进水管必须罐满水形成真空状态,当叶轮快速转动时,叶片促使水快速旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。

水源的水在大气压力(或水压)的作用下通过管网压到了进水管内。

这样循环不已,就可以实现连续抽水。

在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则泵体将不能完成吸液,造成泵体发热,震动,不出水,产生“空转”,对水泵造成损坏(简称“气缚”)造成设备事故。

离心泵的种类很多,分类方法常见的有以下几种方式1按叶轮吸入方式分:单吸式离心泵双吸式离心泵。

2按叶轮数目分:单级离心泵多级离心泵。

3按叶轮结构分:敞开式叶轮离心泵半开式叶轮离心泵封闭式叶轮离心泵。

4按工作压力分:低压离心泵中压离心泵高压离心泵边立式离心泵。

叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。

泵壳中央有一液体吸入4与吸入管5连接。

液体经底阀6和吸入管进入泵内。

泵壳上的液体排出口8与排出管9连接。

在离心泵启动前,泵壳内灌满被输送的液体;启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。

在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。

离心泵基础知识

离心泵基础知识

图2-1 离心泵活页轮2-2 离心泵离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵是化工厂中最常用的液体输送机械;近年来,离心泵正向着大型化、高转速的方向发展;2.2.1 离心泵的主要部件和工作原理一、离心泵的主要部件1.叶轮叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成;叶轮的作用是将原动机的机械能直接传给液体,提高液体的动能和静压能;根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由于后弯叶片可获得较多的静压能,所以被广泛采用;叶轮按其机械结构可分为闭式、半闭式和开式即敞式三种,如图2-1所示;在叶片的两侧带有前后盖板的叶轮称为闭式叶轮c 图;在吸入口侧无盖板的叶轮称为半闭式叶轮b 图;在叶片两侧无前后盖板,仅由叶片和轮毂组成的叶轮称为开式叶轮a 图;由于闭式叶轮宜用于输送清洁的液体,泵的效率较高,一般离心泵多采用闭式叶轮;叶轮可按吸液方式不同,分为单吸式和双吸式两种;单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体见教材图2-3;双吸式叶轮不仅具有较大的吸液能力,而且可以基本上消除轴向推力;2.泵壳泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道见图2-2;泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能;若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮见教材图2-4中3;由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失;注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失;3.轴封装置离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封;轴封的作用是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内;轴封装置保证离心泵正常、高效运转,常用的轴封装置有填料密封和机械密封两种;二、离心泵的工作原理装置简图如附图;1.排液过程离心泵一般由电动机驱动;它在启动前需先向泵壳内灌满被输送的液体称为灌泵,启动后,泵轴带动叶轮及叶片间的液体高速旋转,在惯性离心力的作用下,液体从叶轮中心被抛向外周,提高了动能和静压能;进而泵壳后,由于流道逐渐扩大,液体的流速减小,使部分动能转换为静压能,最终以较高的压强从排出口进入排出管路;2.吸液过程当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区;由于贮槽液面上方的压强大于泵吸入口处的压强,在该压强差的作用下,液体便经吸入管路被连续地吸入泵内;3.气缚现象当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气的密度远小于液体的密度,叶轮旋转产生的惯性离心力很小,因而叶轮中心处不能形成吸入液体所需的真空度,这种虽启动离心泵,但不能输送液体的现象称为气缚;因此,离心泵是一种没有自吸能力的液体输送机械;若泵的吸入口位于贮槽液面的上方,在吸入管路应安装单向底阀和滤网;单向底阀可防止启动前灌入的液体从泵内漏出,滤网可阻挡液体中的固体杂质被吸入而堵塞泵壳和管路;若泵的位置低于槽内液面,则启动时就无需灌泵;2.2.2 离心泵的主要性能参数和特性曲线一、离心泵的主要性能参数离心泵的性能参数是用以描述一台离心泵的一组物理量1. 