数学建模相关性分析

合集下载

数学建模常用各种检验方法

数学建模常用各种检验方法

数学建模常用各种检验方法数学建模是利用数学方法解决实际问题的过程。

在进行数学建模时,需要对模型的合理性进行检验,以确保模型的可靠性和准确性。

本文将介绍数学建模中常用的各种检验方法。

1.残差分析方法残差(residual)是指观测值与模型预测值之间的差异。

残差分析可以通过比较残差的大小、分布和形态,来检验模型的合理性。

常用的残差分析方法包括:正态性检验、稳定性检验、独立性检验和同方差性检验。

2.敏感性分析方法敏感性分析(sensitivity analysis)用于分析参数对模型结果的影响程度。

通过改变参数的值,并观察输出结果的变化,可以评估参数对模型的敏感性。

常用的敏感性分析方法包括:单参数敏感性分析、多参数敏感性分析和全局敏感性分析。

3.假设检验方法假设检验(hypothesis testing)用于判断模型的假设是否成立。

通过对模型的假设进行检验,可以评估模型的合理性和拟合优度。

常用的假设检验方法包括:t检验、F检验和卡方检验。

4.误差分析方法误差分析(error analysis)用于评估模型的误差水平。

通过比较实际观测值与模型预测值之间的误差,可以评估模型的准确性和精度。

常用的误差分析方法包括:平均绝对误差(MAE)、均方根误差(RMSE)和平均百分比误差(MAPE)。

5.稳定性分析方法稳定性分析(stability analysis)用于评估模型的稳定性和鲁棒性。

通过对模型进行参数扰动或输入扰动,并观察输出结果的变化,可以评估模型的稳定性和可靠性。

常用的稳定性分析方法包括:参数扰动分析、输入扰动分析和鲁棒性分析。

6.验证方法验证(validation)用于评估模型的预测能力和适用范围。

通过对模型进行验证,可以判断模型在不同情况下的预测效果和适用性。

常用的验证方法包括:留一验证(leave-one-out validation)、交叉验证(cross-validation)和外部验证(external validation)。

数学建模的相关问题求解方法

数学建模的相关问题求解方法

数学建模的相关问题求解方法:1.量纲分析法是在物理领域建立数学模型的一种方法,主要是依据物理定律的量纲齐次原则来确定个物理量之间的关系,量纲齐次原则是指一个有意义的物理方程的量纲必须一致的,也就是说方程的两边必须具有相同的量纲,即: dim左=dim右并且,方程中每一边的每一项都必须有相同的量纲。

例子见书《数学建模方法与实践》P17—P232.线性规划法线性规划法是运筹学的一个重要分支应用领域广泛。

从解决各种技术领域中的优化问题,到工农业生产、商业经济、交通运输、军事等的计划和管理及决策分析。

线性规划所解决的问题具有以下共同的特征:(1)每一个问题都有一组未知数(x1,x2,……,xn)表示某一方案;这些未知数的一组定值就代表一个具体方案。

由于实际问题的要求,通常这些未知数取值都是非负的。

(2)存在一定的限制条件(即约束条件),这些条件是关于未知数的一组线性等式或线性不等式来表示。

(3)有一个目标要求,称为目标函数。

目标函数可表示为一组未知数的线性函数。

根据问题的需要,要求目标函数实现最大化或最小化。

例子见书《数学建模方法与实践》P26—P303.0—1规划法用于解决指派问题,是线性规划的特殊情况。

例子见书《数学建模方法与实践》P314.图解法用于求解二维线性规划的一种几何方法,其方法步骤见书《数学建模方法与实践》P345.单纯形法也是一种求解线性规划的常用方法,其基本原理和方法见书《数学建模方法与实践》P37——P39,计算步骤P40。

6.非线性规划法在目标函数和(或)约束条件很难用线性函数表示时,如果目标函数或约束条件中,有一个或多个是变量的非线性函数,则称这种规划问题为非线规划问题。

例子见书《数学建模方法与实践》P44——P457.最短路及狄克斯特拉算法狄克斯特拉算法是图论中用于计算最短路的一种方法,详见书《数学建模方法与实践》P588.克罗斯克尔算法克罗斯克尔算法是用来求解一个连通的赋权图的最小生成树的方法,详见书《数学建模方法与实践》P599.普莱姆算法同上10.欧拉回路及弗洛来算法欧拉回路是指若存在一条回路。

