完整word版华师版七年级一元一次方程练习题及其答案

合集下载

华东师大版数学七年级下册第六章《一元一次方程》单元测试题含答案

华东师大版数学七年级下册第六章《一元一次方程》单元测试题含答案

华东师大版七年级数学下册第6章《一元一次方程》单元测试题一.选择题(共27分)1.下列方程中,解为x =-2的方程是( )A 、3x -2=2xB 、4x -1=2x +3C 、3x +1=2x -1D 、2x -3=3x +22.下列变形式中的移项正确的是( )A 、从5+x =12得x =12+5B 、从5x +8=4x 得5x -4x =8C 、从10x -2=4-2x 得10x +2x =4+2;D 、从2x =3x -5得2x =3x -5=3x -2x =53.如果x =0是关于x 的方程3x -2m =4的根,则m 的值是( )A 、2B 、-2C 、1D 、-14.方程1612413121=--⎪⎭⎫ ⎝⎛-x x 变形正确的是( ) A 、()24124413112=--⎪⎭⎫⎝⎛-x x B 、16122434=++-x x C 、161318161=---x x D 、()()1212236=---x x 5.将57.0135.0=--x x 变形为71050730510-=-x x ,其错误的是( ) A 、不应将分子分母同时扩大10倍 B 、违背等式性质C 、移项未改变符号D 、去括号出现符号错误6.一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是( )A 、16B 、25C 、34D 、617.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是( )A 、10岁B 、15岁C 、20岁D 、30岁8.小明买了80分与2元的邮票共16枚,化了18元8角,若设他买了80分邮票x 枚,可列方程为( )A 、80x +2(16-x )=188B 、80x +2(16-x )=18.8C 、0.8x +2(16-x )=18.8D 、8x +2(16-x )=1889. 小明把400元钱存入银行,年利率为1.8%,到期时小明得到利息36元,则她一共存了( )A 、6年B 、5年C 、4年D 、3年二.填空题(共21分)1.已知方程3x 2n +3+5=0是一元一次方程,则n =__________2.若()022=-+-y y x ,则x +y =___________ 3.求作一个一元一次方程使它的解为x =-2,这个一元一次方程为_____________________。

(完整word版)七年级数学一元一次方程练习题和答案

(完整word版)七年级数学一元一次方程练习题和答案

《一元一次方程》测试卷(总分: 120 分 时间: 120 分钟)一、填空题(每题 3 分,共 30 分)1.( 1) -3x+2x=_______ . ( 2) 5m-m-8m=_______.2.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为 _______.3.一个长方形周长为 108cm ,长比宽 2 倍多 6cm ,则长比宽大 _______cm . 4.对于 x 的方程( k-1 ) x-3k=0 是一元一次方程,则 k_______.5.方程 6x+5=3x 的解是 ________.6.若 x=3 是方程 2x-10=4a 的解,则 a=______ .7.某服饰成本为 100 元,订价比成本高 20%,则收益为 ________元.8.某加工厂出米率为 70%的稻谷加工大米,现要加工大米1000t ,设需要这类稻谷 xt ,则列出的方程为 ______.9.当 m 值为 ______时,4m 5的值为 0.310.敌我两军相距 14 千米,敌军于 1 小时前以 4 千米 / 小时的速度逃跑, ?现我军以7 千米 / 小时的速度追击 ______小时后可追上敌军. 二、选择题(每题 3 分,共 30 分)11.以下说法中正确的选项是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是 1 次的方程是一元一次方程C .含有一个未知数,而且未知数的次数都是一次的方程是一元一次方程D . 2y-3=1 是一元一次方程12.以下四组变形中,变形正确的选项是( )A .由 5x+7=0 得 5x=-7B .由 2x-3=0 得 2x-3+3=0C .由 x =2 得 x=1D.由 5x=7 得 x=356 313.以下各方程中,是一元一次方程的是( )A . 3x+2y=5B . y 2-6y+5=0 C. 1x-3=1D. 3x-2=4x-73x14.以下各组方程中,解同样的方程是( )A . x=3 与 4x+12=0 B. x+1=2 与( x+1) x=2xC . 7x-6=25 与7 x 1=6D. x=9 与 x+9=0515.一件工作,甲独自做20 小时达成,乙独自做 12 小时达成,现由甲独做 4 小时,剩下 的甲、乙合做,还需几小时?设剩下部分要 x 小时达成,以下方程正确的选项是( )4 x xB.14 x xA.120 1220 2012204 x xD .14 xxC.120 1220 20 122016.( 2006,江苏泰州)若对于 x 的一元一次方程 2x k x3k =1 的解为 x=-1 ,则 k 的32值为( )A .2B.1C .-13D . 071117.一条公路甲队独修需24 天,乙队需 40 天,若甲、?乙两队同时分别从两头开始修, ( )天后可将所有修完.A .24B.40C. 15 D .1618.解方程x1 4 x=1 去分母正确的选项是( )32A . 2(x-1 ) -3 ( 4x-1 )=1B . 2x-1-12+x=1C . 2(x-1 ) -3 ( 4-x ) =6D.2x-2-12-3x=619.某人从甲地到乙地,水道比公路近40 千米,但乘轮船比汽车要多用3 小时, ?已知轮船速度为 24 千米 / 时,汽车速度为 40 千米 / 时,则水道和公路的长分别为( )A . 280 千米, 240 千米B . 240 千米, 280 千米- 2 -20.一组学生去春游,估计共需用 120 元,以后又有 2 人参加进来,总花费降下来,?于是每人可少摊 3 元,设本来这组学生人数为 x 人,则有方程为()A . 120x=( x+2) xB .120x 2x120 120120 120C.x 3D.2 3xx 2 x三、解方程(共 28 分)21.( 1) 5 -6x=-7x+1; (5分)( 2)y-1( y-1 ) = 2( y-1 ) ; (5分)3 22 3(3)3[4 ( 1 x- 1) -8]= 3 43 24 2x+1; (5 分)( 4) 0.2 x 10.1 x. (5 分)0.30.222.( 8 分)若对于 x 的方程 2x-3=1 和 x k=k-3x 有同样的解,求 k 的值.2四、应用题(每题8 分,共 32 分)23.( 8 分)某校八年级近期推行小班教课,若每间教室安排20 名学生,则缺乏 3?间教室;若每间教室安排24 名学生,则空出一间教室.问这所学校共有教室多少间?24.( 8 分)如图,有9 个方格,要求每个方格填入不一样的数,使得每行、每列、?每条对角线上三个数的和相等,问图中的m是多少?m191325.( 8 分)先阅读下边的资料,再解答后边的问题.现代社会对保密要求愈来愈高,密码正在成为人们生活的一部分,有一种密码的明文(真切文)按计算器键盘字母摆列分解,此中Q、W、E、、N、M这26个字母挨次对应1、2、 3、 25、 26 这 26 个自然数(见下表):给出一个变换公式:x` x 是自然数,1 x 26, x被整除) 3 ( x 3x` x 2 是自然数,1 x 26,x被除余1 3 17( x 3 )x` x 1 是自然数,1 x被除余2)3 8(x 26, x 3将明文变换成密文,如: 4→42 +17=19,即 R 变成 L:11→111 +8=12,即 A 变成3 3S.将密文变换成明文,如:21 → 3×( 21-17 ) -2=10 ,即 X 变成 P;13→ 3×( 13-8 ) -1=14 ,即 D 变成 F;(1)按上述方法将明文 NET译为密文;(2)若按上述方法将明文译成的密文为DMN,请找出它的明文.26.( 8 分)某音乐厅五月初决定在暑期时期举办学生专场音乐会,入场券分为集体票和零售票,此中集体票占总数的2,若提早购票,则赐予不一样程序的优惠,在五月份内,3集体票每张12 元,共售出集体票数的3;零售票每张16元,?共售出零售票数的一半,5假如在六月份内,集体票按每张 16 元销售, ?并计划在六月份售出所有余票,那么零售票应按每张多少元订价才能使这两个月的票款收入持平?答案 :1.≠ 1 2 .x=-53.-14 .( 1)-x ( 2)-4m 5 .99-a 6 .22 7 .20 ? ?8.?0.7x=100039.510 .511 .D12.A13.D14.C15.C16.B17.C18.C4x x 40 19. B (点拨:设水道 x 千米,有方程+3)244020. C21.( 1) x=4( 2) y=7 ( 3)x=-29(4) x1 22.k14 15410323.设学校有 x 间教室,依题意得方程 20( x+3) =24( x-1 ),解得 x=21 (间).24.设相应的方格中数为 x 1, x 2, x 3,x 4 ,如图,由已知得m+x 1+x2=m+x +x =x +x3+13=x +19+x ,由此得 2m+x +x +x 3+x =13+19+x +x +x 3+x .341 2412 412 4∴ 2m=13+19,即 m=16.m x 1 x 2x 3 1913 x 425 .(1) 25→ 25 2+17=26 N变成 N→ 333 =1E变成 Q35 →51+8=10T变成 P3( 2) 13→ 3×( 13-8 ) -1=14D 变成 F 2 →3×( 2-0 )=6W变成 Y25 → 3×( 25-17 ) -2=22N变成 C26 .设总票数 a 张,六月份零售标价为 x 元 / 张,依题意,得12 ×3×2a+16× 1 × 1a=16×4a+ 1 ax53 23156∴ x=19.2 ,故六月份零售票应按每张19.2 元订价.。