叶轮转速n :1000~3000rpm ;2900rpm 最常见;2. 流量Q :以体积流量来表示的泵的输液能力,与叶轮结构、尺寸和转速有关;泵总是安装在管路中,故流量还与管路特性有关;3. 压头扬程H :泵向单位重量流体提供的机械能;与流量、叶轮结构、尺寸和转速有关;扬程并不代表升举高度;一般实际压头由实验测定;4. 功率:1有效功率e N :指液体从叶轮获得的能量——g HQ N e ρ=;此处Q 的单位为m 3/s2轴功率N :指泵轴所需的功率;当泵直接由电机驱动时,它就是电机传给泵轴的功率;5. 效率η:由于以下三方面的原因,由电机传给泵的能量不可能100%地传给液体,因此离心泵都有一个效率的问题,它反映了泵对外加能量的利用程度:N N e /=η①容积损失;②水力损失;③机械损失;二、离心泵的特性曲线从前面的讨论可以看出,对一台特定的离心泵,在转速固定的情况下,其压头、轴功率和效率都与其流量有一一对应的关系,其中以压头与流量之间的关系最为重要;这些关系的图形称为离心泵的特性曲线;由于它们之间的关系难以用理论公式表达,目前一般都通过实验来测定;包括H ~Q 曲线、N ~Q 曲线和η~Q曲线;图2-3 某种型号离心泵的特性曲线离心泵的特性曲线一般由离心泵的生产厂家提供,标绘于泵的样本或产品说明书中,其测定条件一般是20℃清水,转速也固定;典型的离心泵性能曲线如图2-3所示;1.讨论1 从H ~Q 特性曲线中可以看出,随着流量的增加,泵的压头是下降的,即流量越大,泵向单位重量流体提供的机械能越小;但是,这一规律对流量很小的情况可能不适用;2 轴功率随着流量的增加而上升,流量为零时轴功率最小,所以大流量输送一定对应着大的配套电机;另外,这一规律还提示我们,离心泵应在关闭出口阀的情况下启动,这样可以使电机的启动电流最小,以保护电机;3 泵的效率先随着流量的增加而上升,达到一最大值后便下降;但流量为零时,效率也为零;根据生产任务选泵时,应使泵在最高效率点附近工作,其范围内的效率一般不低于最高效率点的92%;4 离心泵的铭牌上标有一组性能参数,它们都是与最高效率点对应的性能参数,称为最佳工况参数;三、离心泵特性的影响因素1.液体的性质:1 液体的密度:离心泵的压头和流量均与液体的密度无关,有效功率和轴功率随密度的增加而增加,这是因为离心力及其所做的功与密度成正比,但效率又与密度无关;2 液体的粘度:若粘度大于常温下清水的粘度,则泵的流量、压头、效率都下降,但轴功率上升;所以,当被输送流体的粘度有较大变化时,泵的特性曲线也要发生变化;2.转速离心泵的转速发生变化时,其流量、压头、轴功率和效率都要发生变化,泵的特性曲线也将发生变化;若离心泵的转速变化不大小于20%,则可以假设:①转速改变前后液体离开叶轮处的出口速度三角形相似;②转速改变前后离心泵的效率不变;从而可导出以下关系:1212n n Q Q =, 21212⎪⎪⎭⎫ ⎝⎛=n n H H , 31212⎪⎪⎭⎫ ⎝⎛=n n N N 比例定律 2-23.叶轮外径当泵的转速一定时,压头、流量与叶轮的外径有关;对于某同一型号的离心泵,若对其叶轮的外径进行“切割”,而其他尺寸不变,在叶轮外径的减小变化不超过5%时,离心泵的性能可进行近似换算;此时可以假设:1 叶轮外径变化前后,叶轮出口速度三角形相似;2 叶轮外径变化前后,离心泵的效率不变;3叶轮外径变化前后,叶轮出口截面积基本不变;从而可以导出以下关系:22''D D Q Q =, 22'2'⎪⎪⎭⎫ ⎝⎛=D D H H , 322''⎪⎪⎭⎫ ⎝⎛=D D N N 切割定律 2-3 与比例定律同样,要注意公式使用的条件;例2-1:以20o C 的水为介质,在泵的转速为2900r/min 时,测定某台离心泵性能时,某次实验的数据如下:流量12m 3/h,泵出口处压强表的读数为,泵入口处真空表读数为,轴功率为;若压强表和真空表两测压口间垂直距离为,且泵的吸入管路和排出管路直径相同;测定装置如附图;求:这次实验中泵的压头和效率;解:1泵的压头以真空表和压强表所在的截面为41-1'和2-2',列出以单位重量为衡算基准的伯努利方程,即其中,2121,4.0u u m z z ==-,p 1=×104Pa 表压, p 2=×105Pa 表压因测压口之间距离较短,流动阻力可忽略,即H f1-2≈0;故泵的压头为:H =m 87.4081.91000107.2107.34.045=⨯⨯+⨯+2泵的效率581.010003.2360081.910001287.40=⨯⨯⨯⨯⨯==N g HQ ρη,即%;分析说明:在本实验中,若改变出口阀的开度,测出不同流量下的若干组有关数据,可按上述方法计算出相应的H 及η值,并将H-Q 、N-Q 、η-Q 关系标绘在坐标纸上,即可得到该泵在n =2900r/min 下的特性曲线;2.2.3 