数学建模-回归分析

数学建模-回归分析
回归分析
一、变量之间的两种关系 1、函数关系:y = f (x) 。
2、相关关系:X ,Y 之间有联系,但由 其中一个不能唯一的确定另一个的值。 如: 年龄 X ,血压 Y ; 单位成本 X ,产量 Y ; 高考成绩 X ,大学成绩 Y ; 身高 X ,体重 Y 等等。
二、研究相关关系的内容有
1、相关分析——相关方向及程度(第九章)。 增大而增大——正相关; 增大而减小——负相关。 2、回归分析——模拟相关变量之间的内在 联系,建立相关变量间的近似表达式 (经验 公式)(第八章)。 相关程度强,经验公式的有效性就强, 反之就弱。
三、一般曲线性模型 1、一般一元曲线模型
y = f ( x) + ε
对于此类模型的转换,可用泰勒展开 公式,把 在零点展开,再做简单的变 f ( x) 换可以得到多元线性回归模型。 2、一般多元曲线模型
y = f ( x1 , x2源自,⋯ , xm ) + ε
对于此类模型也要尽量转化为线性模 型,具体可参考其他统计软件书,这里不 做介绍。
ˆ ˆ ˆ ˆ y = b0 + b1 x1 + ⋯ + bm x m
2、利用平方和分解得到 ST , S回 , S剩。 3、计算模型拟合度 S ,R ,R 。 (1)标准误差(或标准残差)
S =
S剩 ( n − m − 1)
当 S 越大,拟合越差,反之,S 越小, 拟合越好。 (2)复相关函数
R =
2
仍是 R 越大拟合越好。 注: a、修正的原因:R 的大小与变量的个数以及样本 个数有关; 比 R 要常用。 R b、S 和 R 是对拟合程度进行评价,但S与 R 的分 布没有给出,故不能用于检验。 用处:在多种回归模型(线性,非线性)时, 用来比较那种最好;如:通过回归方程显著性检验 得到:

第三节 变量间的相关关系、统计案例(数学建模八)

第三节 变量间的相关关系、统计案例(数学建模八)
3.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的 是 ( C ) A.x与y正相关,x与z负相关 B.x与y正相关,x与z正相关 C.x与y负相关,x与z负相关 D.x与y负相关,x与z正相关 答案 C 由y=-0.1x+1,知x与y负相关,即y随x的增大而减小,又y与z正 相关,所以z随y的增大而增大,所以z随x的增大而减小,即x与z负相关,故 选C.
A.①② B.②③ C.③④ D.①④
答案 D
^^ ^
^
^
解析 由回归直线方程 y = bx+ a,知当 b>0时,y与x正相关;当 b<0时,y与x负
相关,∴①④一定不正确.故选D.
考点突破 栏目索引
方法技巧 判定两个变量正、负相关性的方法 (1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从 左上角到右下角,两个变量负相关. (2)相关系数:r>0时,正相关:r<0时,负相关. (3)线性回归方程: b^ >0时,正相关: b^ <0时,负相关.
教材研读 栏目索引
(3)线性相关关系、回归直线 如果散点图中点的分布从整体上看大致在⑤ 一条直线附近 ,就称这 两个变量之间具有线性相关关系,这条直线叫做回归直线. (4)最小二乘法 求回归直线,使得样本数据的点到它的⑥ 距离的平方和最小 的方法 叫做最小二乘法.
教材研读 栏目索引
(5)回归方程
考点突破 栏目索引
(1)依据折线图计算相关系数r(精确到0.01),并据此判断是否可用线性回 归模型拟合y与x的关系.(若|r|>0.75,则线性相关程度很高,可用线性回归 模型拟合) (2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分

(完整版)SPSS双变量相关性分析

(完整版)SPSS双变量相关性分析

数学建模SPSS双变量相关性分析
关键词:数学建模相关性分析SPSS
摘要:在数学建模中,相关性分析是很重要的一部分,尤其是在双变量分析时,要根据变量之间的联系建立评价指标,并且通过这些指标来进行比对赋值而做出评价结果。

