华师版七年级数学(下)一元一次方程经典习题(最新整理)

合集下载

华东师大版七年级数学下册第六章 一元一次方程练习(含答案)

华东师大版七年级数学下册第六章 一元一次方程练习(含答案)

A.x1=x2=1
B.x1=0,x2=1 1/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
C.x1=x2=﹣1
D.x1=1,x2=﹣2
8.某车间有 26 名工人,每人每天可以生产 800 个螺钉或 1000 个螺母,1 个螺钉需要配 2 个螺母,为使每天生产的螺钉和螺母刚好配套.设安排 x 名工人生产螺钉,则下面所列方程 正确的是( )
合并同类项,得 7x = −7 .
系数化为 1,得 x = −1 .
∴ x = −1 是原方程的解.
16.解方程
(1) 5x − 2 = 3x + 9
(2) 2x +1 − 5x −1 = 1
3
6
17.某工厂计划生产一种新型豆浆机,每台豆浆机需 3 个 A 种零件和 5 个 B 种零件正好配 套。已知车间每天能生产 A 种零件 450 个或 B 种零件 300 个,现在要使在 21 天中所生产的 零件全部配套,那么应安排多少天生产 A 种零件,多少天生产 B 种零件?
A.1200π cm3
B.1300π cm3
C.1400π cm3
D.1500π cm3
二、填空题
11.方程(a﹣2)x|a|﹣1+3=0 是关于 x 的一元一次方程,则 a=_____.
12.当 x = _________时,代数式 1 (1+ 2x) 与代数式 2 (3x −1) 的值相等
7
7
2/6
A. 40%(1 + 80%)x = 48
B. 80%(1 + 40%)x − x = 48
C. x − 80%(1 + 40%)x = 48
D. 80%(1 − 40%)x − x = 48