离心泵的工作点和流量调节一、管路特性曲线前面介绍的离心泵特性曲线,表示一定转速下泵的压头、功率、效率与流量的关系;在特定管路中运行的离心泵,其实际工作的压头和流量不仅取决于离心泵本身的特性,而且还与管路特性有关;即在泵送液体的过程中,泵和管路是互相联系和制约的;因此在讨论泵的工作情况前,应先了解管路特性;管路特性曲线表示液体通过特定管路系统时,所需的压头与流量的关系;如图所示的送液系统,若液体贮槽与受液槽的液面均维持恒定,输送管路的直径均一,在图2-4中1-1'和2-2'间列伯努利方程式,则可求得液体流过管路系统所需的压头即要求离心泵提供的压头,即:f e Hg p z H +∆+∆=ρ 2-4 该管路输送系统的压头损失可表示为:因 24d Q u e π=故 2-5式中 Q e -管路中液体流量,m 3/s ;d -管路直径,m ;L -管路长度,m ;λ-摩擦系数,无因次;式中L e 和ζ分别表示局部阻力的当量长度和阻力系数;对特定的管路系统,上式中等式右边各物理量中,除了λ和Q e 外,其它各物理量为定值;且)(e Q f =λ, 则)('e f Q f H = 2-6将上式代入,可得:)('e e Q f g p z H +∆+∆=ρ,即为管路特性方程; 2-7对特定的管路,且在一定条件下操作,则z 和g pρ∆均为定值,并令:K g p z =∆+∆ρ 2-8 若液体在管路中的流动已进入阻力平方区,则此时λ与Q e 无关,并令:B dd L L ge =∑+∑+⋅))(8(452ζλπ 2-9则可得特定管路的特性方程:2e e BQ K H += 2-10它表示在特定管路中输送液体时,在管内流动处于高度湍流状态下,管路所需的压头H e 随液体流量Q e 的平方而变;将此关系方程标绘在相应的坐标图上,即可得到H e -Q e 曲线;这条曲线称为管路特性曲线;此线的形状由管路布置和操作条件来确定,与离心泵性能无关;二、离心泵的工作点将泵的H ~Q 曲线与管路的e H ~Q e 曲线绘在同一坐标系中,两曲线的交点称为泵的工作点M;如图2-4所示;图2-4 管路特性曲线和泵的工作点1.说明 1 泵的工作点由泵的特性和管路的特性共同决定,可通过联立求解泵的特性方程和管路的特性方程得到;2 安装在管路中的泵,其输液量即为管路的流量;在该流量下泵提供的扬程也就是管路所需要的外加压头;因此,泵的工作点对应的泵压头和流量既是泵提供的,也是管路需要的;3 工作点对应的各性能参数N H Q ,,,η反映了一台泵的实际工作状态;三、离心泵的流量调节由于生产任务的变化,管路需要的流量有时是需要改变的,这实际上就是要改变泵的工作点;由于泵的工作点由管路特性和泵的特性共同决定,因此改变泵的特性和管路特性均能改变工作点,从而达到调节流量的目的;1.改变出口阀的开度——改变管路特性出口阀开度与管路局部阻力当量长度有关,后者与管路的特性有关;所以改变出口阀的开度实际上是改变管路的特性;图2-5 改变阀门开度时工作点变化关小出口阀,e l ∑增大,曲线变陡,工作点由M 变为M 1,流量下降,泵所提供的压头上升;相反,开大出口阀开度,e l ∑减小,曲线变缓,工作点由M 变为M 2,流量上升,泵所提供的压头下降;如图2-5所示;采用阀门调节流量快速简便,且流量可连续变化,适合化工连续生产的要求,因此应用很广泛;其缺点是当关小阀门时,管路阻力增加,消耗部分额外的能量,实际上是人为增加管路阻力来适应泵的特性;且在调节幅度较大时,往往使离心泵不在高效区下工作,不是很经济;2.改变叶轮转速——改变泵的特性如图2-6所示,12n n n <<,转速增加,流量和压头均能增加;这种调节流量的方法合理、经济,但曾被认为是操作不方便,并且不能实现连续调节;但随着的现代工业技术的发展,无级变速设备在工业中的应用克服了上述缺点;是该种调节方法能够使泵在高效区工作,这对大型泵的节能尤为重要;图2-6 改变泵转速时工作点变化3.车削叶轮直径这种调节方法实施起来不方便,且调节范围也不大;叶轮直径减小不当还可能降低泵的效率,因此生产上很少采用;在生产中单台离心泵不能满足输送任务要求时,可采用离心泵并联或串联操作;例2-2 确定泵是否满足输送要求;将浓度为95%的硝酸自常压贮槽输送至常压设备中去,要求输送量为36m 3/h,液体的升扬高度为7m;输送管路由内径为80mm 的钢化玻璃管构成,总长为160m 包括所有局部阻力的当量长度;输送条件下管路特性曲线方程为:206058.07e e Q H +=Q e 单位为L/s;现采用某种型号的耐酸泵,其性能列于下表中;问:(1) 1 该泵是否合用(2) 2 实际的输送量、压头、效率及功率消耗各为多少QL/s0 3 6 9 12 15 Hm19 12 % 0 17 30 42 46 44 已知:酸液在输送温度下粘度为10-3Pas ;密度为1545kg/m 3;摩擦系数可取为; 解:1对于本题,管路所需要压头通过在贮槽液面1-1’和常压设备液面2-2’之间列柏努利方程求得:式中0)(0,7,0212121≈=====u ,u p p m z z 表压 管内流速:s m d Qu /99.1080.0*785.0*360036422===π 管路压头损失:m g u d l