本文由数学建模中的双变量分析出发,首先阐述最主要的三种数据分析:Pearson系数,Spearman系数和Kendall系数的原理与应用,再由实际建模问题出发,阐述整个建模过程和结果。

r s=
∑(P i−P ave)(Q i−Q ave)√∑(P i−P ave)2(Q i−Q ave)2
在SPSS中打开数据,点击:分析—>相关—>双变量,打开对话窗口,选择需要分析的两个变量、Spearman秩相关系数分析以及双侧检验。

需要说明两点:
(1)因各体重与各体质数据之间的相关性正负未知,需选用双侧检验;
(2)除了数据满足非正态分布以外,Spearman秩相关系数分析还需要数据分级,以计算秩。

但在SPSS中程序会自动生成秩,无需再手动分级。

注意要保证总体相关系数ρ与样本相关系数r保持一致,还须考虑Sig值。

由数据,Sig<0.5表示接受原假设,即Rho>|r|。

Sig<0.5则拒绝原假设,两者不相关。

而r值则代表了正负相关性,以及相关性大小。

结果见表。

数学建模中的变量选择方法

数学建模中的变量选择方法

数学建模中的变量选择方法数学建模是一种将实际问题抽象为数学模型,并通过数学方法对其进行分析和求解的过程。

在数学建模中,变量的选择是至关重要的一步,它直接影响到模型的准确性和可靠性。

本文将介绍一些常用的变量选择方法,帮助读者更好地进行数学建模。

一、相关性分析法相关性分析法是一种常用的变量选择方法,它通过计算变量之间的相关系数来衡量它们之间的相关性。

相关系数的取值范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。

在相关性分析中,我们通常选择与目标变量具有较高相关系数的变量作为模型的输入变量。

然而,相关性分析法也存在一些局限性。

首先,相关系数只能衡量线性相关性,无法反映非线性关系。

其次,相关性分析无法处理多个变量之间的复杂关系。

因此,在实际应用中,我们需要结合其他方法来进行变量选择。

二、主成分分析法主成分分析法是一种常用的降维技术,它通过线性变换将原始变量转化为一组新的无关变量,称为主成分。

主成分分析的基本思想是保留原始变量中包含的大部分信息,同时丢弃冗余的信息。

主成分分析法的步骤如下:首先,计算原始变量之间的协方差矩阵;然后,对协方差矩阵进行特征值分解,得到特征值和特征向量;最后,选择前几个特征值较大的特征向量作为主成分。

主成分分析法具有以下优点:首先,它可以处理多个变量之间的复杂关系,不受线性关系的限制;其次,主成分分析可以降低维度,减少模型的复杂度,提高计算效率。

三、信息增益法信息增益法是一种基于信息论的变量选择方法,它通过计算变量对目标变量的信息增益来衡量其重要性。

信息增益的计算基于熵的概念,熵越大表示不确定性越高,信息增益越大表示变量对目标变量的解释能力越强。

信息增益法的步骤如下:首先,计算目标变量的熵;然后,计算每个变量对目标变量的条件熵;最后,计算每个变量的信息增益,并选择信息增益较大的变量作为模型的输入变量。

信息增益法的优点是能够处理离散型变量和连续型变量,并且不受线性关系的限制。

成都的宜居性的相关分析 数学建模

成都的宜居性的相关分析 数学建模

成都的宜居性的相关分析摘要宜居城市最早是出现在西方发达国家。

是随着城市化的发展出现了一系列城市问题, 人口膨胀、环境污染、资源紧缺、交通拥堵、住房紧张、城市特色遗失等,严重的影响了城市居民的生活而提出来的。

城市问题日益凸显,我们将面临经济、社会、资源、环境等诸多方面的压力,而建设宜居城市,改善人民生活环境,合理构建城市生态体系,实现城市可持续发展,无疑为解决城市问题提供了一种合理的参考模式和切实可行的建设思路。

而近年来成都市的发展不断加快,经济实力和综合影响力不断加强,人均收入不断提高。

随之而来的还有经济发展带来的诸多矛盾,如城市环境不断下降,社会事业发展滞后等。

在这种形势下,成都市却屡获“宜居城市”的称号,对此,针对各方的质疑,我们展开了成都是否是一座宜居城市的相关分析,同时探讨哪些因素对成都的宜居性影响最大。

通过阅读大量有关宜居城市的相关文献和资料,对国内外宜居城市研究的学习,对宜居城市进行理论分析的基础上,结合成都市自身的城市特点,从城市经济、社会、居民生活和环境等方面选取指标,构建了成都市宜居城市评价的指标体系。

