材料科学基础 第二章 固体材料的结构

第二章固体材料的结构固体材料的各种性质主要取决于它的晶体结构。原子之间的作用

结合键与晶体结构密切相关。通过研究固体材料的结构可以最直接、最有效地确定结合键的类型和特征。

固体材料主要包括:金属、合金、非金属、离子晶体、陶瓷

研究方法:X光、电子、中子衍射——最重要、应用最多

§2-1 结合键

结合键——原子结合成分子或固体的

结合键决定了物质的物理、化学、力学性质。

一切原子之间的结合力都起源于原子核与电子间的静电交互作用(库仑力)。不同的结合键代表了实现

结构)的不同方式。

一、离子键

典型的金属与典型的非金属元素就是通过离子键而化合的。从而形成离子化合物或离子晶体

由共价键方向性特点决定了的SiO2四面体晶体结构

极性共价键非极性共价键

五、氢键

含有氢的分子都是通过极性共价键结合,极性分子之间结合成晶体时,通过氢键结合。

例如:H 2O ,HF ,NH 3等

固态冰

液态水

§2-2 金属原子间的结合能一、原子作用模型

固态金属相邻二个原子之间

存在两种相互作用:

a) 相互吸引——自由电子吸引

金属正离子,长程力;

b) 相互排斥——金属正离子之

间的相互排斥,短程力。

平衡时这二个力相互抵消,

原子受力为0,原子处于能量最

低状态。此时原子间的距离为

r0。

§2-3 合金相结构

基本概念

?合金——由两种或两种以上的金属或金属非金属元素通过化学键结合而组成的具有金属特性的材料。

?组元、元——组成合金的元素。

?相——具有相同的成分或连续变化、结构和性能的区域。?组织——合金发生转变(反应)的结果,可以包含若干个不同的相,一般只有一到二个相。

?合金成分表示法:

(1) 重量(质量)百分数

A-B二元合金为例

m B——元素B的重量(质量

m A——元素A的重量(质量

合金中的相分为:固溶体,化合物两大类。

固溶体

金属晶体(溶剂)中溶入了其它元素(溶质)后,就称为固溶体。

一、固溶体的分类:

?按溶质原子在溶剂中的位置分为:

置换固溶体,间隙固溶体

?按溶解度分为:

有限固溶体,无限固溶体

?按溶质原子在溶剂中的分布规律分为:

有序固溶体,无序固溶体

置换固溶体:溶质原子置换了溶剂点阵中部分溶剂原子。间隙固溶体:溶质原子分布于溶剂晶格间隙中。

固溶体的两种类型(置换和间隙)

第一章 材料结构和晶体结构

第一章材料结构和晶体结构 考点一:结合键 决定了材料的性能。 结合键的分类 共价键、离子键和金属键的概念 对性能的影响 结合键的分类 一次键——通过电子的转移或共享使原子结合的键。结合力较强。离子键、共价键、金属键。二次键——通过偶极吸引力使原子结合的键。结合力较弱。氢键、范德瓦尔斯键 混合键 确定结合键类型的因素 电负性和两种元素电负性的差值是确定成键类型重要因素之一 EN↑金属元素与非金属元素之间倾向以离子键结合 △EN↓ 电负性相同或相近的非金属元素之间倾向以共价键结合 电负性相同或相近的金属元素之间以金属键结合 电负性(Electronegativity,EN):获得或吸引电子的相对倾向。离子键、共价键和金属键的概念 1.离子键———通过正负离子间静电作用所形成的结合键。(NaCl、MgO…)2.共价键———通过共用自旋相反的电子对使原子结合的结合键。(金刚石) 3.金属键———通过正离子与自由电子之间相互吸引力使原子结合的结合键。 例1:简答题简述原子分子间4种结合键各自的特点,并从结合键角度讨论力学性能性能 例2:简答题原子间有几种结合键?各自的特点如何?从结合键角度讨论金属的力学性能 例3:简答题试从结合键角度讨论一般情况下金属材料比陶瓷材料表现出更高塑性或延 展性的原因 考点二:晶体与非晶体 概念主要差别 概念 1.晶体———原子(分子或离子)在空间按照一定规律周期性重复排列的固体. 2.非晶体———内部原子的排列是无序的,或不存在长程有序排列的固体. 例1 名词解释:晶体