l H e f 06.681.9*299.108.0160015.0222=⨯=∑+=λ管路所需要的压头:()mH z z H f e 06.1306.6712=+=+-= 以L/s 计的管路所需流量:s L Q /1036001000*36== 由附表可以看出,该泵在流量为12 L/s 时所提供的压头即达到了,当流量为管路所需要的10 L/s,它所提供的压头将会更高于管路所需要的;因此我们说该泵对于该输送任务是可用的;另一个值得关注的问题是该泵是否在高效区工作;由附表可以看出,该泵的最高效率为46%;流量为10 L/s 时该泵的效率大约为43%,为最高效率的%,因此我们说该泵是在高效区工作的;2实际的输送量、功率消耗和效率取决于泵的工作点,而工作点由管路特性和泵的特性共同决定;题给管路的特性曲线方程为:206058.07Qe H e += 其中流量单位为L/s据此可以计算出各流量下管路所需要的压头,如下表所示:QL/s0 3 6 9 12 15 Hm 7可以作出管路的特性曲线和泵的特性曲线,如图所示;两曲线的交点为工作点,其对应的压头为;流量为s ;效率;轴功率可计算如下:分析说明:1判断一台泵是否合用,关键是要计算出与要求的输送量对应的管路所需压头,然后将此输送量与压头和泵能提供的流量与压头进行比较,即可得出结论;另一个判断依据是泵是否在高效区工作,即实际效率不低于最高效率的92%2泵的实际工作状况由管路的特性和泵的特性共同决定,此即工作点的概念;它所对应的流量如本题的s 不一定是原本所需要的如本题的10L/s;此时,还需要调整管路的特性以适用其原始需求;思考题:1、是不是所有情况下离心泵启动前都要灌泵2、离心泵结构中有哪些是转能部件3、离心泵铭牌标牌上标出的性能参数是指该泵的最大值吗4、离心泵的扬程和升扬高度有什么不同2.2.4 离心泵的气蚀现象与安装高度离心泵在管路系统中安装高度是否合适,将直接影响离心泵的性能、运行及使用寿命,因此在管路计算中应正确确定泵的安装高度;一、离心泵的气蚀现象由离心泵工作原理可知,在离心泵叶轮中心附近形成低压,这一压强的高低与泵的吸上高度密切相关;1.泵的吸上高度是指贮槽液面与离心泵吸入口之间的垂直距离;当贮槽上方压强一定时,若泵吸入口的压强越低,则吸上高度就越高,但是泵吸入口的低压是有限制的;当在泵的流通一般在叶轮入口附近中液体的静压强等于或低于该液体在工作温度下的饱和蒸汽压pV时,液体将部分气化,产生气泡;含气泡的液体进入高压区后,气泡就急剧凝结或破裂;因气泡的消失而产生了局部真空,周围的液体就以极高的速度流向原气泡中心,瞬间产生了极大的局部冲击压力,造成对叶轮和泵壳的冲击,使材料受到破坏;2.气蚀现象:通常把泵内气泡的形成和破裂而使叶轮材料受到损坏的过程,称为气蚀现象;离心泵在汽蚀状态下工作:1泵体振动并发出噪音;2压头、流量效率大幅度下降,严重时不能输送液体;3时间长久,在水锤冲击和液体中微量溶解氧对金属化学腐蚀的双重作用下,叶片表面出现斑痕和裂缝,甚至呈海绵状逐渐脱落;离心泵在正常运行时,必须避免发生气蚀现象;为此,叶轮入口附近处液体的绝对压强必须高于该液体在工作温度下的饱和蒸汽压;这就要求离心泵有适宜的安装高度;通常由离心泵的抗气蚀性能又称吸上性能来确定其安装高度;二、离心泵的抗气蚀性能一般采用两种指标来表示离心泵的抗气蚀性能又称吸上性能1.离心泵的允许吸上真空度允许吸上真空度是指为避免发生气蚀现象,离心泵入口处可允许达到的最高真空度即最低的绝对压强;其值通过实验测定;由于实验中不易测出叶轮入口附近处的最低压强的位置,因此以测定泵入口处的压强代替;如图所示,假设大气压强为pa ,泵的入口处的液体静压强为p1,则允许吸上真空度的定义为:g p p s H a ρ1'-=2-11式中 s H '-离心泵的允许吸上真空度,m 液柱;p a -当地大气压,若贮槽为密封槽,则应为槽内液面上方的压强,Pa ;p 1-泵入口处的静压强,Pa ;ρ-液体的密度,Kg/m 3;图2-7 离心泵的吸液示意图注意:离心泵的允许吸上真空度s H '值越大,表示该泵在一定操作条件下抗气蚀性能越好;s H '值大小与泵的结构、流量、被输送液体的性质及当地大气压等因素有关,通常由泵的制造工厂实验测定;实验值列在泵的样本或说明书的性能表上;应注意,该实验是在大气压为10mHgH 2O ×104Pa 下,以20o C 清水为介质进行的;因此若输送其它液体,或操作条件与上述的实验条件不同时,应按下式进行换算:ρ1000)]24.01081.9()10(['3⋅-⨯--+=v a s s p H H H 2-12式中 s H '-操作条件下,输送液体时允许吸上真空度,m 液柱;s H -实验条件下,输送清水时的允许吸上真空度,m 水柱;H a -当地大气压,mH 2O ;p v -操作温度下液体的饱和蒸气压,Pa ;ρ-操作温度下液体的密度,Kg/m 3;10-实验条件下的大气压强,mH 2O ;-实验条件下水的饱和蒸气压,mH 2O ;1000-实验条件下水的密度,Kg/m 3不同海拔高度的大气压强见教材表2-1应予指出,由允许吸上真空度定义可知,它不仅具有压强的意义,此时单位为m 液柱,又具有静压头的概念,因此一般泵性能表中把它的单位写成m,两者数值上是相等的;允许吸上真空度也是泵的性能之一,一些离心泵的特性曲线图中也画出H s -Q 曲线;应注意在确定离心泵安装高度时应按泵最大流量下的H s 值来进行计算;2.