华东师大版七年级数学下册第六章 一元一次方程练习(含答案)

华东师大版七年级数学下册第六章 一元一次方程练习(含答案)

A.x1=x2=1
B.x1=0,x2=1 1/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
C.x1=x2=﹣1
D.x1=1,x2=﹣2
8.某车间有 26 名工人,每人每天可以生产 800 个螺钉或 1000 个螺母,1 个螺钉需要配 2 个螺母,为使每天生产的螺钉和螺母刚好配套.设安排 x 名工人生产螺钉,则下面所列方程 正确的是( )
合并同类项,得 7x = −7 .
系数化为 1,得 x = −1 .
∴ x = −1 是原方程的解.
16.解方程
(1) 5x − 2 = 3x + 9
(2) 2x +1 − 5x −1 = 1
3
6
17.某工厂计划生产一种新型豆浆机,每台豆浆机需 3 个 A 种零件和 5 个 B 种零件正好配 套。已知车间每天能生产 A 种零件 450 个或 B 种零件 300 个,现在要使在 21 天中所生产的 零件全部配套,那么应安排多少天生产 A 种零件,多少天生产 B 种零件?
A.1200π cm3
B.1300π cm3
C.1400π cm3
D.1500π cm3
二、填空题
11.方程(a﹣2)x|a|﹣1+3=0 是关于 x 的一元一次方程,则 a=_____.
12.当 x = _________时,代数式 1 (1+ 2x) 与代数式 2 (3x −1) 的值相等
7
7
2/6
A. 40%(1 + 80%)x = 48
B. 80%(1 + 40%)x − x = 48
C. x − 80%(1 + 40%)x = 48
D. 80%(1 − 40%)x − x = 48

华师大版七年级数学下册第6章一元一次方程单元达标测试题(Word版含答案)

华师大版七年级数学下册第6章一元一次方程单元达标测试题(Word版含答案)