例2 填空:晶体宏观对称的要素是:(1)对称中心,(2)对称轴,(3)对称面,(4)旋转反伸轴,(5)旋转反映轴 晶体与非晶体性能的主要区别 晶体:有确定熔点单晶体各向异性多晶体各向同性 非晶体:无确定熔点各向同性 非晶体的本质是过冷液体 例3 判断:在熔化过程中,非晶态材料不同于晶态材料的最主要特点是其没有一个固定 的熔点 考点三:空间点阵和晶体结构 晶体结构、点阵、晶格、晶胞的概念 空间点阵的选取原则 晶胞选取原则 点阵和晶体结构的区别 概念 晶体结构:指的是晶体中原子(离子或分子)在三维空间的具体排列。在实际的晶体中,这种排列有无限多种。这给我们的研究带来麻烦。 怎样来研究晶体?———抽象 晶体→点阵→晶格→晶胞 空间点阵———晶体中的等同点在空间有规则的周期性重复排列的阵列。 晶格———连接晶体点阵中阵点的几组相交平行线构成的空间格架。 晶胞———构成晶格的最小单元。 结构基元的选择满足四个相同条件 化学成分相同、空间结构相同、排列取向相同、周围环境相同 (a)直线上等间距排列的原子。许多单质晶体中在某一方向上原子常按此排列。例如金属铜中原子密排列的方向就是这样排列 (b)为层型石墨中某些方向上碳原子排列的情况,两个原子组成一个基元 (c)硒晶体中链型硒分子按螺旋型周期排列情况,三个原子组成一个基元 硒的化学组成的基本单位为Se,而螺旋形排列的硒链的结构单元为三个硒原子 (d)NaCl晶体中一些晶棱上原子的排列,结构基元为相邻的一个Na+和一个Cl—晶体结构的一个显著特点:周期性 可简单地将晶体结构示意表示为晶体结构=点阵+结构基元 晶胞:构成晶格的最基本单元称为晶胞。 显示系统所有特征的体积单元 晶胞选取的一般原则: (1)尽可能高的对称性 (2)尽可能多的直角 (3)尽可能小的体积 晶胞的选取不是唯一的 表征晶胞形状和大小的六个参量abc

工程材料与热处理第2章作业题参考答案

1.常见的金属晶格类型有哪些?试绘图说明其特征。 i 4 I 体心立方: 单位晶胞原子数为2 配位数为8 <3 原子半径=—a (设晶格常数为a) 4 致密度0.68

面心立方: 单位晶胞原子数为4 配位数为12 原子半径=_2a(设晶格常数为 4 a)致密度0.74

密排六方: 晶体致密度为0.74,晶胞内含有原子数目为6。配位数为12,原子半径为1/2a。 2实际金属中有哪些晶体缺陷?晶体缺陷对金属的性能有何影响点缺陷、线缺陷、面缺陷 一般晶体缺陷密度增大,强度和硬度提高。 3什么叫过冷现象、过冷度?过冷度与冷却速度有何关系?它对结晶后的晶粒大小有何影响? 金属实际结晶温度低于理论结晶温度的现象称为过冷现象。理论结晶温度与实际结晶温度之差称为过冷度。金属结晶时的过冷度与冷却速度有关,冷却速度愈大,过冷度愈大,金属的实际结晶温度就愈低。结晶后的晶粒大小愈小。 4金属的晶粒大小对力学性能有何影响?控制金属晶粒大小的方法有哪些 一般情况下,晶粒愈细小,金属的强度和硬度愈高,塑性和韧性也愈好。

控制金属晶粒大小的方法有:增大过冷度、进行变质处理、采用振动、搅拌处理。 5?如果其他条件相同,试比较下列铸造条件下铸件晶粒的大小: (1) 金属型浇注与砂型浇注: (2) 浇注温度高与浇注温度低; (3) 铸成薄壁件与铸成厚壁件; (4) 厚大铸件的表面部分与中心部分 (5) 浇注时采用振动与不采用振动。 (6) 浇注时加变质剂与不加变质剂。 (1) 金属型浇注的冷却速度快,晶粒细化,所以金属型浇注的晶粒小; (2) 浇注温度低的铸件晶粒较小; (3) 铸成薄壁件的晶粒较小; (4) 厚大铸件的表面部分晶粒较小; (5) 浇注时采用振动的晶粒较小。 (6) 浇注时加变质剂晶粒较小。。 6 ?金属铸锭通常由哪几个晶区组成 ?它们的组织和性能有何特点 ? (1) 表层细等轴晶粒区 金属铸锭中的细等轴晶粒区,显微组织比较致密,室温下 力学性能最 高; (2) 柱状晶粒区 在铸锭的柱状晶区,平行分布的柱状晶粒间的接触面较为脆弱, 并常常聚集有易熔杂质和非金属夹杂物等,使金属铸锭在冷、热压力加工时容 易沿这些脆弱面产生开裂现象,降低力学性能。 (3) 中心粗等轴晶粒区 由于铸锭的中心粗等轴晶粒区在结晶时没有择优取向,不 存在脆弱的交界面,不同方向上的晶粒彼此交错,其力学性能比较均匀,虽然 其强度和硬度 低,但塑性和韧性良好。 7?为什么单晶体具有各向异性,而多晶体在一般情况下不显示各向异性 ? 因为单晶体中的不同晶面和晶向上的原子密度不同, 导致了晶体在不同方向上的性能不 同的现象,因此其性能呈现各向异性的。 而多晶体是由许多位向不同的晶粒组成, 虽然每个晶粒具有各向异性, 但不同位向的各晶粒 的综合作用结果,使多晶体的各方向上性能一样,故显示出各向同性。 &试计算面心立方晶格的致密度。 4 3 4 一 r 3 3 a 9?什么是位错?位错密度的大小对金属强度有何影响 ? 所谓位错是指晶体中某处有一列或若干列原子发生了有规律的错排现象。 随着位错密度的增加金属的强度会明显提高。 0.74 74% nv V