(完整版)华师大版七年级下册一元一次方程练习及答案解析

(完整版)华师大版七年级下册一元一次方程练习及答案解析

华师大版七年级下册一元一次方程练习题一.选择题(共10小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x 2.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.243.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元4.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.5.(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏6.(2010•枣庄)如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A.B.m﹣n C.D.7.(2010•内江)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×80% 8.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.B.C.2π(60+10)×6=2π(60+π)×8 D.2π(60﹣x)×8=2π(60+x)×69.(2007•陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金x元,则所列方程正确的是()A.x﹣5000=5000×3.06% B.x+5000×20%=5000×(1+3.06%)C.x+5000×3.06%×20%=5000×3.06% D.x+5000×3.06%×20%=5000×(1+3.06%)10.(2006•武汉)越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿m2;②2005年第一季度全国商品房空置面积为亿m2;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿m2;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同.其中正确的是()A.①,④B.②,④C.②,③D.①,③二.填空题(共6小题)11.(2012•山西)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是_________cm3.12.(2012•眉山)某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有_________人.13.(2012•鄂尔多斯)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款____元.14.(2011•昆明)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为_________.15.(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为_________.16.(2007•桂林)如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为_________.三.解答题(共9小题)17.(2012•梧州)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?18.(2012•无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?19.(2012•天津)某通讯公司推出了移动电话的两种计费方式(详情见下表).月使用费/元主叫限定时间/分主叫超时费/(元/分)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t≤150 150<t<350 t=350 t>350方式一计费/元 58 _________ 108 _________方式二计费/元 88 88 88 _________(Ⅱ)当t 为何值时,两种计费方式的费用相等?(Ⅲ)当330<t <360时,你认为选用哪种计费方式省钱(直接写出结果即可).20.(2011•连云港)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km .求提速后的火车速度.(精确到1km/h )21.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下:第一档电量 第二档电量 第三档电量月用电量210度以下,每度价格0.52元 月用电量210度至350度,每度比第一档提价0.05元 月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?22.(2008•郴州)我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?23.(2007•宿迁)某公司在中国意杨之乡﹣﹣宿迁,收购了1600 m 3杨树,计划用20天完成这项任务,已知该公司每天能够精加工杨树50 m 3或者粗加工杨树100 m 3.则:(1)该公司应如何安排精加工、粗加工的天数,才能按期完成任务?(2)若每立方米杨树精加工、粗加工后的利润分别是500元、300元,则该公司加工后的木材可获利多少元?(结果保留两个有效数字)24.(2007•湖州)自选题:如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后_________分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是_________.25.(2006•郴州)售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?华师大版七年级下册一元一次方程练习题参考答案与试题解析一.选择题(共10小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x考点:由实际问题抽象出一元一次方程.分析:设原有树苗x棵,根据首、尾两端均栽上树,每间隔5米栽一棵,则缺少21棵,可知这一段公路长为5(x+21﹣1);若每隔6米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为6(x﹣1),根据公路的长度不变列出方程即可.解答:解:设原有树苗x棵,由题意得5(x+21﹣1)=6(x﹣1).故选A.点评:考查了由实际问题抽象出一元一次方程,本题是根据公路的长度不变列出的方程.“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.2.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.24考点:一元一次方程的应用.分析:根据六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,再利用20克砂糖=6小匙糖浆,即可得出答案.解答:解:六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,又20克砂糖=6小匙糖浆,所求=70÷20×6=21(小匙).故选:C.点评:此题主要考查了实际生活问题的应用,根据标签上所标示的20克砂糖=6小匙糖浆得出答案是解题关键.3.(2012•牡丹江)某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元考点:一元一次方程的应用.专题:应用题.分析:设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.解答:解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选A.点评:此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.4.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出一元一次方程.专题:探究型.分析:先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可.解答:解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选A.点评:本题考查的是由实际问题抽象出一元一次方程,解答此题的关键是把10分钟、5分钟化为小时的形式,这是此题的易错点.5.(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏考点:一元一次方程的应用.专题:优选方案问题.分析:可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.解答:解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×(106﹣1),70x=3850,x=55,则需更换的新型节能灯有55盏.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.6.(2010•枣庄)如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A.B.m﹣n C.D.考点:一元一次方程的应用.