华师大版七年级数学下册《第6章一元一次方程》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.已知x=﹣1是关于x的方程2x+3a=7的解,则a的值为()A.﹣5B.﹣3C.3D.52.已知方程,则式子11+2()的值为()A.B.C.D.3.在解关于x的方程=﹣2时,小冉在去分母的过程中,右边的“﹣2”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A.x=﹣12B.x=﹣8C.x=8D.x=124.小明在某月的日历中圈出相邻的四个数,算出这4个数的和是42,那么这4个数在日历上的位置可能是()A.B.C.D.5.某车间有22名工人,每人每天可以生产600个螺钉或1000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,可列方程为()A.2×600x=1000(22﹣x)B.2×1000x=600(22﹣x)C.600x=2×1000(22﹣x)D.1000x=2×600(22﹣x)6.妞妞和馨月都有一个比自己大3岁的姐姐,若妞妞姐姐的年龄是馨月姐姐的3倍,且妞妞的年龄是磬月年龄的m倍,则所有满足要求的正整数m的值的和为()A.11B.15C.20D.247.整理一批图书,由一个人做要30小时完成,现在计划由一部分人先做2小时,再增加3人和他们一起做4小时,完成这项工作,假设每个人的工作效率相同,具体先安排x人工作,则可列方程为()A.B.C.D.8.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二.填空题(共8小题,满分40分)9.若x=2是关于x的方程3x﹣4=﹣a的解,则a2021的值为.10.|x﹣3|=5,则x=.11.在一本挂历上用正方形圈住四个数,这四个数的和为52,则这四个数中,最小的数为.12.两村相距35千米,甲、乙两人从两村出发,相向而行,甲每小时行5千米,乙每小时4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行驶了小时.13.如图,长方形ABCD是由4块小长方形拼成,其中②③两长方形的形状与大小完全相同,且长与宽的差为,则小长方形④与小长方形①的周长的差是.14.已知数轴上三点A、O、B对应的数分别为﹣6、0、10,点P、C、Q分别从点A、O、B 出发沿数轴向右运动,速度分别是每秒4个单位长度,每秒3个单位长度,每秒1个单位长度,设t秒时点C到点P,点Q的距离相等,则t的值为.15.在有理数范围内定义一个新的运算法则“*”;当a≥b时,a*b=a b;当a<b时,a*b=ab.根据这个法则,方程4*(4*x)=256的解是x=.16.某种商品每件的进价为80元,标价为120元,然后在广告上写“优惠酬宾,打折促销”,结果仍赚了20%,则该商品打了折.三.解答题(共6小题,满分40分)17.解方程:(1)4(x﹣1)﹣1=3(x﹣2)(2)﹣=1.18.已知关于y的方程﹣m=5(y﹣m)与方程4y﹣7=1+2y的解相同,求2m+1的解.19.定义一种新运算:m*n=mn+n,如4*3=4×3+3=15.请解决下列问题:(1)直接写出结果:2*(﹣3)=;1*(2*3)=.(2)若a<2,比较(a﹣3)*2与(a﹣3)*1的大小,并说明理由.(3)若关于x的方程2*(x﹣a)=x*5的解与方程x+3=b的解相同,求6a+4b的值.20.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?21.某校七年级学生准备观看电影《长津湖》.由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员打8折;方案二:打9折,有5人可以免票.(1)若一班有a(a>40)人,则方案一需付元钱,方案二需付元钱;(用含a的代数式表示)(2)若二班有41名学生,则他选择哪个方案更优惠?(3)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?22.某商店为迎接新年举行促销活动,促销活动有以下两种优惠方案:方案一:购买一件商品打八折,购买两件以上在商品总价打八折的基础上再打九折;方案二:购买一件商品打八五折,折后价格每满100元再送30元抵用券,可以用于抵扣其他商品的价格.(注:两种优惠只能选择其中一种参加)(1)小明想购买一件标价270元的衣服和一双标价450元的鞋子,请你帮助小明算一算选择哪种优惠方案更合算.(2)如果衣服和鞋子的标价都是在进价的基础上加价了50%,那么这两种优惠方案商店是赚了还是亏了?为什么?(3)如果小明已决定要购买标价为450元的鞋子,又想两种方案的优惠额相同,那么小明想购买的衣服的标价(低于450元)应调整为多少元?参考答案一.选择题(共8小题,满分40分)1.解:由题意将x=﹣1代入方程得:﹣2+3a=7,解得:a=3.故选:C.2.解:,去分母得:2﹣18(x﹣)=5,移项得:﹣18(x﹣)=3,系数化为1得:x﹣=﹣,∴11+2()=11+2×=.故选:B.3.解:把x=2代入2(2x﹣1)=3(x+a)﹣2得,2×(4﹣1)=3×(2+a)﹣2,6=6+3a﹣2,6﹣6+2=3a,a=,∴原方程为:=﹣2,去分母,得2(2x﹣1)=3(x+)﹣2×6,去括号,得4x﹣2=3x+2﹣12,移项,得4x﹣3x=2﹣12+2,把系数化为1,得x=﹣8.故选:B.4.解:设第一个数为x,根据已知:A、由题意得x+x+7+x+6+x+8=42,则x=5.25不是整数,故本选项不合题意.B、由题意得x+x+1+x+2+x+8=42,则x=7.75不是整数,故本选项不合题意.C、由题意得x+x+1+x+7+x+8=42,则x=6.5是整数,故本选项符合题意.D、由题意得x+x+1+x+6+x+7=42,则x=7是正整数,故本选项符合题意.故选:D.5.解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得:2×600x=1000(22﹣x),故选:A.6.解:设磬月的年龄是x岁,则妞妞的年龄是mx岁,根据题意得:mx+3=3(x+3),整理得:(m﹣3)x=6,则x=,∵m、x均为正整数,∴m﹣3=1,2,3,6,∴m=4,5,6,9,∴4+5+6+9=24.故选:D.7.解:假设每个人的工作效率相同,具体先安排x人工作,则:一个人做要30小时完成,现在计划由一部分人先做2小时,工作量为x,再增加3人和他们一起做4小时的工作量为(x+3),故可列式,故选:D.8.解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=90;当100≤x<350时,0.9x=90,解得:x=100;∵0.9y=270,∴y=300.∴0.8(x+y)=312或320.所以至少需要付312元.故选:C.二.填空题(共8小题,满分40分)9.解:把x=2代入方程3x﹣4=﹣a得:3×2﹣4=﹣a,解得:a=﹣1,所以a2021=(﹣1)2021=﹣1,故答案为:﹣1.10.解;根据|x﹣3|=5,∴x﹣3=5或x﹣3=﹣5,当x﹣3=5时,x=8;当x﹣3=﹣5时,x=﹣2.故答案为:8,﹣2.11.解:设这四个数中最小的数为x,则其他三个数分别为:x+1,x+7,x+8,由题意得x+x+1+x+7+x+8=52,解得x=9,答:这四个数中,最小的数为9.故答案为:9.12.解:设乙行了x小时.有两种情况:①两人没有相遇相距9千米,根据题意得到:5+(5+4)x=35﹣9,∴x=;②两人相遇后相距9千米,根据题意得到:5+x(5+4)x=35+9,∴x=;答:乙行了或小时.13.解:设BC的长为x,AB的长为y,长方形②的长为a,宽为(a﹣),由题意可得,④与①两块长方形的周长之差是:[2(a﹣)+2(x﹣a)]﹣{[x﹣(a﹣)]×2+2a]}=10.故答案是:10.14.解:t秒时,点P表示的数是﹣6+4t,点C表示的数是3t,点Q表示的数是10+t,∴PC=|(﹣6+4t)﹣3t|=|t﹣6|,QC=|10+t﹣3t|=|10﹣2t|,∵点C到点P,点Q的距离相等,∴|t﹣6|=|10﹣2t|,解得t=或4.故答案为:或4.15.解:由题意得①当x≤4时,4*(4*x)=4*(4x),当4≥4x时,4*(4x)=4=256,解得x=1.当4<4x时,4*(4x)=4x+1=256,解得x=3.②当x>4时,4*(4*x)=4*(4x)=16x=256,解得x=16.故答案为:1,3,16.16.解:设该商品打了x折,根据题意,得:120×﹣80=80×20%,解得x=8,答:该商品打了8折,故答案为:8.三.解答题(共6小题,满分40分)17.解:(1)去括号得:4x﹣4﹣1=3x﹣6,移项合并得:x=﹣1;(2)去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.18.解:由4y﹣7=1+2y解得y=4,再由﹣m=5(y﹣m)与方程4y﹣7=1+2y的解相同,得2﹣m=5(4﹣m),解得m=,代入2m+1=10.19.解:(1)2*(﹣3)=2×(﹣3)+(﹣3)=﹣6+(﹣3)=﹣9;2*3=6+3=9,1*9=9+9=18;故答案为:﹣9;18;(2)(a﹣3)*2<(a﹣3)*1,理由如下:(a﹣3)*2=2a﹣6+2=2a﹣4,(a﹣3)*1=a﹣3+1=a﹣2,2a﹣4﹣(a﹣2)=2a﹣4﹣a+2=a﹣2,∵a<2,∴a﹣2<0,∴(a﹣3)*2<(a﹣3)*1;(3)方程2*(x﹣a)=x*5可变形为2x﹣2a+x﹣a=5x+5,解得x=,方程x+3=b的解为x=b﹣3,∵这两个方程的解相同,∴=b﹣3,∴3a+2b=1,∴6a+4b=2(3a+2b)=2.20.解:设应调至甲地段x人,则调至乙地段(29﹣x)人,根据题意得:28+x=2(15+29﹣x),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.21.解:(1)若一班有a(a>40)人,则方案一需付30a×0.8=24a元钱,方案二需付30(a﹣5)×0.9=27(a﹣5)元钱.故答案是:24a;27(a﹣5);(2)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(3)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.22.解:(1)方案一:(270+450)×80%×90%=518.4(元),方案二:买鞋子费用为450×85%=382.5(元),买衣服除去抵用券后费用为270﹣3×30=180(元),一共应付款:382.5+180=562.5(元),∵518.4<562.5,∴选择方案一更合算;(2)∵衣服和鞋子的标价都是在进价的基础上加价了50%,∴衣服和鞋子的进价是(270+450)÷(1+50%)=480(元),而518.4>480,562.5>480,∴这两种优惠方案商店都是赚了;(3)设小明想购买的衣服的标价(低于450元)应调整为x元,根据题意得:(450+x)×80%×90%=450×85%+x﹣3×30,解得x=112.5,答:小明想购买的衣服的标价(低于450元)应调整为112.5元.。