第一章 材料的结构 习题

第一章材料的结构习题

第一章 材料的结构 习题 1 解释以下基本概念 空间点阵、晶体结构、晶胞、配位数、致密度、金属键、缺位固溶体、电子化合物、间隙相、间隙化合物、超结构、拓扑密堆相、固溶体、间隙固溶体、置换固溶体。 2 氧化钠与金刚石各属于哪种空间点阵?试计算其配位数与致密度。 3 在立方系中绘出{110},{111}晶面族所包括的晶面及(112),(021)晶面。 4 作图表示出<0112>晶向族所包括的晶向。确定(1211),(021)晶面。 5 求金刚石结构中通过(0,0,0)和(414343 ,,)两 碳原子的晶向,及与该晶向垂直的晶面。 6 求(121)与(100)决定的晶带轴与(001)和(111)所决定的晶带轴所构成的晶面的晶面指数。 7 试证明等径刚球最紧密堆积时所形成的密排六方结构的633.1/ a c 。 8 绘图说明面心立方点阵可表示为体心正方点阵。 9 计算面心立方结构的(111),(110),(100)

晶面的面间距及原子密度(原子个数/单位面积)。 10 计算面心立方八面体间隙与四面体间隙半径。 11 计算立方系[321]与[120]夹角,(111)与(111)之间的夹角。 12 FeAl是电子化合物,具有体心立方点阵,试画出其晶胞,计算电子浓度,画出(112)面原子排列图。 13 合金相VC,Fe3C,CuZn,ZrFe2属于何种类型,指出其结构特点。 例题 1. 何谓同位素?为什么元素的相对原子质量不总为正整数? 答案在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。 2. 已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少? 答案原子数=个 价电子数=4×原子数=4×2.144×1024=8.576×1024个 a) b) 共价键,共有2.144×1024个;需破坏之共价键数为5×1010/2=2.5×1010个;所以,

工程材料习题集参考答案(第二章)

习题集部分参考答案 2金属的晶体结构 思考题 1.晶体和非晶体的主要区别是什么? 答:晶体和非晶体的区别在于内部原子的排列方式。晶体内部的原子(或分子)在三维空间按一定规律作周期性排列,而非晶体内部的原子(或分子)则是杂乱分布的,至多有些局部的短程规律排列。因为排列方式的不同,性能上也有所差异。晶体有固定的熔点,非晶体没有,晶体具有各向异性,而非晶体则是各向同性。 2.何为各向异性? 答:各向异性是指晶体的某些物理性能和力学性能在不同方向上具有不同的数值。 3.为什么单晶体呈各向异性,而多晶体通常呈各向同性? 答:单晶体是原子排列方位完全一致的一个晶粒,由于在不同晶向上原子密度不同,原子间的结合力不同,因而导致在单晶体中的各个方向上性能差异。 对于多晶体中的任意一个晶粒来看,基本满足单晶体的特征,呈现各向异性,但是在多晶体系统中,单一晶粒的各向异性已经被周围其他位向的晶粒所“干扰”或“抵消”,整个多晶系统呈现其各向同性。 4.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?他们的存在有何实际意义? 答:晶体缺陷是指金属晶体中原子排列的不完整性。常见的晶体缺陷有点缺陷、线缺陷和面缺陷三类,它们都会造成材料的晶格畸变。 点缺陷是指呈点状分布的缺陷,包含有空位、间隙原子和置换原子等,它对材料中的原子扩散、固态相变,以及材料的物理性能(电阻、体积、密度)等都会产生重大影响。过饱和的点缺陷还可以提高材料的强度。 线缺陷是各种类型的位错。对材料的变形、扩散以及相变起着非常大的作用。特别它很好地解释了塑性变形的微观机理,使我们了解到滑移是借助于位错的运动来实现的。当位错密度不高的情况下,位错支持了滑移,材料的塑性很好,但是当位错密度达到了较高的水平时,位错间的相互作用会造成位错的彼此“纠缠”,使滑移运动受阻,这时表现出材料的塑性变形的抗力提高,材料的强度提高。 金属晶体中面缺陷主要有晶界、亚晶界、孪晶界和相界等。比如:晶界处原子的平均能量比晶内高,在高温时,晶粒容易长大。晶界和亚晶界均可提高金属的强度。单位体积中的晶粒数目越多,晶界面积越大,晶格畸变越严重,材料的强度越高,同时材料的塑性也较好(同样的变形量可以分散到更多的晶粒中去进行,说明材料可以承受更大的变形量)。