专题:几何图形问题.分析:此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.解答:解:设去掉的小正方形的边长为x,则:(n+x)2=mn+x2,解得:x=.故选A.点评:本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决.7.(2010•内江)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×80%考点:由实际问题抽象出一元一次方程.专题:销售问题.分析:等量关系为:标价×8折=240,把相关数值代入即可求得所求的方程.解答:解:这件衣服的标价为x•(1+50%),打8折后售价为x•(1+50%)×80%,可列方程为x•(1+50%)×80%=240,故选B.点评:根据实际售价找到相应的等量关系是解决问题的关键,注意应先算出这件衣服的标价.8.(2008•新疆)元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.B.C.2π(60+10)×6=2π(60+π)×8 D.2π(60﹣x)×8=2π(60+x)×6考点:由实际问题抽象出一元一次方程.专题:几何图形问题.分析:首先理解题意找出题中存在的等量关系:8人之间的距离=原来6人之间的距离,根据等量关系列方程即可.解答:解:设每人向后挪动的距离为x,则这8个人之间的距离是:,6人之间的距离是:,根据等量关系列方程得:=.故选A.点评:列方程解应用题的关键是找出题目中的相等关系.9.(2007•陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金x元,则所列方程正确的是()A.x﹣5000=5000×3.06% B.x+5000×20%=5000×(1+3.06%)C.x+5000×3.06%×20%=5000×3.06% D.x+5000×3.06%×20%=5000×(1+3.06%)考点:由实际问题抽象出一元一次方程.专题:应用题.分析:首先理解题意找出题中存在的等量关系:不扣除利息税的一年本息和=本金+利息=本金×(1+利率),根据此等式列方程即可.解答:解:设到期后银行应向储户支付现金x元,根据等式:不扣除利息税的一年本息和=本金+利息=本金×(1+利率),列方程得x+5000×3.06%×20%=5000×(1+3.06%).故选D.点评:注意本金、利息、利息税、利率之间的关系.10.(2006•武汉)越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿m2;②2005年第一季度全国商品房空置面积为亿m2;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿m2;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同.其中正确的是()A.①,④B.②,④C.②,③D.①,③考点:一元一次方程的应用.专题:增长率问题.分析:此题主要是套用有关增长率的公式:基数×(1+增长率)=增长后的面积,理解清题意,分析即可.解答:解:①若设2005年第一季度全国商品房空置面积是x亿m2.根据增长率的意义,得:x(1+23.8%)=1.23,则x=亿m2,正确;②由①知,错误;③根据增长率的意义,正确;④由于增长和降低的基数不相同,故2007年第一季度全国商品空置面积与2005年第一季度不相同,错误.故选D.点评:注意增长和降低的基数,能够根据增长率和降低率正确表示两个量之间的关系.二.填空题(共6小题)11.(2012•山西)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是1000cm3.考点:一元一次方程的应用.分析:设长方体的高为xcm,然后表示出其宽为30﹣4x,利用宽是高的2倍列出方程求得小长方体的高后计算其体积即可.解答:解:长方体的高为xcm,然后表示出其宽为30﹣4x,根据题意得:30﹣4x=2x解得:x=5故长方体的宽为10,长为20cm则长方体的体积为5×10×20=1000cm3.故答案为1000.点评:本题考查了一元一次方程的应用,解题的关键是找到等量关系并列出方程.12.(2012•眉山)某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有20人.考点:一元一次方程的应用.分析:设参加音乐小组的人数为x,则根据总数为80可得出方程,解出即可得出答案.解答:解:设参加音乐小组的人数为x,则由题意得:80×40%+80×35%+x=80,解得:x=20,即参加音乐小组的有20人.故答案为:20.点评:此题考查了一元一次方程的应用,解答本题可以利用方程求解,也可以运用代数式的知识求解,例如:先求出参加音乐小组的人数所占的比例,然后乘以80即可.13.(2012•鄂尔多斯)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款304或336元.考点:一元一次方程的应用.分析:要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100元,即是60元.第二次就有两种情况,一种是超过100元但不超过350元一律9折;一种是购物不低于350元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.解答:解:第一次购物显然没有超过100元,即在第二次消费60元的情况下,他的实质购物价值只能是60元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:他消费超过100元但不足350元,这时候他是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:他消费不低于350元,这时候他是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,他的实际购物价值可能是320元或360元.综上所述,他两次购物的实质价值为60+320=380或60+360=420,均超过了350元.因此均可以按照8折付款:380×0.8=304(元),420×0.8=336(元),故答案为:304元或336元.点评:此题主要考查了一元一次方程的应用,解题关键是第二次购物的288元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.14.(2011•昆明)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为90%.考点:一元一次方程的应用.分析:这是一道关于和差倍分问题的应用题,设今年新能源汽车的产量应增加的百分数为x%,解这道的关键是根据“为保持总产量与去年相等”,而去年的总量未知,可以设为参数a,就可以表示出去年普通汽车和新能源汽车的产量分别为90%a和10%a,而几年的普通汽车和新能源汽车的产量分别为90%a(1﹣10%)和10%a (1+x%).就可以根据等量关系列出方程.解答:解:设今年新能源汽车的产量应增加的百分数为x%,去年的总产量为a,由题意,得90%a(1﹣10%)+10%a(1+x%)=a,解得:x=90.故答案为:90%.点评:本题考查了一元一次方程的运用.要求学生能熟练地掌握例一元一次方程解应用题的步骤.解一元一次方程的关键是找到等量关系.15.(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为或.考点:一元一次方程的应用.专题:操作型.分析:根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1﹣a,a.由1﹣a<a可知,第二次操作时所得正方形的边长为1﹣a,剩下的矩形相邻的两边分别为1﹣a,a﹣(1﹣a)=2a﹣1.由于(1﹣a)﹣(2a﹣1)=2﹣3a,所以(1﹣a)与(2a﹣1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.解答:解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为或.点评:本题考查了一元一次方程的应用,解题的关键是分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.分别求出操作后剩下的矩形的两边.16.(2007•桂林)如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为20.考点:一元一次方程的应用.专题:数字问题.分析:设最大的一个数为x,则最小的数是(x﹣14),中间的数是(x﹣7),相等关系是:三个数的和为39,则可列出方程求解.解答:解:设最大的一个数为x,根据题意列方程得:(x﹣14)+(x﹣7)+x=39,解得x=20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.需注意日历上竖列相邻的两个数相隔7.三.解答题(共9小题)17.(2012•梧州)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?考点:一元一次方程的应用.分析:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,根据题意建立方程,求出方程的解就可以得出结论.解答:解:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,由题意,得300x+400(8﹣x)=2700,。