(完整版)华师大版七年级下册一元一次方程练习及答案解析

(完整版)华师大版七年级下册一元一次方程练习及答案解析

华师大版七年级下册一元一次方程练习题一.选择题(共10小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x 2.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.243.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元4.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.5.(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏6.(2010•枣庄)如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A.B.m﹣n C.D.7.(2010•内江)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×80% 8.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.B.C.2π(60+10)×6=2π(60+π)×8 D.2π(60﹣x)×8=2π(60+x)×69.(2007•陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金x元,则所列方程正确的是()A.x﹣5000=5000×3.06% B.x+5000×20%=5000×(1+3.06%)C.x+5000×3.06%×20%=5000×3.06% D.x+5000×3.06%×20%=5000×(1+3.06%)10.(2006•武汉)越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿m2;②2005年第一季度全国商品房空置面积为亿m2;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿m2;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同.其中正确的是()A.①,④B.②,④C.②,③D.①,③二.填空题(共6小题)11.(2012•山西)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是_________cm3.12.(2012•眉山)某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有_________人.13.(2012•鄂尔多斯)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款____元.14.(2011•昆明)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为_________.15.(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为_________.16.(2007•桂林)如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为_________.三.解答题(共9小题)17.(2012•梧州)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?18.(2012•无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?19.(2012•天津)某通讯公司推出了移动电话的两种计费方式(详情见下表).月使用费/元主叫限定时间/分主叫超时费/(元/分)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t≤150 150<t<350 t=350 t>350方式一计费/元 58 _________ 108 _________方式二计费/元 88 88 88 _________(Ⅱ)当t 为何值时,两种计费方式的费用相等?(Ⅲ)当330<t <360时,你认为选用哪种计费方式省钱(直接写出结果即可).20.(2011•连云港)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km .求提速后的火车速度.(精确到1km/h )21.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下:第一档电量 第二档电量 第三档电量月用电量210度以下,每度价格0.52元 月用电量210度至350度,每度比第一档提价0.05元 月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?22.(2008•郴州)我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?23.(2007•宿迁)某公司在中国意杨之乡﹣﹣宿迁,收购了1600 m 3杨树,计划用20天完成这项任务,已知该公司每天能够精加工杨树50 m 3或者粗加工杨树100 m 3.则:(1)该公司应如何安排精加工、粗加工的天数,才能按期完成任务?(2)若每立方米杨树精加工、粗加工后的利润分别是500元、300元,则该公司加工后的木材可获利多少元?(结果保留两个有效数字)24.(2007•湖州)自选题:如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后_________分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是_________.25.(2006•郴州)售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?华师大版七年级下册一元一次方程练习题参考答案与试题解析一.选择题(共10小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x考点:由实际问题抽象出一元一次方程.分析:设原有树苗x棵,根据首、尾两端均栽上树,每间隔5米栽一棵,则缺少21棵,可知这一段公路长为5(x+21﹣1);若每隔6米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为6(x﹣1),根据公路的长度不变列出方程即可.解答:解:设原有树苗x棵,由题意得5(x+21﹣1)=6(x﹣1).故选A.点评:考查了由实际问题抽象出一元一次方程,本题是根据公路的长度不变列出的方程.“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.2.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.24考点:一元一次方程的应用.分析:根据六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,再利用20克砂糖=6小匙糖浆,即可得出答案.解答:解:六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,又20克砂糖=6小匙糖浆,所求=70÷20×6=21(小匙).故选:C.点评:此题主要考查了实际生活问题的应用,根据标签上所标示的20克砂糖=6小匙糖浆得出答案是解题关键.3.(2012•牡丹江)某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元考点:一元一次方程的应用.专题:应用题.分析:设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.解答:解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选A.点评:此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.4.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出一元一次方程.专题:探究型.分析:先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可.解答:解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选A.点评:本题考查的是由实际问题抽象出一元一次方程,解答此题的关键是把10分钟、5分钟化为小时的形式,这是此题的易错点.5.(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏考点:一元一次方程的应用.专题:优选方案问题.分析:可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.解答:解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×(106﹣1),70x=3850,x=55,则需更换的新型节能灯有55盏.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.6.(2010•枣庄)如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A.B.m﹣n C.D.考点:一元一次方程的应用.