第二章材料中的晶体结构

第二章材料中的晶体结构 基本要求:理解离子晶体结构、共价晶体结构。掌握金属的晶体结构和金属的相结构,熟练掌握晶体的空间点阵和晶向指数和晶面指数表达方法。 重点:空间点阵及有关概念,晶向、晶面指数的标定,典型金属的晶体结构。难点:六方晶系布拉菲指数标定,原子的堆垛方式。 §2.1 晶体与非晶体 1.晶体的定义:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。 2. 非晶体:非晶体在整体上是无序的;近程有序。 3. 晶体的特征 周期性 有固定的凝固点和熔点 各向异性 4.晶体与非晶体的区别 a.根本区别:质点是否在三维空间作有规则的周期性重复排列 b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存在一个软化温度范围 c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各向同性,称“伪各向同性”) 5.晶体与非晶体的相互转化 思考题: 常见的金属基本上都是晶体,但为什么不显示各向同性? §2.2 晶体学基础 §2.2.1 空间点阵和晶胞 1.基本概念 阵点、空间点阵 晶格 晶胞:能保持点阵特征的最基本单元

2.晶胞的选取原则: (1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。 3. 描述晶胞的六参数 §2.2.2 晶系和布拉菲点阵 1.晶系 2. 十四种布拉菲点阵 晶体结构和空间点阵的区别 §2.2.3 晶面指数和晶向指数 晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。 国际上通用米勒指数标定晶向和晶面。 1.晶向指数的标定 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边

工程材料第二章作业参考答案

1、画出纯金属的冷却曲线,解释其上各参数T0、 T1和?T 的含义。 答: T 0:理论结晶温度,即液体和晶体处于动平衡状态的温度。 T 1:实际结晶温度,晶体结晶的实际温度,结晶只有在T 0以下的实际结晶温度T 1才能进行。 ?T :过冷度,即理论结晶温度与实际结晶温度之差,?T= T 0 –T 1。 2、晶核的形成和长大方式是什么? 答:形核有两种方式,即均匀形核和非均匀形核。 由液体中排列规则的原子团形成晶核称均匀形核。以液体中存在的固态杂质为核心形核称非均匀形核。 晶核的长大方式主要有两种,即均匀长大和树枝状长大。均匀长大:在正温度梯度下,晶体生长主要以平面状态向前推进。树枝状长大:在负温度梯度下,结晶主要以树枝状向前推进。 T

3、写出二元合金的匀晶、共晶、包晶、共析等典型转变的定义,并分析其相图。(我这里是以Pb、Sn 合金进行描述的) 答:从液相中结晶出单一固相的转变称为匀晶转变或匀晶反应。匀晶相图由两条线构成,上面是液相线,下面是固相线。相图被分为三个相区,液相线以上为液相区(L),固相线以下为固相区(固溶体α),两线之间为两相区(两相共存L+α)。

在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应. 相图分析 ① 相:相图中有L 、α、β 三种相, α 是溶质Sn 在 Pb 中的固溶体, β 是溶质Pb 在Sn 中的固溶体。② 相区:相图中有三个单相区: L 、α 、β ;三个两相区:L+α 、L+β 、α + β ;一个三相区:即水平线CED 。③ 液固相线: 液相线AEB, 固相线 L + α 温度液相线 固相线 B α α+L

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目) 有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

第二章 材料的结构(答案更正)