离心泵的气蚀余量为防止气蚀现象的发生,在离心泵的入口处液体的静压头和动压头之和必须大于操作温度下的液体饱和蒸汽压头某一数值,此数值即定义为离心泵的气蚀余量Δh,其定义为 h g p g u g p v ∆+=+ρρ2211 或g u g p p h v 2211+-=∆ρ m 2-13 式中: p v -在操作温度下液体的饱和蒸气压,Pa;目前在国产泵样本的性能表中,离心油泵中的气蚀余量用符号Δh 表示,离心水泵的气蚀余量用NPSH 表示,本节中为简化均用Δh 表示;而允许吸上真空度即将被停止使用; 而临界汽蚀余量K f K v c H g u g u g p p h -+=+-=∆1,221min 122ρ m 2-14当流量一定且流体流动进入阻力平方区时,气蚀余量Δh 仅与泵的结构及尺寸有关,它是泵的抗气蚀性能参数;离心泵的Δh c 由泵制造厂实验测定,其值随流量增大而增大;为确保离心泵的正常操作,将所测得的临界汽蚀余量Δh c 加上一定的安全量后,称为必需气蚀余量Δh r ,并且列入泵产品样本性能表中;离心水泵用NPSHr 表示,离心油泵用Δh r 表示;在一些离心泵的特性曲线图上,也绘出Δh r -Q 曲线;也应注意在确定离心泵安装高度时应取可能出现的最大流量为计算依据;三、离心泵的允许安装高度由离心泵的吸液示意图2-7,列出伯努力方程式,可求得离心泵的允许安装高度H g : 10,2112----=f a g H g u g p p H ρ m 2-15若已知离心泵的必需气蚀余量Δh r ,则有:10,--∆--=f r v a g H h g p p H ρ 2-16若已知离心泵的允许吸上真空度,则有:10,212'---=f s g H g u H H 2-17四、讨论1.从前面的讨论中容易使人获得这样一种认识,即汽蚀是由于安装高度太高引起的,事实上汽蚀现象的产生可以有以下三方面的原因:①离心泵的安装高度太高;②被输送流体的温度太高,液体蒸气压过高;③吸入管路的阻力或压头损失太高;允许安装高度这一物理量正是综合了以上三个因素对汽蚀的贡献;由此,我们又可以有这样一个推论:一个原先操作正常的泵也可能由于操作条件的变化而产生汽蚀,如被输送物料的温度升高,或吸入管线部分堵塞;2.有时,计算出的允许安装高度为负值,这说明该泵应该安装在液体贮槽液面以下;3.允许安装高度H g 的大小与泵的流量有关;由其计算公式可以看出,流量越大,计算出的H g 越小;因此用可能使用的最大流量来计算H g 是最保险的;4.安装泵时,为保险计,实际安装高度比允许安装高度还要小至1米;如考虑到操作中被输送液体的温度可能会升高;或由于贮槽液面降低而引起的实际安装高度的升高;5.当液体的操作温度较高或其沸点较低时,应注意尽量减小吸入管路的压头损失如可以选用较大的吸入管径,减少管件和阀门,缩短管长等;或将离心泵安装在贮槽液面以下,使液体利用位差自动流入泵体内;2.2.5 离心泵的选用、安装与操作一、 离心泵的类型:1.清水泵:适用于输送清水或物性与水相近、无腐蚀性且杂质较少的液体;结构简单,操作容易;IS 型、B 型、D 型、sh 型2.耐腐蚀泵:用于输送具有腐蚀性的液体,接触液体的部件用耐腐蚀的材料制成,要求密封可靠;F 型3.油泵:输送石油产品的泵,要求有良好的密封性和冷却系统;Y 型4.杂质泵:输送含固体颗粒的液体、稠厚的浆液,叶轮流道宽,叶片数少;P 型单吸泵;双吸泵;单级泵;多级泵;二、离心泵的选用1.根据被输送液体的性质和操作条件确定泵的类型;2.确定输送系统的流量和所需压头;流量由生产任务来定,所需压头由管路的特性方程来定;3.根据所需流量和压头确定泵的型号1查性能表或特性曲线,要求流量和压头与管路所需相适应;2若生产中流量有变动,以最大流量为准来查找,压头也应以最大流量对应值查找;3若H和Q与所需要不符,则应在邻近型号中找H和Q都稍大一点的;4若几个型号都满足,应选一个在操作条件下效率最高的5为保险,所选泵可以稍大;但若太大,工作点离最高效率点太远,则能量利用程度低;泵的类型和型号选出后,应列出该泵的性能参数;4.核算泵的轴功率;若输送液体的密度大于水的密度时,则要核算泵的轴功率,重新配置电动机;三、离心泵的安装与操作1.安装:1 安装高度不能太高,应小于允许安装高度;2 尽量设法减小吸入管路的阻力,以减少发生汽蚀的可能性;主要考虑:吸入管路应短而直;吸入管路的直径可以稍大;吸入管路减少不必要的管件和阀门,调节阀应装于出口管路;2.操作:1 启动前应灌泵,并排气;2 应在出口阀关闭的情况下启动泵,使启动功率最小,以保护电动机;3 停泵前先关闭出口阀,以免损坏叶轮;4 泵运转中应定时检查、维修等,特别要经常检查轴封的泄漏情况和发热与否;经常检查轴承是否过热,注意润滑;例2-3:用IS80-65-125型离心泵从常压贮槽中将温度为50o C的清水输送到他。