专题:几何图形问题.分析:此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.解答:解:设去掉的小正方形的边长为x,则:(n+x)2=mn+x2,解得:x=.故选A.点评:本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决.7.(2010•内江)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×80%考点:由实际问题抽象出一元一次方程.专题:销售问题.分析:等量关系为:标价×8折=240,把相关数值代入即可求得所求的方程.解答:解:这件衣服的标价为x•(1+50%),打8折后售价为x•(1+50%)×80%,可列方程为x•(1+50%)×80%=240,故选B.点评:根据实际售价找到相应的等量关系是解决问题的关键,注意应先算出这件衣服的标价.8.(2008•新疆)元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.B.C.2π(60+10)×6=2π(60+π)×8 D.2π(60﹣x)×8=2π(60+x)×6考点:由实际问题抽象出一元一次方程.专题:几何图形问题.分析:首先理解题意找出题中存在的等量关系:8人之间的距离=原来6人之间的距离,根据等量关系列方程即可.解答:解:设每人向后挪动的距离为x,则这8个人之间的距离是:,6人之间的距离是:,根据等量关系列方程得:=.故选A.点评:列方程解应用题的关键是找出题目中的相等关系.9.(2007•陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金x元,则所列方程正确的是()A.x﹣5000=5000×3.06% B.x+5000×20%=5000×(1+3.06%)C.x+5000×3.06%×20%=5000×3.06% D.x+5000×3.06%×20%=5000×(1+3.06%)考点:由实际问题抽象出一元一次方程.专题:应用题.分析:首先理解题意找出题中存在的等量关系:不扣除利息税的一年本息和=本金+利息=本金×(1+利率),根据此等式列方程即可.解答:解:设到期后银行应向储户支付现金x元,根据等式:不扣除利息税的一年本息和=本金+利息=本金×(1+利率),列方程得x+5000×3.06%×20%=5000×(1+3.06%).故选D.点评:注意本金、利息、利息税、利率之间的关系.10.(2006•武汉)越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿m2;②2005年第一季度全国商品房空置面积为亿m2;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿m2;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同.其中正确的是()A.①,④B.②,④C.②,③D.①,③考点:一元一次方程的应用.专题:增长率问题.分析:此题主要是套用有关增长率的公式:基数×(1+增长率)=增长后的面积,理解清题意,分析即可.解答:解:①若设2005年第一季度全国商品房空置面积是x亿m2.根据增长率的意义,得:x(1+23.8%)=1.23,则x=亿m2,正确;②由①知,错误;③根据增长率的意义,正确;④由于增长和降低的基数不相同,故2007年第一季度全国商品空置面积与2005年第一季度不相同,错误.故选D.点评:注意增长和降低的基数,能够根据增长率和降低率正确表示两个量之间的关系.二.填空题(共6小题)11.(2012•山西)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是1000cm3.考点:一元一次方程的应用.分析:设长方体的高为xcm,然后表示出其宽为30﹣4x,利用宽是高的2倍列出方程求得小长方体的高后计算其体积即可.解答:解:长方体的高为xcm,然后表示出其宽为30﹣4x,根据题意得:30﹣4x=2x解得:x=5故长方体的宽为10,长为20cm则长方体的体积为5×10×20=1000cm3.故答案为1000.点评:本题考查了一元一次方程的应用,解题的关键是找到等量关系并列出方程.12.(2012•眉山)某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有20人.考点:一元一次方程的应用.分析:设参加音乐小组的人数为x,则根据总数为80可得出方程,解出即可得出答案.解答:解:设参加音乐小组的人数为x,则由题意得:80×40%+80×35%+x=80,解得:x=20,即参加音乐小组的有20人.故答案为:20.点评:此题考查了一元一次方程的应用,解答本题可以利用方程求解,也可以运用代数式的知识求解,例如:先求出参加音乐小组的人数所占的比例,然后乘以80即可.13.(2012•鄂尔多斯)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款304或336元.考点:一元一次方程的应用.分析:要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100元,即是60元.第二次就有两种情况,一种是超过100元但不超过350元一律9折;一种是购物不低于350元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.解答:解:第一次购物显然没有超过100元,即在第二次消费60元的情况下,他的实质购物价值只能是60元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:他消费超过100元但不足350元,这时候他是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:他消费不低于350元,这时候他是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,他的实际购物价值可能是320元或360元.综上所述,他两次购物的实质价值为60+320=380或60+360=420,均超过了350元.因此均可以按照8折付款:380×0.8=304(元),420×0.8=336(元),故答案为:304元或336元.点评:此题主要考查了一元一次方程的应用,解题关键是第二次购物的288元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.14.(2011•昆明)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为90%.考点:一元一次方程的应用.分析:这是一道关于和差倍分问题的应用题,设今年新能源汽车的产量应增加的百分数为x%,解这道的关键是根据“为保持总产量与去年相等”,而去年的总量未知,可以设为参数a,就可以表示出去年普通汽车和新能源汽车的产量分别为90%a和10%a,而几年的普通汽车和新能源汽车的产量分别为90%a(1﹣10%)和10%a (1+x%).就可以根据等量关系列出方程.解答:解:设今年新能源汽车的产量应增加的百分数为x%,去年的总产量为a,由题意,得90%a(1﹣10%)+10%a(1+x%)=a,解得:x=90.故答案为:90%.点评:本题考查了一元一次方程的运用.要求学生能熟练地掌握例一元一次方程解应用题的步骤.解一元一次方程的关键是找到等量关系.15.(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为或.考点:一元一次方程的应用.专题:操作型.分析:根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1﹣a,a.由1﹣a<a可知,第二次操作时所得正方形的边长为1﹣a,剩下的矩形相邻的两边分别为1﹣a,a﹣(1﹣a)=2a﹣1.由于(1﹣a)﹣(2a﹣1)=2﹣3a,所以(1﹣a)与(2a﹣1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.解答:解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为或.点评:本题考查了一元一次方程的应用,解题的关键是分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.分别求出操作后剩下的矩形的两边.16.(2007•桂林)如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为20.考点:一元一次方程的应用.专题:数字问题.分析:设最大的一个数为x,则最小的数是(x﹣14),中间的数是(x﹣7),相等关系是:三个数的和为39,则可列出方程求解.解答:解:设最大的一个数为x,根据题意列方程得:(x﹣14)+(x﹣7)+x=39,解得x=20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.需注意日历上竖列相邻的两个数相隔7.三.解答题(共9小题)17.(2012•梧州)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?考点:一元一次方程的应用.分析:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,根据题意建立方程,求出方程的解就可以得出结论.解答:解:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,由题意,得300x+400(8﹣x)=2700,。