采用主成分分析法和系统聚类法,对成都市的宜居性进行了综合的分析,最终得出成都是一座宜居城市的结果。

问题分析主要从以下几个方面进行展开:(1)系统分析了国内外宜居城市所具有的相关因素,从中选取一部分指标作为宜居城市的评判标准。

在对国内外对宜居城市研究的学习的基础上,总结出宜居城市判断指标体系选择的原则和依据,根据研究对象成都市的自身特点制定出适合成都市宜居城市评价的指标体系。

对于所需要的数据,我们主要从成都及各城市历年的《统计年鉴》和《成都市国民经济和社会发展统计公报》,所以所选数据均具有很高的可信度。

考虑到短期的数据不具有代表性,所以选取了成都2002年至2011年数据进行分析,纵向的比较成都历年的各项数据。

得到数据后,我们利用主成分分析法来对成都理念的数据进行分析,得出各主要成分的影响指数以及各年的综合宜居指数。

数学建模与数据分析

数学建模与数据分析

数学建模与数据分析
随着社会的发展,数学建模和数据分析越来越受到重视,它们在工业、技术、科学、商业和管理领域都有着广泛的应用。

数学建模是指利用数学方法,将实际问题转化为可计算的抽象模型,
并且尽可能求解出解决方案。

数学建模可以用来解决复杂的实际问题,使
得问题变得更清晰、更具体,从而可以直接采取有效的措施,提升业务效率,降低操作成本。

数据分析是指从数据中提取出有价值的信息,并结合相关的分析工具
对数据进行分析,帮助用户更好地分析出市场趋势,进而制定有效的战略
和计划以实现最终的商业目标。

首先,数学建模可以用来解释数据,从而更深入地了解数据中的信息。

数学建模可以提供更多的解释性因素,从而帮助用户对数据的分析和理解
更加清晰。

其次,数学建模可以作为数据分析的前提条件。

在进行数据分析前,
必须要先通过数学建模来构建出适当的模型,以此来获得真实可靠的数据。

最后,数据分析可以帮助用户验证和优化数学建模的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

身高和肺活量的相关系数为 r 0.096 0.3 , p 0.627 ,所以接收不相关的假设,认为身高 和肺活量无显著的线性关系. 此例说明体重因子影响了身高和肺活量之间相关性的分析.
7.2 Spearman(斯皮尔曼)秩相关系数—单调性相关分析
为了使用 Pearson 线性相关系数必须假设数据是成对地从正态分布中取得的,并且数据至 少在逻辑范畴内是等间距的. 如果这两个条件不符合,一种方法就是采用 Spearman 秩相关系 数来代替 Pearson 线性相关系数进行相关性分析. 7.2.1 秩 “秩”即按数据大小排定的次序号,又称秩次号. 编秩就是将观察值按顺序由小到大排列, 并用序号代替原始变量值本身. 用秩次号代替原始数据后,所得某些秩次号之和,即按某种顺 序排列的序号之和,称为秩和. 设有以下两组数据: A 组 4.7 6.4 2.6 3.2 5.2 B 组 1.7 2.6 3.6 2.3 3.7 两组各有 5 个变量值. 现在依从小到大的顺序将它们排列起来,并标明秩次,结果如下: A组 2.6 3.2 4.7 5.2 6.4 B 组 1.7 2.3 2.6 3.6 3.7 秩次 1 2 3 4 5 6 7 8 9 10 原始值中有两个“2.6”,分属 A、B 组,它们的秩次应是 3 和 4,然而它们的数值本来是同样大 小的,哪组取“3” ,哪组取“4”呢?我们将它们的平均数(3+4)/2=3.5,作为“2.6”的秩次,称 为“平均秩次”. 这样两组所得的秩次及秩和如下: A 组 3. 5 5 8 9 10 秩和为 35. 5 B组 1 2 3. 5 6 7 秩和为 19. 5 上面 A 组和 B 组中各有五个原始值,按顺序排列:最小值设为 1,再按绝对值大小对余下的 变量逐个排序,最大值为两组变量个数之和 10. 依次可得 1,2,3.5,3.5,5,6,7,8,9, 10. 这 10 个序号即是秩次. A 组秩和等于 3.5+5+8+9+10=35.5, B 组秩和等于 1+2+3. 5+6+7=19.5. 从两组的原始变量值也可以初步看出:A 组偏大,B 组偏小. 现在得出的秩和也是 A 组大于 B 组,与由变量值所观察到的结果一致. 7.2.2 秩相关系数 Spearman 秩相关系数通常被认为是排列后的变量秩次之间的 Pearson 线性相关系数. 得到样本 ( X i , Yi ) (i 1, 2, , n ) , 设 Xi 、 定义 7-4 若对随机变量 X 和 Y 进行了 n 次随机试验, n n 1 1 Yi 的秩次分别为 pi 和 qi 且 p pi , q qi , d i pi qi . 则随机变量 X 和 Y 对于这组样本 n i 1 n i 1 的秩相关系数 s 为