华师大版七年级下册数学第6章 一元一次方程含答案

华师大版七年级下册数学第6章 一元一次方程含答案

华师大版七年级下册数学第6章一元一次方程含答案一、单选题(共15题,共计45分)1、已知关于x的方程的解是,则a的值是()A.1B.C.D.2、关于x的方程3x﹣m=5+2(2m﹣x)有正数解的条件是()A.m>﹣5B.m<﹣1C.m>﹣1D.m>13、某班有学生35人,参加文学社的人数是参加科学社的人数的3倍,既参加文学社又参加科学社的人数是3人,既不参加文学社也不参加科学社的有2人,则参加科学社但不参加文学社的人数是()A.3B.4C.5D.64、一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元5、下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则B.若a=b,则ac=bcC.若a(x 2+1)=b (x 2+1),则a=bD.若x=y,则x﹣3=y﹣36、下列式子中,是一元一次方程的是()A.x+2y=1B.C.D.2t+3=17、方程2x+3=7的解是()A.x=5B.x=4C.x=3.5D.x=28、已知方程3x+m=4-7x的解为x=1,则m的值为()A.-2B.-5C.6D.-69、若x=5是关于x的方程2x+3m﹣1=0的解,则m的值为()A.0B.﹣1C.﹣2D.﹣310、某商品的进价为 120 元,8 折销售仍赚 40 元,则该商品标价为()元.A.160B.180C.200D.22011、在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只?设鸡为x只得方程()A.2x+4(14-x)=44B.4x+2(14-x)=44C.4x+2(x-14)=44 D.2x+4(x-14)=4412、解方程时,为了去分母应将方程两边同时乘以()A.12B.10C.9D.413、某商品的进价是500元,标价是750元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售此商品()A.5B.6C.7D.814、已知关于x的一元一次方程的解为x=-3,那么关于y的一元一次方程的解为()A.y=1B.y=-1C.y=-3D.y=-415、当1≤x≤4时,mx﹣4<0,则m的取值范围是()A.m>1B.m<1C.m>4D.m<4二、填空题(共10题,共计30分)16、已知方程的解也是方程的解,则b=________.17、若对的值比的值小1,则x的值为 ________.18、已知是关于的方程的解,则的值是________.19、如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第5个台阶上依次标着任意相邻四个台阶上数的和都相等,则________.20、若是关于的一元一次方程,则该方程的解________.21、如果2(x+3)的值与3(1﹣x)的值互为相反数,那么x等于________22、如果关x的方程与的解相同,那么m的值是________ .23、甲、乙两人骑自行车,同时从相距50km的两地相向而行,甲的速度为15km/h,乙的速度为10km/h,经过________h,甲、乙两人相距25km.24、如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗1厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成2米长的链条,则需要________个铁环.25、小明解方程去分母时,方程右边的-3忘记乘6,因而求出的解为x=2,则原方程正确的解为________.三、解答题(共5题,共计25分)26、若使不等式x﹣>2与2(x+1)>3x﹣4都成立的最大整数值是方程x﹣ax=3的解,求a的值.27、某人八点多吃早饭,他发现钟上的分针与时针的夹角成25°角.等他吃完早饭,发现钟上的时间还是八点多,两针之间的夹角还是25°角.问他吃早饭用了多少时间?28、某校初一共三个班的学生为保护我国珍贵动物大熊猫捐款.1班捐款数为初一总捐款数的;2班捐款数为1、3班捐款数的和的一半;3班捐了380元,求初一总捐款数.29、新春佳节,小明与小颖去看望李老师,李老师用一种特殊的方式给他们分糖.李老师先拿给小明1块,然后把糖盒里所剩糖的给他,再拿给小颖2块,又把糖盒里所剩糖的给她,这样两人得到的糖块数相同.李老师的糖盒中原来有多少块糖?30、种一批树苗,如果每人种7棵,则剩余3棵树苗没有种,如果每人种9棵,则缺少7棵树苗,有多少人种树?共有多少棵树苗?参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、A5、A6、D7、D8、D9、D10、C11、A12、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