离心泵的结构知识

离心泵的结构知识

恒位油杯原理 下图为恒位油杯正常工作状 态,理论设计上工作油位点 和设计油位是相同的,恒位 油杯内初始油量一般保持在 整个油杯的2/3处。恒位油 杯内液面高于轴承箱体内液 面并能保持一定高度的液位, 是由于连通器的原理,油杯 内气体压力小于外界大气压 力。
七、离心泵的主要零部件


恒位油杯原理 右图为恒位油杯补油状态图。 当轴承箱体内的润滑油由于各 种原因而损耗后,箱体内油位 下降,由于连通器原理,恒位 油杯斜面处的油位降低到工作 油位点以下,导致恒位油杯内 油液的压力平衡被破坏,润滑 油从恒位油杯内流出并进入轴 承箱体,外界气体在大气压力 作用下通过斜面的上端进入恒 位油杯,直到润滑油液面恢复 到工作油位点时,补油结束。
1、泵座 泵座上有与底板或基础固定用的法兰孔。在泵 壳的底部设有放水螺孔。 2、轴承箱 轴承的作用是对泵轴进行支撑,实质是能够 承担径向载荷。也可以理解为它是用来固定轴 的,使轴只能实现转动,而控制其轴向和径向 的移动。 轴承箱则用来固定轴承,同时作为装载轴承 润滑油的容器。
七、离ቤተ መጻሕፍቲ ባይዱ泵的主要零部件
泵轴轴承润滑 离心泵大部分采用滚动轴承,而滚动轴承的元件(滚 动体、内外圈滚道及保持器)之间并非都是纯滚动的。 由于在外负荷作用下零件产生弹性变形,除个别点外, 接触面上均有相对滑动。滚动轴承各元件接触面积小, 单位面积压力往往很大,如果润滑不良,元件很容易 胶合,或因摩擦升温过高,引起滚动体回火,使轴承 失效,所以轴承时刻都要处于油膜的涂覆之中。 在油槽润滑中,轴承部分浸在油中,油浸润高度以没 过轴承底的50%为宜。如果超过50%,过量的油涡流 会使油温上升,油温升高会加速润滑荆的氧化,从而 降低润滑性能;如果低于50%,则油对轴承的冲洗作 用降低,润滑效果不好。

离心泵的基本知识

离心泵的基本知识
1.2也可分为单吸叶轮和双吸叶轮
单吸:叶轮结构简单,用于流量较少的场合,这种叶轮两边受力不等,每个叶轮要受到不平衡的轴向力。
双吸叶轮:这种叶轮犹如两个单吸叶轮背靠背贴合在一起,液体双面进入叶轮,适用于流量较大的场合,无轴向力,但结构复杂,液流在叶轮汇集处有冲击现象,对泵效有影响。
1.3根据叶片弯曲方向可分为前弯叶片、径向叶片和后弯叶片。
二、离心泵的气蚀
定义:泵吸入口压力降低到该处相应温度下的饱和蒸汽压时,液体发生沸腾汽化,产生大量气泡,并不断变大,以致破裂,导致泵壳及叶轮表面发生蜂窝状点蚀现象。
现象:1)泵内有"啪啪"的杂音;2)泵体震动;3)压力表指针剧烈抖动;4)扬程、流量、效率下降。
解决方法:停泵放气。
三、离心泵的气缚
定义:离心泵若在启动前未充满液体,则泵壳内存在空气,由于空气的密度远小于液体的密度,产生的离心力小。因而在吸入口处形成的真空就不足以将液体吸入泵内,此时虽启动离心泵而不能输送液体,此种现象称"气缚"。
闭式叶轮:由前后盖板、叶片、轮毂组成,效率高,应用广泛,适合输送不含颗粒和杂质的清净液体。
开式叶轮:没有前后盖板,只有叶片和轮毂,效率低,适合输送含有杂质的污水和带有纤维的液体。
半开式叶轮:没有前盖板,只有后盖板,叶片,轮毂,。适合输送易于沉淀或含有固体颗粒的液体。本平台生活污水前灌泵。
由于机械密封动静环之间不断产生热,致使动静环之间的液膜汽化,所以需要合理的冷却和冲洗方式,一般单端面密封只需泵出口液体引到密封端面,直接冲洗密封端面即可,双端面密封需要专门的外部的冲洗系统。
械密封泄漏的原因:
液体中含有杂质,密封面被损坏;弹簧损坏或淤塞,失去补偿能力;动环密封面磨损;"O"型圈损坏;动、静环密封安装不良,产生倾斜或压缩尺寸不够。