华师大版七年级下册数学第6章一元一次方程-测试题及答案

华师大版七年级下册数学第6章一元一次方程-测试题及答案

华师大版七年级下册数学第6章一元一次方程评卷人得分一、单选题1.下列利用等式的性质,错误的是()A .由a=b ,得到3-7a=3-7b ;B .由22a b c c =++,得到a=b ;C .由a=b ,得到ac=bc ,D .由a=b ,得到a bc c=;2.下列方程中,是一元一次方程的是()A .5x-9y=0B .x 2-5x=6C .129x =+D .12123x x ---=3.若关于x 的方程mx 3m-2-m+3=0是一元一次方程,则这个方程的解是()A .-2B .2C .-1D .14.若a=4时,关于x 的方程ax+b=0的解是x=2,那么ax-b=0的解是()A .x=2B .x =−12C .x=-2D .x =125.已知(m-3)x |m|-2+4=18是关于x 的一元一次方程,则()A .m=-3B .m=3C .m=1D .m=±36.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板()A .赚了5元B .亏了25元C .赚了25元D .亏了5元7.(3分)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A .880元B .800元C .720元D .1080元8.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为()A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=9.(2016云南省曲靖市)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44B.5x+4(x﹣2)=44C.9(x+2)=44D.9(x+2)﹣4×2=44 10.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2018次相遇在边()上.A.CD B.AD C.AB D.BC11.关于x的方程(m2-1)x2+(m-1)x+7m2=0是一元一次方程,则m的取值是()A.m=0B.m=±1C.m=-1D.m≠-112.对于ax+b=0(a,b为常数),表述正确的是()A.当a≠0时,方程的解是x=b aB.当a=0,b≠0时,方程有无数解C.当a=0,b=0,方程无解D.以上都不正确.评卷人得分二、填空题13.若关于x的方程(a+2b)x2+ax+b=0是一元一次方程,且ab≠0,则方程的解是_______;14.一个角的余角比它的补角的一半小10°,这个角的度数是_____________;15.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省________________元.16.甲、乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度的3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度的4倍,则甲运动43周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转________周,时针和分针第一次相遇.17.小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人。

华东师大版数学七年级下册 解一元一次方程(定义及去括号类)同步练习(Word版含答案)

华东师大版数学七年级下册 解一元一次方程(定义及去括号类)同步练习(Word版含答案)

6.2.2.1解一元一次方程(定义及去括号类)★只含有未知数(元),并且含有未知数的式子都是式,未知数的次数都是,这样的方程叫做一元一次方程★解含括号的一元一次方程(1)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(2)去括号的依据是去括号法则(3)一般步骤:去括号、合并同类项、移项、系数化为1。