第二章材料的结构 Chapter 2 Structure of materials 1. 原子间的结合键共有几种?各自特点如何?How many kinds of binding bonds among atoms? What are their characteristics? 原子间的结合键共有5种,分别是金属键、离子键、共价键、氢键和范德华键。There are five kinds of binding bonds among atoms, namely, metallic bond, ionic bond, covalent bond, hydrogen bonding and van der Waals bond. 1)金属键是金属中的正离子和自由电子之间形成的键合。其特点是电子共有化,可以自由流动。金属键无方向性和饱和性。金属键合力较强,键能为几百kJ/mol。Metallic bond is formed between the positive ions and free electrons. Metal bond is characterized by many sharable electrons and free mobile electrons. It is nondirectional and unsaturated. Metal Binding force in metal bond is strong and the bond energy may up to hundreds of kJ / mol. 2)离子键是正负离子之间由于静电吸引而形成的键合,离子键无方向性也无饱和性,配位数高。离子键具有较强的键合力,键能为几百到几千kJ/mol。Ionic bond is formed through electrostatic attraction between oppositely charged ions. It is nondirecitonal and unsaturated. It has high coordination number, and the bond force may up to several hundreds to thousands of kJ/mol. 3)共价键是原子间共用电子对而形成的键合,有方向性和饱和性,配位数低。共价键的键强度较高,键能通常为几百kJ/mol。Covalent bond is formed by sharing of pairs of electrons between atoms. It is directional and saturated. It has small coordination number and the bond energy is several hundreds of kJ/mol. 4)氢键是由氢原子与电负性较大的原子之间形成的X—H…Y的键合。具有方向性和饱和性。氢键的键合较弱,一般为几十kJ/mol,但是对材料性能的影响较大。Hydrogen bond is formed between hydrogen atom and two electronegative atoms such as N—H…O. It is directional and saturated. The hydrogen bond is weak, and it is only dozens of kJ/mol,but is has much influence on the materials’ proper ties. 5)范德华键是分子间形成的一种作用力,其键能很弱,为几到几十kJ/mol。不具有方向性和饱和性。作用范围在几百个皮米之间。它对材料的沸点、熔点、汽化热、熔化热、溶解度、表面张力、粘度等物理化学性质有决定性影响。The van der Waals force is the sum of

结构设计原理 第一章 材料的力学性能 习题及答案

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________ 和。 2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。 3、碳素钢可分为、和。随着含碳量的增加,钢筋的强度、塑性。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。 4、钢筋混凝土结构对钢筋性能的要求主要是、、 、。 5、钢筋和混凝土是不同的材料,两者能够共同工作是因为 、、 6、光面钢筋的粘结力由、、三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括和两部分。 部分越大,表明变形能力越,越好。 9、混凝土的延性随强度等级的提高而。同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。 二、判断题 1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。 3、混凝土双向受压时强度比其单向受压时强度降低。 4、线性徐变是指徐变与荷载持续时间之间为线性关系。 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。 6、强度与应力的概念完全一样。 7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。 8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。 9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。 10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。 11、钢筋的弹性模量与钢筋级别、品种无关。 12、钢筋的弹性模量指的是应力应变曲线上任何一点切线倾角的正切。

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

第二章 材料科学与工程的四个基本要素

第二章材料科学与工程的四个基本要素 MSE四要素; –使用性能,材料的性质,结构与成分,合成与加工两个重要内容; –仪器与设备,分析与建模 §2.1 性质与使用性能 1. 基础概念 2. 性质与性能的区别与关系 3. 材料的失效分析 4. 材料(产品)使用性能的设计 5. 材料性能数据库 6. 其它问题 2.1.1基础内容 材料性质: 是功能特性和效用的描述符,是材料对电.磁.光.热.机械载荷的应。 材料性质描述 ?力学性质;强度,硬度,刚度,塑性,韧性 物理性质;电学性质,磁学性质,光学性质,热学性质 化学性质;催化性质,防化性质 结构材料性质的表征----材料力学性质 强度:材料抵抗外应力的能力。 塑性:外力作用下,材料发生不可逆的永久性变形而不破坏的能 力。 硬度:材料在表面上的小体积内抵抗变形或破裂的能力。 刚度:外应力作用下材料抵抗弹性变形能力。 疲劳强度:材料抵抗交变应力作用下断裂破坏的能力。 抗蠕变性:材料在恒定应力(或恒定载荷)作用下抵抗变形的能力。 韧性:材料从塑性变形到断裂全过程中吸收能量的能力。

6 强度范畴 刚度范畴 塑性范畴 韧性范畴 应 力 应 变 2.1.1基础内容 7 材料的物理性质 磁学性质 光学性质 电学性质 · 导电性 · 绝缘性 · 介电性 · 抗磁性 · 顺磁性 · 铁磁性 · 光反射 · 光折射 · 光学损耗 · 光透性 热学性质 · 导热性 · 热膨胀 · 热容 · 熔化 注:上面只列出了材料的主要物理性质 2.1.1基础内容 物理性质的交互性----材料应用的关键点 现代功能材料不仅仅表现出单一的物理性质,更重要的是具备了特 殊的物理交互性。例如: 电学----机械电致伸缩 机械----电学压电特性 磁学----机械磁致伸缩 电学----磁学巨磁阻效应 电学----光学电致发光 性能定义 在某种环境或条件作用下,为描述材料的行为或结果,按照特定的 规范所获得的表征参量。 材料力学性能 1. 强度表征: 弹性极限,屈服强度,比例极限…… 2. 塑性表征:延伸率δ,断面收缩率φ,冲杯深度 h