离心泵重要基础知识点

离心泵重要基础知识点

离心泵重要基础知识点离心泵是一种常见的流体机械设备,广泛应用于工业生产和农业灌溉等领域。

作为一个大学教授,我来为大家介绍离心泵的一些重要基础知识点。

1. 工作原理:离心泵依靠离心力将液体从低压区域抽离,并通过转动叶轮提高压力和流速。

液体通过进口流道进入泵体,然后被离心力推向叶轮,并在高速旋转下被抛出,最后通过出口流道排出。

2. 组成部分:离心泵主要由泵体、叶轮、轴、轴承等部分组成。

泵体通常采用铸铁、不锈钢等材料制成,以确保其耐腐蚀性和结构的稳定性。

叶轮是离心泵的核心部件,其形状和数量对泵的性能影响很大。

轴和轴承则用于支撑叶轮的转动。

3. 性能参数:离心泵的性能参数对于选择和设计泵的工作条件至关重要。

常见的性能参数包括流量、扬程、功率、效率等。

流量是指单位时间内通过泵的液体体积,扬程是液体在泵中提升的高度,功率则表示泵传递给液体的能量,而效率则反映了转化能量的效果。

4. 泵的特点:离心泵具有结构简单、使用方便、流量范围广、运行稳定等特点。

由于其流体力学性能好,使其在工业领域得到了广泛应用。

但离心泵也存在一些局限性,例如对固体颗粒的适应性较差,易受到气体、液体变化和泵进口阻力的影响。

5. 应用领域:离心泵广泛应用于工业生产中的供水、给排水、冷却循环、化工流程和石油化工等领域。

同时,在农业领域,离心泵也被用于灌溉系统中,为农田提供水源。

以上就是离心泵的一些重要基础知识点。

作为一个大学教授,我希望通过这些简要介绍,能够帮助大家对离心泵有一定的了解,并对其应用领域有更清晰的认识。

离心泵基础知识

离心泵基础知识
下造成金属表面逐渐因疲劳而破环称为机械剥蚀。
7.2、化学腐蚀:因汽蚀原因所形成的汽泡中还夹杂有一此活泼气体(如氧
等),借助气泡凝结时所放出的热量,对金属起化学腐蚀作用。 7.3、汽蚀破环现象;由于机械剥蚀、化学腐蚀共同作用加快了金属腐蚀速
度的现象就叫汽蚀破环现象。
8、吸上真空度(HS):
3、n≥5000转/分的泵;Q≤50米3/时的单级或两级泵可以不做动平衡。
七、单级离心泵转子安装技术要求
目的:检查各部件的积累误差是否影响泵的正常运转。
检查1:检查托运架止口对轴的径向跳动量和端面跳动。
检查2:检查叶轮密封环直径对基准面的径向跳动量。
检查3:检查轴套外径对基准面的径向跳动量。
-0.1
40
0.80 1.08 0.16
~0.92