一.选择题(共5小题)1.下列方程:①2x2﹣x=6;②y=x﹣7;③;④;⑤;⑥x=3,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对2.方程3(x+1)=x+1的解是()A.x=﹣1B.x=0C.x=1D.x=23.下列方程的解是x=2的方程是()A.3x+6=0B.C.D.1﹣2x=54.如果方程﹣4x=﹣2与关于x的方程6x﹣2m=9的解互为相反数,则m的值是()A.﹣6B.6C.D.5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.0二.填空题(共5小题)6.若4x2k+3=9是一元一次方程,则k=.7.若x=﹣1是关于x的方程2x﹣m=6的解,则m的值是.8.若方程(k﹣2)x|k|﹣1+7=0是关于x的一元一次方程,则k的值等于.9.方程(2a﹣1)x2+3x+1=4是一元一次方程,则a=.10.若关于x的方程(3a+2)x2+4x b﹣2﹣5=0是一元一次方程,则关于x的方程ax+b=0的解是.三.解答题(共30小题)11.解方程:2x﹣9=5x+3.12.解方程:(1)8﹣x=3x+2;(2).13.解方程:(1)2x+3=11﹣6x;(2)(3x﹣6)=x﹣3.14.解方程:8x=﹣2(x+4).15.解方程:3x﹣2(x+3)=6﹣2x.16.解方程:3(2x﹣1)=4x+3.17.2(x﹣3)=5﹣3(x+1).18.解方程:7x+2(3x﹣3)=20.19.解方程:6(x+)+2=29﹣3(x﹣1)20.解方程:3x﹣7(x﹣1)=3﹣2(x+3).21.解方程:4x﹣6=2(3x﹣1)22.(3x﹣6)=x﹣3.23.解方程:5x﹣2(3﹣2x)=﹣3.24.解方程:4x﹣3=2(x﹣1)25.2(x+8)=3(x﹣1)26.(x+1)﹣2(x﹣1)=1﹣3x.27.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x)28.解方程:7+2x=12﹣2x.29.解方程:(x﹣1)=2﹣(x+2).30.解方程:x﹣1=2(x+1)31.解方程:2﹣2(x﹣1)=3x+4.32.解方程:5x+2=3(x+2)33.34.35.解下列方程:(1)2{3[4(5x﹣1)﹣8]﹣20}﹣7=1;(2)=1;(3)x﹣2[x﹣3(x+4)﹣5]=3{2x﹣[x﹣8(x﹣4)]}﹣2;36.有一位同学在解方程3(x+5)+5[(x+5)﹣1]=7(x+5)﹣1,首先去括号,得3x+15+5x+25﹣5=7x+35﹣1,然后移项,合并同类项,最后求解,你有没有比他更简单的解法?试求解.37.已知y=1是方程2﹣(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x+5)的解.38.若方程3(2x﹣1)=2﹣3x的解与关于x的方程6﹣2k=2(x+3)的解相同,求k的值.39.已知方程(1﹣m2)x2﹣(m+1)x+8=0是关于x的一元一次方程.(1)求m的值及方程的解.(2)求代数式5x2﹣2(xm+2x2)﹣3(xm+2)的值.40.已知(m﹣3)x|m|﹣2+6=0是关于x的一元一次方程.(1)求m的值;(2)若|y﹣m|=3,求y的值.6.2.2.1解一元一次方程(定义及去括号类)参考答案与试题解析★只含有一个未知数(元),并且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫做一元一次方程★解含括号的一元一次方程(4)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(5)去括号的依据是去括号法则(6)一般步骤:去括号、合并同类项、移项、系数化为1。

华师大版七年级下册数学一元一次方程专题卷(附答案)

华师大版七年级下册数学一元一次方程专题卷(附答案)