化学与工程材料真题

第二章 7、求碳质量分数为3.5%的质量为10kg的铁碳合金从液态缓慢冷却到共晶 温度(但尚未发生共晶反应)时所剩下的液体的碳质量分数及液体的质量。 解:L中的碳质量分数:w(C)=4.3% L中的质量分数: w (L)=(3.5-2.11)/(4.3-2.11)=63.5% L的质量:Q L=10×63.5%=6.35(kg) 8、比较退火状态下的45钢、T8钢、T12钢的硬度、强度和塑性的高低, 简述原因。 答:硬度:45钢最低,T8钢较高,T12钢最高。因为退火状态下的45钢组织是铁素体+珠光体,T8钢组织是珠光体,T12钢组织是珠光体+二次渗碳体。 因为铁素体硬度低,因此45钢硬度最低。因为二次渗碳体硬度高,因此T12钢硬度最高。 强度:因为铁素体强度低,因此45钢强度最低。T8钢组织是珠光体,强度最高。T12钢中含有脆性的网状二次渗碳体,隔断了珠光体之间的结合,所以T12钢的强度比T8钢要低。但T12钢中网状二次渗碳体不多,强度降低不大,因此T12钢的强度比45钢强度要高。 塑性:因为铁素体塑性好,因此45钢塑性最好。T12钢中含有脆性的网状二次渗碳体,因此T12钢塑性最差。T8钢无二次渗碳体,所以T8钢塑性较高。 9、同样形状的两块铁碳合金,其中一块是退火状态的15钢,一块是白口 铸铁,用什么简便方法可迅速区分它们? 答:因为退火状态的15钢硬度很低,白口铸铁硬度很高。因此可以用下列方法迅速区分: (1)两块材料互相敲打一下,有印痕的是退火状态的15钢,没有印痕的是白口铸铁。 (2)用锉刀锉两块材料,容易锉掉的是退火状态的15钢,不容易锉掉的

是白口铸铁。 (3)用硬度计测试,硬度低的是退火状态的15钢,硬度高的是白口铸铁。 10、为什么碳钢进行热锻、热轧时都要加热到奥氏体区? 答:因为奥氏体是面心立方晶格,其滑移变形能力大,钢处于奥氏体状态时强度较低,塑性较好,因此锻造或轧制选在单相奥氏体区内进行。 11、下列零件或工具用何种碳钢制造:手锯钢条、普通螺钉、车床主轴。 答:手锯锯条用T10钢制造。普通螺钉用Q195钢、Q215钢制造。车床主轴用45钢制造。 12、为什么细晶粒钢强度高,塑性、韧性也好? 答:多晶体中,由于晶界上原子排列不很规则,阻碍位错的运动,使变形抗力增大。金属晶粒越细,晶界越多,变形抗力越大,金属的强度就越大。 多晶体中每个晶粒位向不一致。一些晶粒的滑移面和滑移方向接近于最大切应力方向(称晶粒处于软位向),另一些晶粒的滑移面和滑移方向与最大切应力方向相差较大(称晶粒处于硬位向)。在发生滑移时,软位向晶粒先开始。当位错在晶界受阻逐渐堆积时,其他晶粒发生滑移。因此多晶体变形时晶粒分批地逐步地变形,变形分散在材料各处。晶粒越细,金属的变形越分散,减少了应力集中,推迟裂纹的形成和发展,使金属在断裂之前可发生较大的塑性变形,从而使金属的塑性提高。 由于细晶粒金属的强度较高、塑性较好,所以断裂时需要消耗较大的功,因而韧性也较好。因此细晶强化是金属的一种很重要的强韧化手段。 16、用低碳钢钢板冷冲压成形的零件,冲压后发现各部位的硬度不同,为什么? 答:主要是由于冷冲压成形时,钢板形成零件的不同部位所需发生的塑性变形量不同,因而加工硬化程度不同所造成。 17、已知金属钨、铅的熔点分别为3380℃和327℃,试计算它们的最低再结晶温度,并分析钨在900℃加工、铅在室温加工时各为何种加工?