华师大版七年级下册数学第6章一元一次方程-测试题及答案

华师大版七年级下册数学第6章一元一次方程-测试题及答案

华师大版七年级下册数学第6章一元一次方程评卷人得分一、单选题1.下列利用等式的性质,错误的是()A .由a=b ,得到3-7a=3-7b ;B .由22a b c c =++,得到a=b ;C .由a=b ,得到ac=bc ,D .由a=b ,得到a bc c=;2.下列方程中,是一元一次方程的是()A .5x-9y=0B .x 2-5x=6C .129x =+D .12123x x ---=3.若关于x 的方程mx 3m-2-m+3=0是一元一次方程,则这个方程的解是()A .-2B .2C .-1D .14.若a=4时,关于x 的方程ax+b=0的解是x=2,那么ax-b=0的解是()A .x=2B .x =−12C .x=-2D .x =125.已知(m-3)x |m|-2+4=18是关于x 的一元一次方程,则()A .m=-3B .m=3C .m=1D .m=±36.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板()A .赚了5元B .亏了25元C .赚了25元D .亏了5元7.(3分)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A .880元B .800元C .720元D .1080元8.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为()A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=9.(2016云南省曲靖市)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44B.5x+4(x﹣2)=44C.9(x+2)=44D.9(x+2)﹣4×2=44 10.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2018次相遇在边()上.A.CD B.AD C.AB D.BC11.关于x的方程(m2-1)x2+(m-1)x+7m2=0是一元一次方程,则m的取值是()A.m=0B.m=±1C.m=-1D.m≠-112.对于ax+b=0(a,b为常数),表述正确的是()A.当a≠0时,方程的解是x=b aB.当a=0,b≠0时,方程有无数解C.当a=0,b=0,方程无解D.以上都不正确.评卷人得分二、填空题13.若关于x的方程(a+2b)x2+ax+b=0是一元一次方程,且ab≠0,则方程的解是_______;14.一个角的余角比它的补角的一半小10°,这个角的度数是_____________;15.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省________________元.16.甲、乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度的3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度的4倍,则甲运动43周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转________周,时针和分针第一次相遇.17.小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人。