华师大版七年级下册数学一元一次方程专题卷(附答案)一、选择题(题型注释)800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x2.射阳外国语一队师生共372人,乘车外出旅行,已有校车可乘108人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?如果设还要租用x 辆客车,可列方程为( )A .44x-372=108B .44x+108=372C .372+44x=108D .44x=108+3723.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A. 3瓶B. 4瓶C. 5瓶D. 6瓶4.在排成每行七天的日历表中取下一个33⨯方块(如图),若所有日期数之和为135,则n 的值为( )A .13B .14C .15D .95.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,则现在乙的年龄为( ) A.35 B.30 C.20 D.156.某工厂计划每天烧煤5吨,实际每天少烧2吨,m 吨煤多烧了20天,则可列的方程是( ) A .20m m -= B .205m m -= C .2057m m -= D .2053m m -=二、填空题(题型注释) 紧),弯曲部分可视为一半圆环,设其外圆半径为xcm ,则根据题意可列方程为 .8.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利50%,则这款服装每件的进价是 .9.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为 .10.若2x -3=0且|3y -2|=0,则xy = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学一元一次方程练习题
一.选择题(共30小题)
1.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()
A.152元B.156元C.160元D.190元
2.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()
.D.3(x﹣2)=2(9 CB.3(x﹣2)=2x+x+9).A3x﹣2=2x+9
3.某商贩同时以120元卖出两双皮鞋,其中一双亏本20%,另一双盈利20%,在这次买卖中,该商贩盈亏情况是()
A.不亏不盈B.盈利10元C.亏本10元D.无法确定
4.中国古代人民很早就在生产生活种发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()
2=.2= )=2x﹣9 CD.+﹣+)A.3(x﹣2=2x+9 B.3(x2
5.七年级一班的马虎同学在解关于x的方程3a﹣x=13时,误将﹣x看成+x,得方程的解x=﹣2,则原方程正确的解为()
.D.﹣C.﹣2 B.2 A
,则满足k.已知6为整数的所有整数k=x的和是()
C.0
.﹣A1 B.1
D.2
7.按照一定规律排列的n个数:1,﹣2,4,﹣8,16,﹣32,64 …若最后两个数的差为﹣1536,则n为()
A.9
B.10 C.11 D.12
页)6页(共1第
8.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()
A.562.5元B.875元C.550元D.750元
9.若关于x的方程ax﹣4=a的解是x=3,则a的值是()
A.﹣2 B.2
C.﹣1 D.1
10.已知关于x的方程3x+m+4=0的解是x=﹣2,则m的值为()
A.2
B.3
C.4
D.5
11.下列方程是一元一次方程的是()
2.=2y=6 D.xx﹣=25
B.x﹣5=6 CA.
12.下列等式变形正确的是()
.若,则2x+3(x﹣B﹣1)=1A.若﹣3x=5,则x=
C.若5x﹣6=2x+8,则5x+2x=8+6
D.若3(x+1)﹣2x=1,则3x+3﹣2x=1
13.已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是()910
D.7
B.﹣8 C.﹣A.
)k5x+3=0的解相同,则的值是(14.已知关于x的方程5x+3k=21与
8D..7
C.﹣9 A.﹣10
B
.下列变形中:15
;﹣12=10①由方程=2去分母,得x
;x=x=1两边同除以②由方程,得
;7x=04=x+4移项,得③由方程6x﹣
.+3)x12﹣x﹣5=3(④由方程26﹣两边同乘以,得
)个.错误变形的个数是(
1D.3
B.C.2 A.4
)=x﹣16时,去分母正确的是(.解方程
15x﹣)x+1=12x﹣()﹣(+.A3(x1)=x5x﹣1 B.3
15x+1=12x﹣+3xD)﹣﹣()+(.C3x1=12x5x1 .
页(共第26页)
17.如果x=﹣1是关于x的方程x+2k﹣3=0的解,则k的值是()A.﹣1 B.1 C.﹣2 D.2
.方程去分母正确的是(18)
A.x﹣1﹣x=﹣1 B.4x﹣1﹣x=﹣4 C.4x﹣1+x=﹣4 D.4x﹣1+x=﹣1
.若与kx﹣1=15的解相同,则k的值为(19)
A.8
B.2
C.﹣2 D.6
的方程x+m=﹣3的解,那么m的值是(20.如果x=5是关于x)A.﹣40
B.4
C.﹣4 D.﹣2
21.下列结论不成立的是()
A.若x=y,则m﹣x=m﹣y B.若x=y,则mx=my
.若,则mx=myx=y .若mx=my,则DC
22.下列运用等式性质正确的是()
=,那么c
B.如果a=bA.如果a=b,那么a+c=b﹣
22=3aa.如果a=3C.如果,那么=,那么a=b D
+5=0是一元一次方程,则m)x的值为()m23.若(﹣1
||m
A.1
B.﹣1 C.±1 D.不能确定
﹣m+3=0是一元一次方程,则这个方程的解是(x24.若关于的方程mx)﹣2m
x=2..x=﹣3 Dx=0 A.B.x=3 C
)25.解方程时,去分母后得到的方程是(
1﹣1)﹣1 =﹣C.2(2x1﹣1)﹣1+x=1
B.2(2x﹣)﹣(1+x)(A.22x﹣4﹣﹣1)﹣1+x=(﹣x=﹣4 D.22x
)互为相反数,则x的值是(和26.若2x﹣31﹣4x
.1 D1
A.0
B.C.﹣
).若x=y,且a≠0,则下面各式中不一定正确的是(27
=+x+a=ya C.D= ..ax=ay
A.B
),下列移项正确的是(84=x3x28.解方程﹣+﹣
第36页(共页)
4.﹣3x+x=﹣8+D.﹣3x3xA.﹣﹣x=﹣8﹣4 B.﹣﹣x=﹣8+4 C3x+x=﹣8﹣4
)29.下列方程中,是一元一次方程的是

2+3x﹣A.3x+2y=0 B5=3x.=1 C.=1 D.
) +30.若x=1是方程2xm﹣6=0的解,则m的值是(
C4 A.﹣4 B..﹣8 D.8
小题)12二.填空题(共
﹣.规定一种运算31“*”,a*b=a2b,则方程x*3=2*3的解为
3a=2a2b,所以变形,过程如下:因为3a﹣322b=2a.将等式﹣3a2b=2a﹣﹣2b,第二(第二步),上述过程中,第一步的根据是(第一步),所以3=2.步得出了明显错误的结论,其原因是
,a=bac=bc;③由2b;②由a=b33.有下列等式:①由a=b,得5﹣2a=5﹣,得
;,得3a=2b得;④由
22,得a=b.其中正确的是a⑤由
=b .
34.若x=2是关于x的方程x+a=﹣1的解,则a的值为
35.已知:2是关于x的方程2x﹣a=10的解,则a的值为.
36.已知x=﹣2是关于x的方程3﹣mx=x+m的解,则m的值为.
22+ax+2x﹣1=0是一元一次方程,则a=4)x a37.关于x的方程(.﹣﹣m+2=0是一元一次方程,则这个方程的解是的方程x x38.若关于
﹣2m
39.直接写出下列方程的解:
①x=﹣x+2
②﹣x=6

x=2x.
40.已知关于x的方程x+a﹣3=0的解是x=﹣2,则a的值为.
41.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.
+5=0是一元一次方程,则n=3x..若42
﹣74n
三.解答题(共8小题)
第4页(共6页)
﹣=1.解方程:
43.
=.解方程:﹣44
45.解方程:2(x﹣1)+1=x.
46.解方程:7x﹣5=3x﹣1.
47.解下列方程:
(1)2(x+3)=5(x﹣3)
=﹣)x(2
48.解以下三个方程,并根据这三个方程的解的个数,讨论关于x的方程ax=b (其中a、b为常数)解的数量与a、b的取值的关系.
(1)2x+1=x+3
(2)3x+1=3(x﹣1)
)3

=1.49﹣
50.解方程:
(1)3(2x﹣1)=15;
)2.(
第5页(共6页)
初一数学一元一次方程练习题答案
一.选择题(共30小题)
1.C;2.B;3.C;4.A;5.B;6.D;7.C;8.B;9.B;10.A;11.B;12.D;13.D;14.D;15.B;16.C;17.D;18.C;19.B;20.C;21.C;22.C;23.B;24.A;25.C;26.C;27.D;28.A;29.B;30.B;
二.填空题(共12小题)
31.x=2;32.等式的基本性质1;没有考虑a=0的情况;33.①②④;34.﹣2;
35.﹣6;36.﹣5;37.2;38.x=1;39.x=1;x=﹣18;x=0;40.4;41.1;
42.2;
三.解答题(共8小题)
43.;44.;45.;46.;47.;48.;49.;50.;
第6页(共6页)。

相关文档
最新文档