图 7-2 数据文件的变量试图 (3)点击主菜单“分析”项,在下拉菜单中点击“相关”项,在右拉式菜单中点击“双 变量...”项,系统打开相关分析主对话框. (4)在对话框左侧的变量列表中选“身高” 、 “体重”和“肺活量”点击向右按钮使之进 入“变量”框;在“相关系数”框中选择相关系数的类型,共有三种:Pearson 为通常所指的 相关系数,Kendell’s tau-b 为非参数资料的相关系数,Spearman 为非正态分布资料的 Pearson 相关系数替代值, 本例选用 Pearson 项; 在 “显著性检验” 框中可选相关系数的单侧 (One-tailed) 或双侧(Two-tailed)检验,本例选双侧检验. 如图 7-3.
图 7-3 相关分析主对话框 (5)输出结果及分析 输出结果如表 7-2 所示. 表 7-2 相关性分析结果 相关性 身高(cm) 体重(kg) 肺活量(ml) 3
4
第 7 章 相关性分析 Pearson 相关性 1 身高(cm) 显著性(双侧) N 体重(kg) 29 Pearson 相关性 . 719** 显著性(双侧) . 000 N 29 29 . 634** . 000 29 29 Pearson 相关性 . 507** 肺活量(ml) 显著性(双侧) . 005 N 29 . 719** . 000 29 1 . 507** . 005 29 . 634** . 000 29 1
7.1 Pearson(皮尔逊)相关系数—线形相关分析
对于二维随机变量 ( X , Y ) ,根据数学期望性质,若 X 和 Y 相互独立,且 EX 和 EY 存在, 则有
E [( X EX )(Y EY )] E ( XY ) EX EY 0
所以当 E [( X EX )(Y EY )] 0 时,必有 X 和 Y 不相互独立. 定义 7-1 设 ( X , Y ) 为二维随机变量,称 E [( X EX )(Y EY )] 为随机变量 X , Y 的协方差(Covariance) ,记为 Cov ( X , Y ) ,即 Cov ( X , Y ) E [( X EX )(Y EY )] 特别地 Cov ( X , X ) E [( X EX )( X EX )] DX
**. 在 . 01 水平(双侧)上显著相关. SPSS 软件中,相关性检验的零假设为“ H 0 : 0 ”. 身高和体重的相关系数为 r 0.719 , p 0.00 ,所以身高和体重中度相关,结果有统计学 意义;身高和肺活量的相关系数为 r 0.507 , p 0.005 ,所以身高和体重中度相关,结果有统 计学意义;体重和肺活量的相关系数为 r 0.634 , p 0.00 ,所以身高和体重中度相关,结果 有统计学意义; 相关系数计算两个变量之间的关系,分析两个变量之间线性相关的程度. 但是,有时因为 第三个变量的作用,使得相关系数不能反映两个变量间真正的线性程度. 例如,上例中,我们 得出肺活量和身高与体重均存在中度的线性关系,但实际上,对相同体重的人分析身高和肺 活量,却没有线性关系. 这种情况下,我们可以对变量进行偏相关分析. 在偏相关分析中,系 统可按用户的要求对两相关变量之外的某一或某些影响相关的其他变量进行控制,输出控制 其他变量影响后的相关系数. 例 7-2 对例 7-1 中的数据作偏相关性分析 解 使用 SPSS 操作过程如下: (1)点击主菜单“分析”项,在下拉菜单中点击“相关”项,在右拉式菜单中点击“偏 相关...”项,打开偏相关分析主对话框. (2)选“身高”和“肺活量”入“变量”框;选"“体重”作为"控制变量", ;在“显著 性检验”框中选双侧检验.
Cov (Y , Y ) E [(Y EY )(Y EY )] DY