数学华东师大版七年级下册一元一次方程练习题

数学华东师大版七年级下册一元一次方程练习题

月 号 姓名 班级一、慧眼识金1.某数的等于4与这个数的的差,那么这个数是 【 】. (A)4 (B)-4 (C)5 (D)-52.若,则的值为 【 】.(A)8 (B)-8 (C)-4 (D)43.若,则①;②;③;④中,正确的有 【 】.(A)1个 (B)2个 (C)3个 (D)4个4.下列方程中,解是的是 【 】.(A) (B) (C) (D)5.下列方程中,变形正确的是 【 】.二、画龙点睛1.在中, 是方程的解. 2.若是的解,则的值是 .3.当 时,代数式与的差为10. 154532113x x -=-4x -a b =1133a b -=-1134a b =3344a b -=-3131a b -=-1x =-2(2)12x --=2(1)4x --=1115(21)x x +=+2(1)2x --=-3443x x -==-(A) 由得232x x +=-(B) 由3=得552x x ==-(C) 由2-得5252x x +==+(D) 由得3510x x x ===,,432x x +-=m 3221x x -=+3010m +x =1(25)2x +1(92)3x +三 考考你的基本功1.解下列方程(1); (2);(3); (4).月 号 姓名 班级一 慧眼识金1.对于“”,下列移项正确的是 【 】.(A) (B) (C) (D)2.某同学在解关于的方程时,误将看作,得到方程的解为,则原方程的解为 【 】.(A) (B) (C) (D)3.小丽的年龄乘以3再减去3是18,那么小丽现在的年龄为 【 】.(A)7岁 (B)8岁 (C)16岁 (D)32岁4.下列方程中,是二元一次方程的是( )A .y=x+2B .x-1y=3 C .y=2-x 2 D .xy=2 5.在下列方程组中,不是二元一次方程组的是( )A .36263325 (3442124657)x y x y x y x y B C D x y x y y z x y -=-=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=+=+=+=⎩⎩⎩⎩ 6.已知11220x ax y y x by =+=-⎧⎧⎨⎨=-=⎩⎩是方程组的解,则a+b=( ) 76226x x --=-4352x x --=--453x x =+3735y y +=--x y a b +=-x b y a -=-x a y b -=+a x y b -=+a x b y +=-x 513a x -=x -x +2x =-3x =-0x =2x =1x =A .2B .-2C .4D .-4一;画龙点睛1.如果与互为相反数,则的值为 . 2.已知方程是关于的一元一次方程,则 .3.如果成立,则的正数解为 .三 考考你的基本功1.解下列方程 (1) 1111248x x x x -=++ (2) 3142125x x -+=-1)32,20,351,7(2)(3)(4)3217.5 4.2 3.23 1.2y x x y x y x y x y y x x y x y =--==+⎧⎧⎧+=+=⎨⎨⎨+=+=-=⎩⎩⎩月 号 姓名 班级一 慧眼识金1‘下列四组变形中,属于去括号的是( )A.5x+3=0,则5x=-3B.x = 6,则x = 12C.3x-(2-4x)=5,则3x+4x-2=5D.5x=1+4,则5x=52、某同学在方程5x-1=□x+3时,把□处的数字看错了,解得x=-4/3,该同学把□看成了( )154m +14m +m 1(2)60a a x --+=x a =3123x x +=-x 12A.3B.-8C. 8D. -3 3、下列结论:①若a ﹤b ,则a 2c ﹤b 2c ;②若a c ﹥b c ,则a ﹥b ;③若a ﹥b 且若c =d ,则a c ﹥b d ;④若a 2c ﹤b 2c ,则a ﹤b 。

华师大版七年级下册数学第6章一元一次方程 测试题及答案

华师大版七年级下册数学第6章一元一次方程 测试题及答案

华师大版七年级下册数学第6章一元一次方程一、单选题1.下列利用等式的性质,错误的是( ) A .由a=b ,得到3-7a=3-7b ; B .由22a b c c =++,得到a=b ; C .由a=b ,得到ac=bc ,D .由a=b ,得到a bc c=;2.下列方程中,是一元一次方程的是( ) A .5x-9y=0B .x 2-5x=6C .129x =+ D .12123x x ---=3.若关于x 的方程mx 3m-2-m+3=0是一元一次方程,则这个方程的解是( ) A .-2 B .2 C .-1 D .14.若a=4时,关于x 的方程ax+b=0的解是x=2,那么ax-b=0的解是( ) A .x=2B .x =−12C .x=-2D .x =125.已知(m-3)x |m|-2+4=18是关于x 的一元一次方程,则( ) A .m=-3 B .m=3 C .m=1 D .m=±36.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板( )A .赚了5元B .亏了25元C .赚了25元D .亏了5元7.(3分)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为( )A .880元B .800元C .720元D .1080元8.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1 B .(9+7)x=1C .11()179x -=D .11()179x +=9.(2016云南省曲靖市)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44 10.如图,甲、乙两动点分别从正方形ABCD 的顶点A、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3 倍,则它们第2018 次相遇在边()上.A.CD B.AD C.AB D.BC11.关于x的方程(m2-1)x2+(m-1)x+7m2=0是一元一次方程,则m的取值是()A.m=0 B.m=±1 C.m=-1 D.m≠-112.对于ax+b=0(a,b为常数),表述正确的是()A.当a≠0时,方程的解是x=b aB.当a=0,b≠0时,方程有无数解C.当a=0,b=0,方程无解D.以上都不正确.二、填空题13.若关于x的方程(a+2b)x2+ax+b=0是一元一次方程,且ab≠0,则方程的解是_______;14.一个角的余角比它的补角的一半小10°,这个角的度数是_____________;15.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省________________ 元.16.甲、乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度的3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度的4倍,则甲运动43周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转________周,时针和分针第一次相遇.17.小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人。