630~710
0
.90
0.15
0
-0.1
50
0.90 1.2 0.18
~1.02

710~800
1
.00
0.15
0
-0.1
50
1.00 1.3 0.20
3、压出室:压出室的作用是以最小的损失,将从叶轮中流出的液体收集起
来,均匀地引至泵的吐出口或次级叶轮,在过程中还将一部份动能转变为压力能.
压出室主要有以下几种结构型式:螺旋形蜗室、环形压出室、径向导叶、流道式
导叶和扭曲叶片式导叶等.
4、密封环:密封环的作用,为减少高压区液体向低压区流动.
0
.70
0.12
0
-0.1
20
0.70 0.94 0.14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵的基本构造
离心泵主要是由六部分组成的,分别是: 一.叶轮; 二.泵体(泵壳、泵盖、泵支腿等); 三.泵轴; 四.轴承、轴承箱; 五.密封环(叶轮口环、级间衬套等); 六.轴密封装置(机械密封、填料密封、油封等); (另外还有:吸入室,压出室,平衡装置等)。
一.叶轮
叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配 前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 离心泵的叶 轮是由前轮板、后轮板、叶片和轮毂四部分组成的。它分为闭式叶轮、半开式叶轮和开式 叶轮。 1. 闭式叶轮:是由前盖板、后盖板之间夹有弯曲叶片组成的,这样叶片间就形成流道。它适 于输送扬程高、清洁的液体,但制造比较复杂。闭式叶轮分为单吸式叶轮和双吸式叶轮两种。 这种叶轮传递的能量较大,效率比较高,是石油化工行业应用比较广泛的叶轮型式。 2. 半开式:只有一面轮板的叶轮叫半开式叶轮。它可输送含有固体颗粒或杂质的液体。 3. 开式:无前后轮板的叶轮叫开式叶轮。它可以输送浆状或糊状液体。
二.泵体
泵体也称泵壳,它是泵的主体。起到支撑固定作用,并与安装轴承的托架 相连接。 接受从叶轮中排出的液体,同时将液体的动能转变成为压力。为 了使泵正常运行,所以要求泵体要有足够的强度和良好的工艺特性。
制造泵体用什么材料:一般低压或中压泵的涡室,多用铸铁制造。高压泵一般均用高强 度铸铁、铸钢或合金钢制造。
1. 按叶轮吸入方式分:单吸式离心泵(即叶轮从一侧吸入液体)、 双 吸式离心泵(即叶轮从两侧吸入液体)。 2. 按叶轮数目分:单级离心泵、 多级离心泵。 3. 按叶轮结构分:敞开式叶轮离心泵、 半开式叶轮离心泵、 封闭式 叶轮离心泵。其中封闭式叶轮应用很广泛,前述的单吸叶轮双吸叶 轮均属于这种形式。 4. 按工作压力分:低压离心泵(小于1MPa)、 中压离心泵(1~6MPa) 、 高压离心泵(大于6MPa)。 5. 按泵轴位置分:卧式离心泵边、 立式离心泵。 6. 按泵壳结合缝形式来分类:水平中开式泵(即在通过轴心线的水平 面上开有结合缝)、垂直结合面泵(即结合面与轴心线相垂直)。 7. 按叶轮出来的水引向压出室的方式分类:蜗壳泵(水从叶轮出来后, 直接进入具有螺旋线形状的泵壳)、导叶泵(水从叶轮出来后,进 入它外面设置的导叶,之后进入下一级或流入出口管)。
叶片:一般情况下,一个叶轮叶片数目为5~10片,叶片厚度4~ 7mm。 叶片数目多些,使叶轮流道中液体的轴向旋涡小些,可提高泵的 扬程。但叶片的数目过多,会使流道变窄,容易堵塞,增加摩擦 损失,增加能量消耗,降低了泵的效率。 叶轮是用什么材料制造的:根据泵的用处和腐蚀情况不同,制造 叶轮的材料也不相同: (1)输送介质的温度比较低,压.力不大,介质比较干净,无腐蚀 作用时,叶轮多用铸铁或铸钢制造,再经过机械加工即可。 (2)输送酸、碱等腐蚀性介质,叶轮多用耐腐蚀材料,如:耐酸 硅铁、青铜、不锈钢等 (3)若输送介质在400℃以上时,叶轮必须用耐高温的不锈钢或合 金钢。
四.轴承
离心泵的轴承有什么作用:离心泵的轴承是支承转子的部件,同时承受径向和轴 向载荷。离心泵的轴承分为滚动轴承、 滑动轴承 、 止推轴承等。 1.滚动轴承:滚动轴承由外圈、内圈、滚动体和保持架 4部分组成。内、外圈上 有滚道,当内、外圈相对运动时,滚动体(滚珠或滚柱)则沿着滚道滚动,而保持架 把滚动体均匀隔开。 滚动轴承分为:(1)单列向心球轴承。它可承受径向载荷,也可承受轴向载荷, 承受冲击载荷的能力比较差。(2)双列向心球轴承。它可承受径向载荷,也可承受 较小的轴向载荷。 滚动轴承有什么特点:滚动轴承的互换性能好,维修方便,磨损小,间隙小等。 如果使用小泵,转速低、输送低温介质时,可用润滑脂润滑。若大泵,高转速,又输 送高温介质时,则用润滑油润滑。滚动轴承使用润滑脂作为润滑剂加油要适当(转速 1500以上加至2/3左右,1500以下加至1/2左右),太多会发热,太少又有响声并发热! 使用润滑油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又 要过热烧坏造成事故!泵运行过程中轴承的温度最高在75度,一般运行在60度左右, 如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理。
机修分厂 主讲: 张付义
什么是
泵:通常把能给液体提供能量的设备叫泵。 一般情况下,液体只能从高处自动流向低 处,从高压设备内自动流向低压设备内,如 果把低处的液体送些液体提 供一定的能量才能达到此目的。 泵的两个作用:输送液体、提供能量。
泵的分类
三.泵轴
泵轴的作用是借联轴器和电动机相连接,由于泵轴的高速旋转才 能带动叶轮的高速旋转、将电动机的转距传给叶轮,所以它是传 递机械能的主要部件。 轴所受到的应力多数为变应力,它所受 到的疲劳损坏是主要的。
离心泵轴的工作特点是什么:离心泵轴是在弯曲和扭转联合作用下工 作,所以它一方面支撑旋转,另外也承受弯曲,这样才能把原动机的 旋转和扭矩传递给叶轮,由于叶轮的高速旋转,才能不断地把液体吸 入和排入管路。 制造离心泵轴用什么材料:根据泵轴的工作特点和承受的应力,在材 料选择上应考虑使用耐疲劳强度比较好的碳素钢、合金钢,这些材料 的综合机械性能都比较好。如果泵的转速不高,输送介质的温度、压 力不高时,泵轴用碳素钢即可。对于转速高,输送介质的温度、压力 高时,泵轴可选机械强度比较高的合金钢。
离心泵技术要求
6 API 610-1995 石油、重化学和天然气工业用离心泵 API—美国石油协会标准。 ANSI—美国国家标准协会标准。 ISO—国际标准化组织。 GB—中国国家标准GB
离心泵工作原理
离心泵开泵之前,打开入口管道阀,使泵体 内充满流体,当泵叶轮转动时,叶轮的叶片 驱使液体一起转动,使流体产生了离心力, 在离心力的作用下,流体沿叶片流道被甩向 叶轮出口,经扩压器、蜗壳送入排出管。流 体从叶轮获得能量,使压力能和速度能增加。 在流体被甩向叶轮出口的同时,叶轮中心入 口处的压力显著下降,瞬时形成了真空,入 口管的流体经泵吸入室进入了叶轮中心,这 样当叶轮不停地旋转,流体就不断地被吸入 和排出,将流体送到管道和容器中。
离心泵的分类
离心泵可与电动机直接相连,转速高,运 行平稳,输液无脉动,流量均匀,流量调 节简单,压力波动不大,构造简单,操作 方便,效率比较高等优点。因此,应尽可 能选用离心泵。离心泵是最主流的泵,种 类繁多,说水泵一般就是指离心泵。 离心泵的分类:离心泵的种类很多,它是 依据不同的结构特点而划分的、分类方法 常见的有以下几种方式:
离心泵的常用规标、规范
序号 1 2 3 标准号 SY 21005-73 标准名称 炼油厂离心泵维护检修规程 HGJ 1034-79 HCJ 1035-79
化工厂清水泵及金属耐蚀泵维护检修 规程
化工厂离心式热油泵维护检修规程
4
5
HGJ 1036-79
CB/T5657-1995
化工厂多级离心泵维护检修规程
相关文档
最新文档