故方差 DX , DY 是协方差的特例. 从定义中看到,协方差和变量的量纲有关. 我们将随机变量标准化,得 X EX Y EY ,Y * X* DX DY C ov( X , Y ) * * ( X , Y ) 的协方差为 . D ( X ) D (Y ) C ov( X , Y ) 定义 7-2 设 ( X , Y ) 为二维随机变量,称 为随机变量 X , Y 的 Pearson 相关系 D ( X ) D (Y ) 数(Pearson correlation coefficient)或标准协方差(Standard covariance) ,记为 XY ,即 C ov( X , Y ) XY D( X ) D(Y ) 定理 7-1 设 D ( X ) 0 , D (Y ) 0 , XY 为 ( X , Y ) 的相关系数,则 (1)如果 X , Y 相互独立,则 XY 0 ; (2) XY 1 ; (3) XY 1 的充要条件是存在常数 a, b 使 P{Y aX b} 1 ( a 0) . 相关系数 XY 描述了随机变量 X ,Y 的线性相关程度, XY 愈接近 1,则 X 与 Y 之间愈接 近线性关系. XY 0 为正相关, XY 0 为负相关. 一般用下列标准对相互关系进行判定: (1) XY 0.95 , X 与 Y 存在显著性相关; (2) XY 0.8 , X 与 Y 高度相关; (3) 0.5 XY 0.8 , X 与 Y 中度相关; (4) 0.3 XY 0.5 , X 与 Y 低度相关; (5) XY 0.3 , X 与 Y 关系极弱,认为不相关; (6) XY 0 , X 与 Y 无显性相关.
数学建模与软件实现
第 7 章 相关性分析
相关性分析是指分析两个随机变量之间是否存在一定的关系. 相关分析可以发现变量间 的共变关系(包括正向的和负向的共变关系) ,一旦发现了共变关系就意味着变量间可能存在 两种关系中的一种: (1) 因果关系(两个变量中一个为因、 另一个为果); (2) 存在公共因子 (两 变量均为果,有潜在的共因). 很多时候, 我们需要寻找这些因果关系, 或者是寻找公共因子. 相关性研究是非常有用的, 它是许多深入研究必备的初始阶段工作. 衡量随机变量相关性的度量主要有三种:pearson 相关系数、spearman 相关系数、kendall 相关系数.
r
(X
i 1
n
i
X )(Yi Y )
(X
i 1
n
i
X )2
(Y Y )
i 1 i
n
2
例 7-1 某地 29 名 13 岁男童身高(cm) 、体重(kg)和肺活量(ml)的数据如下表,试对 该资料中各因素做相关分析. 表 7-1 测试数据 编号 身高(cm) 体重(kg) 肺活量(ml) 编号 身高(cm) 体重(kg) 肺活量(ml) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 135. 1 139. 9 163. 6 146. 5 156. 2 156. 4 167. 8 149. 7 145. 0 148. 5 165. 5 135. 0 153. 3 152. 0 160. 5 32. 0 30. 4 46. 2 33. 5 37. 1 35. 5 41. 5 31. 0 33. 0 37. 2 49. 5 27. 6 41. 0 32. 0 47. 2 1750 2000 2150 2500 2750 2000 2150 1500 2500 2250 3000 1250 2750 1750 16 17 18 19 20 21 22 23 24 25 26 27 28 29 153. 0 147. 6 157. 5 155. 1 160. 5 143. 0 149. 4 160. 8 159. 0 158. 2 150. 0 144. 5 154. 6 156. 5 47. 2 40. 5 43. 3 44. 7 37. 5 31. 5 33. 9 40. 4 38. 5 37. 5 36. 0 34. 7 39. 5 32. 0 2350 2000 2250 2750 2400 1750 2250 2750 2500 2000 1750 2250 2500 1750
相关文档
最新文档