华师大版七年级下册数学第6章 一元一次方程含答案

华师大版七年级下册数学第6章 一元一次方程含答案

华师大版七年级下册数学第6章一元一次方程含答案一、单选题(共15题,共计45分)1、根据等式的性质,下列变形正确的是( )A.如果,那么B.如果,那么C.如果,那么D.如果,那么2、若x=1是方程(1)2﹣(m-x)=2x的解,则关于y的方程(2)m(y﹣3)﹣2=m(2y﹣5)的解是()A.-10B.0C.D.43、方程=x,处被墨水盖住了,已知方程的解x=2,那么处的数字是( )A.2B.3C.4D.64、下列方程是一元一次方程的是().A. B. C. D.5、下列说法正确的是()A.带负号的数一定是负数.B.方程是一元一次方程.C.单项式的次数是3.D.单项式与单项式的和一定是多项式.6、若x=1是方程(1)2﹣的解,则关于y的方程(2)m(y﹣3)﹣2=m(2y﹣5)的解是()A.﹣10B.0C.D.47、若(m﹣2)x|2m﹣3|=6是关于x的一元一次方程,则m的值是()A.1B.任何数C.2D.1或28、轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和8港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B. C. D.9、与方程x-1=2x的解相同的方程是()A.x-2=1+2xB.x=2x+1C.x=2x-1D.x=10、已知关于x的方程的解是,则的值是()A. B. C. D.11、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,若每3人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程()A. B. C. D.12、在四个数1,2,3,4中,是方程|x﹣5|=2的解的是()A.1B.2C.3D.413、已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形B.十二边形C.十边形D.九边形14、已知x=y,则下列等式中,不一定成立的是()A. x-3=y-3B. x+5=y+5C.-2x=-2yD.15、一件夹g衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹g衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28D.(1﹣50%x)×80%=x+28二、填空题(共10题,共计30分)16、一组数:2,1,3,x,7,﹣9,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中x表示的数为________.17、一件夹g衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹g衫的成本是________.18、若关于x的一元一次方程4x+m+1=x-1的解是负数,则m的取值范围是________。