固体材料的结构

1.Write the relation formula about micro-particle duality A: contact micro-particle duality formula is:h h λ== P mu λ-Wavelength,P-Momentum,h-Planck’s constant,m-Quality,u-Velocity 2.讨论波函数的意义与其电子云的关系。 答:波函数是为了定量地描述电子的状态和出现在某处的几率而引入的一个复函数,既有实数部分又有虚数部分,且各部分都可根据欧拉公式写成正余弦函数形式,但这两部分合起来就不再是简单正余弦了,它本身并无实际意义,但它平方后得到的新函数可表示粒子在空间各点出现的概率密度(但其图相并不表示粒子轨道)。 电子云是电子在核外空间出现的几率密度分布的形象化描述,几率密度分布也就是波函数和其共轭的乘积,乘积是一个实数,也就是波函数和其共轭模相乘,所以说是模的平方。 3.定性讨论四个量子数的意义。 答:主量子数n主要表示电子距离原子核“平均距离”的远近,是决定能量的主要参数。当n=1,2,3,4,5,6,7 电子层符号分别为K,L,M,N,O,P,Q。当主量子数增大,电子出现离核的平均距离也相应增大,电子的能量增加。 轨道角量子数l确定原子轨道的形状并在多电子原子中和主量子数一起决定电子的能级。电子绕核运动,不仅具有一定的能量,而且也有一定的角动量M,它的大小同原子轨道的形状有密切关系,决定了轨道角动量的大小。对于给定的n值,量子力学证明l 只能取小于n的正整数:l=0,1,2,3…(n-1)。 轨道磁量子数m决定了轨道角动量在外磁场方向的投影值,即原子轨道在空间的取向。某种形状的原子轨道,可以在空间取不同方向的伸展方向,从而得到几个空间取向不同的原子轨道。这是根据线状光谱在磁场中还能发生分裂,显示出微小的能量差别的现象得出的结果。磁量子数可以取值:m=0,+/-1,+/-2……+/-l。 自旋磁量子数m s决定了自旋角动量在外磁场方向的投影值,正负号表示投影方向与磁场方向相同或相反。

工程材料第二章习题

第二章 材料的结构 习题 一、填空题 1.工程材料的结合键有 ________、 ________、 ________、 ________ 4种。 2.体心立方晶格和面心立方晶格晶胞内的原子数分别为 ________ 和 ________ ,其致密度分别为 ________ 和 ________ 。 3.实际金属中存在有 ________、________ 和 ________ 3类缺陷。位错是 ________ 缺陷,晶界是 ________ 缺陷。金属的晶粒度越小,晶界总面积就越 ________ ,金属的强度也越 ________。 4.已知银的原子半径为0.144nm ,则其晶格常数为 ________ nm 。(银的晶体结构为面心立方晶格) 5.结晶过程是依靠两个密切联系的基本过程来实现的。这两个过程是 ________ 和 ________。 6.金属结晶过程中,细化结晶晶粒的主要方法有 ________、________ 和 ________。 7.物质在固态下的晶体结构随温度发生变化的现象称为 ________。铁的同素异构体转 变为____________9121394??→←??→←-度度Fe δ。 8.金属从液态转变为固态的过程称为 ________。金属在固态下由一种晶体结构转变为另一种晶体结构的过程称为 ________。 9.金属在结晶过程中,冷却速度越大,则过冷度越 ________,晶粒越 ________,强度和硬度越 ________,塑性越 ________。 二、选择题 1.铸造条件下,冷却速度越大,则( )。 A .过冷度越大,晶粒越细 B .过冷度越大,晶粒越粗 C .过冷度越小,晶粒越细 D .过冷度越小,晶粒越粗 2.金属在结晶时,冷却速度越快,其实际结晶温度( )。 A .越高 B .越低 C .与冷却速度无关 D .越趋于恒定 3.如果其他条件相同,下列各组铸造条件下,哪组铸锭晶粒细? 第①组:A.金属模铸造 B.砂模铸造 ( ) 第②组:A.变质处理 B.不变质处理 ( )

材料科学基础-习题

https://www.360docs.net/doc/1411723071.html,/jxtd/caike/这个网址有很多东西,例如教学录像,你可以上去看看,另 外左下角有个“释疑解惑”,应该很有用 第一章材料结构的基本知识 习题 1.原子中的电子按照什么规律排列?什么是泡利不相容原理? 2.下述电子排列方式中,哪一个是惰性元素、卤族元素、碱族、碱土族元素及过渡金 属? (1) 1s2 2s2 2p6 3s2 3p6 3d7 4s2 (2) 1s2 2s2 2p6 3s2 3p6 (3) 1s2 2s2 2p5 (4) 1s2 2s2 2p6 3s2 (5) 1s2 2s2 2p6 3s2 3p6 3d2 4s2 (6) 1s2 2s2 2p6 3s2 3p6 4s1 3.稀土元素电子排列的特点是什么?为什么它们处于周期表的同一空格内? 4.简述一次键与二次键的差异。 5.描述氢键的本质,什么情况下容易形成氢键? 6.为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 7.应用式(1-2)~式(1-5)计算Mg2+O2-离子对的结合键能,以及每摩尔MgO晶体的结合键能。假设离子半径为;;n=7。 8.计算下列晶体的离子键与共价键的相对比例 (1) NaF