华师大版七年级下册数学第6章 一元一次方程含答案

华师大版七年级下册数学第6章 一元一次方程含答案

华师大版七年级下册数学第6章一元一次方程含答案一、单选题(共15题,共计45分)1、轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3= ﹣3B. ﹣3= +3C. +3=D. ﹣3=2、某年的某个月份中有5个星期三,它们的日期之和为80(把日期作为一个数,例如把22日看作22),那么这个月的3号是星期()A.日B.一C.二D.四3、关于的一元一次方程的解是()A. B. C. D.4、已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1B.1C.0或1D.﹣15、若和互为相反数,则x的值是()A.﹣9B.9C.﹣8D.86、一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A.120元B.125元C.135元D.140元7、一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,则这列火车的长为()A.190米B.400米C.380米D.240米8、若是关于的方的解,则关于的不等式的最大整数解为()A.1B.2C.3D.49、若关于x的方程ax=3x﹣1的解是负数,则a的取值范围是()A.a<1B.a>3C.a>3或a<1D.a<210、方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.711、一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形.设长方形的长为x cm,可列方程为()A. x+1=(30-x)-2B. x+1=(15-x)-2C. x-1=(30-x)+2D. x-1=(15-x)+212、关于x的方程2x-4=3m和x+2 =-8有相同的解,则m的值是()A.10B.-8C.-10D.813、某项工程甲单独做6天完成,乙单独做8天完成,若甲先干一天,然后甲、乙合作完成此项工一共做了x天,则所列方程为()A. B. C. D.14、下列方程变形是移项的是( )A.由3= x,得9=8xB.由x=-5+2x,得x=2x-5C.由2x-3=x+5,得x- = + D.由y-1= y+2,得y- y=2+115、已知关于x的方程,若a为正整数时,方程的解也为正整数,则a的最大值是( )A.12B.13C.14D.15二、填空题(共10题,共计30分)16、如果关于x的方程和方程的解相同,那么a的值为________.17、已知关于x的方程3a+x=﹣﹣3的解为2,则a的值是________.18、当x=________时,代数式x﹣与﹣2的值互为相反数.19、某工程甲单独完成需4天,乙单独完成需8天,现甲先工作1天,乙再加入合作,问甲、乙再合作几天才能完成这项工程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择填空题
1.已知下列方程:①x -3=;②0.5x =2;③=7x +2;④x 2-5x =7;⑤x +3y =7.其中属
4x x
3
于一元一次方程的个数是( )
A .2个
B .3个
C .4个
D .5个
2.解方程7(2x -1)-3(4x -1)=11去括号正确的是( )
A .14x -7-12x +1=11
B .14-1-12x -3=11
C .14x -7-12x +3=11
D .14x -1-12x +3=113.解方程(x -1)=2,下面的几种解法中,较简便的是( )
566
5
A .两边同乘以6
B .两边同乘以5
C .括号内通分
D .先去括号,再移项4.当k =____时,单项式2x 3(4k -1)y 2与xy 2的和仍是单项式.
1
3
5.若方程4x -3(2a -x )=5x -7(a -x )的解是x =3,则a 的值是_ _.
6.解方程
-=1的步骤中,去分母一项正确的是( )3x -721+x
3
A .3(3x -7)-2+2x =6
B .3x -7-(1+x )=1
C .3(3x -7)-2(1-x )=1
D .3(3x -7)-2(1+x )=6
7. 某同学在解方程
+1=x 时,不小心将■处的数字用墨水污染了,于是他看后面的■x +2
3
答案,方程的解是x =5,那么■处的数字是( ) A .5 B .4 C .3 D .28. 解方程(x -30)=7,下列变形较简便的是( )
455
4
A .方程两边都乘以20,得4(5x -120)=140
B .方程两边都除以,得x -30=
455435
4C .去括号,得x -24=7 D .方程中括号内通分得×=7
455x -120
4
二.解答题
1.解方程:2x+1=7 2.
3.(1)解方程:4﹣x=3(2﹣x ); (2)解方程:.
4.解方程:.
5.解方程
(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.
6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.
7.﹣(1﹣2x)=(3x+1)
8.解方程:
(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;
(2).
9.解方程:.
10.解方程:
(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).
11.解方程:
12.解方程:
13.解方程:
(1)(2)
14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2
(3)[3(x﹣)+]=5x﹣1
15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;
(C类)解方程:.
16.解方程
(1)3(x+6)=9﹣5(1﹣2x)(2)
(3)(4)
17.解方程:
(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x﹣﹣3
18.(1)解方程:4x﹣3(5﹣x)=2;(2)解方程:.
19.(1)解方程:3x+3=2x+7;(2)解方程:. 
20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.
22.(1). 8x﹣3=9+5x.(2) . 5x+2(3x﹣7)=9﹣4(2+x).
.. 
23.解下列方程:
(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)= ﹣2.
24.解方程:
(1)﹣0.5+3x=10;(2)3x+8=2x+6;
(3)2x+3(x+1)=5﹣4(x﹣1);(4).
25.解方程:.
26.解方程:(1)10x﹣12=5x+15;(2)
27.解方程:
(1)8y﹣3(3y+2)=7 (2).
28.当k为什么数时,式子比的值少3.
29.解下列方程:
(I)12y﹣2.5y=7.5y+5 (II). 
30.解方程:.。

相关文档
最新文档