(2) CaO 9.什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织 对性能的影响。 10.说明结构转变的热力学条件与动力学条件的意义,说明稳态结构与亚稳态结构之 间的关系。 11.归纳并比较原子结构、原子结合键、原子排列方式以及晶体的显微组织等四个结构 层次对材料性能的影响。 第二章材料中的晶体结构 习题

第三章高分子材料的结构 习题 1.何谓单体、聚合物和链节?它们相互之间有什么关系?请写出以下高分子链节的结构式:①聚乙烯;②聚氯乙烯;③聚丙烯;④聚苯乙烯;⑤聚四氟乙烯。 2.加聚反应和缩聚反应有何不同? 3.说明官能度与聚合物结构形态的关系。要由线型聚合物得到网状聚合物,单体必 须具有什么特征? 4.聚合物的分子结构对主链的柔顺性有什么影响? 5.在热塑性塑料中结晶度如何影响密度和强度,请解释之。 6.为什么聚乙烯容易结晶,而聚氯乙烯则难以结晶? 为什么在热塑性塑料中完全结 晶不大可能?

第一章 材料的结构 思考及习题1

第一章材料的结构 1.解释如下概念 空间点阵,晶体结构,晶胞,晶带轴,配位数,致密度,原子半径,同素异晶转变,各向异性 2.钼晶体(bcc)的密度为10.2 g/cm3,原子量为95.94,求它的点阵常数和原子 半径。 3.已知铜的密度为8.94 g/cm3,原子半径为1.275×10-8cm,根据致密度推断晶 体结构。 4.为什么金属具有正的电阻温度系数? 5.为什么金属具有很好的延展性? 6.在室温和1000℃时,铁原子都是如何排列的?1g 铁含有多少个原子和晶胞? 7.NaCl和金刚石各属于哪种点阵? 8.说明为何密排六方不是一种空间点阵? 9.证明将圆球作密排六方堆积时,其轴比c/a=1.633。 10.证明:在立方晶系中,[hkl]⊥(hkl)。 11.在立方晶系中绘图表示{110}、{111}所包括的晶面。 12.在立方晶体中,和方向之夹角是多少? 13.<111>包括哪些晶向? 14.在立方晶胞中绘图表示[110]、[11 1]和[12 0]和(120)、(110),(321)晶面。 15.在六方晶系的晶胞上画出(1012)晶面的交线,画出[112 0]、[1101]晶向。 16.标出图示晶面和晶向指数。 17.求包含(112)和(123)晶面的晶带轴,并确定该晶带所包含的{110}面。 18.绘图说明fcc点阵也可表示为c/a=1.414 的体心正方点阵。 19.计算FCC 中(111)、(110)(100)的晶面间距和原子面密度。判断有无新增 面,然后计算。

20.计算体心立方点阵中八面体间隙半径和四面体间隙半径。 21.画出面心立方晶体(011)晶面上的原子排列,在图上标出[111]、[011]和[2 11] 晶向。 22.碳可以溶解到铁晶格的间隙中形成固溶体,你认为是α-Fe (bcc)还是γ-Fe (fcc) 会溶解更多的C?为什么? 23.某晶体的原子位于正方点阵的节点上,点阵的a=b,c=a/2。今有一晶面在x、 y 和z 轴上的截距分别为6 个原子间距,2 个原子间距和4 个原子间距,试求该晶面的密勒指数。 24.布拉菲点阵与晶体结构是同一概念,因此不论离子晶体、分子晶体,还是原 子晶体,晶体结构只有14 种。(判断) 25.fcc结构的晶体中(111)晶面上含有[110]、[101]、[011]三个滑移方向。(判断) 26.bcc 结构中,四面体间隙是单胞原子数的2 倍。(判断) 27.面心立方结构的密排面是,密排方向是;密排六方结构的密排面是,密排方 向是。 28.某晶体的致密度是74%,该晶体的晶体结构为。 29.石英SiO2的密度为2.65g/cm3。试问: 1)1m3中有多少个硅原子(与氧原子)? 2)当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球 形的)? 30.

材料科学基础总复习

《材料科学基础》上半学期内容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、陶瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、陶瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

相关文档
最新文档