偏微分方程的有限元法求解
偏微分方程的分类及其求解方法

偏微分方程的分类及其求解方法偏微分方程是数学中的一个重要分支,它是描述现实世界中各种自然现象的一种工具。
通俗来说,偏微分方程是一种与时间、空间或空间位置有关的方程式。
偏微分方程的应用范围极广,如物理、数学、金融等领域,它的求解方法也因其类别不同而不同。
偏微分方程的分类偏微分方程可以按照方程中未知函数的数量和自变量的数量分类。
1. 偏导数方程偏导数方程是指方程中只有一个未知函数,但它依赖于多个独立变量(通常是时间和空间)的变量。
常见的偏导数方程包括热传导方程和波动方程。
热传导方程:热传导方程可以描述物质中的热传导过程。
在物质内部,热会沿着温度梯度传导,从高温区域传到低温区域。
因此,热传导方程与物质的热扩散有关。
波动方程:波动方程可以描述许多物理过程,特别是电磁波、声波和其他类型的波动。
波动方程的形式类似于二阶线性常微分方程。
2. 广义保守方程系广义保守方程是指方程中有多个未知函数和多个独立变量的变量。
它们可以描述流体动力学、多相系统等系统。
常见的广义保守方程系包括纳维-斯托克斯方程和零阻力欧拉方程。
纳维-斯托克斯方程:纳维-斯托克斯方程可以描述流体运动。
纳维-斯托克斯方程可以分为不可压缩纳维-斯托克斯方程和可压缩纳维-斯托克斯方程。
零阻力欧拉方程:零阻力欧拉方程是一种部分解析的解对称的不可压缩流体运动的偏微分方程。
它是最基本的转子动量方程之一,在研究飞行器、导弹、宇宙航行器等方面起着重要的作用。
偏微分方程的求解方法1. 分离变量法分离变量法是偏微分方程求解的一种基本方法。
其主要思想是将多元函数表示为各变量的单元函数乘积形式,再通过互相作为超定条件的单个变量的恒等式得到未知参数。
例如,假设在一维的热传导方程中,温度场函数是t(x,t),其中x是空间变量,t是时间变量。
则可以将温度场函数写成t(x,t)=X(x)T(t)的形式,从而将偏微分方程转化为两个常微分方程。
通过求解这些常微分方程可以得到解。
2. 有限差分法有限差分法是一种数值解偏微分方程的方法。
偏微分方程数值求解方法

偏微分方程数值求解方法偏微分方程数值求解方法是使用计算机算法来近似求解偏微分方程的过程。
偏微分方程是描述物理现象和自然现象的主要工具,但大多数偏微分方程不能通过解析方式求解,因此需要使用数值方法进行近似求解。
常用的偏微分方程数值求解方法包括有限差分法、有限元法、谱方法、边界元法和逆时空方法等。
1. 有限差分法有限差分法是一种最简单的数值求解方法,它将偏微分方程中的导数离散化为差分的形式,然后通过有限差分公式求解。
在有限差分法中,将求解区域离散化为网格,然后在每个节点上求解方程,通过节点之间的连通关系建立系数矩阵,最终利用线性代数方法求解线性方程组。
2. 有限元法有限元法是一种广泛运用的数值求解方法,它将求解区域离散化为有限个子域,然后在每个子域内近似求解方程。
有限元法是一种基于变分原理的方法,通过将偏微分方程转化为变分问题,然后在有限维的函数空间中建立逼近函数,最终利用变分方法求解方程。
3. 谱方法谱方法是一种基于傅里叶变换的数值求解方法,它将求解域上的函数表示为傅里叶级数的形式,然后通过求解系数来近似求解方程。
谱方法具有高精度、高效率的优点,但对于非周期边界和奇异性问题可能不适用。
4. 边界元法边界元法是一种基于积分方程的数值求解方法,它将偏微分方程转化为边界积分方程,然后在求解区域表面上求解方程。
边界元法不需要离散化求解区域,仅需在求解区域表面上采集节点,并通过节点之间的关系建立系数矩阵。
5. 逆时空方法逆时空方法是一种利用观测数据反演偏微分方程的数值求解方法,它通过最优化算法将观测数据反演为偏微分方程的参数。
逆时空方法对模型假设和观测数据的噪声较为敏感,但可以应用于各种偏微分方程的求解。
偏微分方程的数值求解方法

偏微分方程的数值求解方法偏微分方程是描述自然现象的重要工具,例如描述热传导、电磁波传播、流体运动等。
然而大多数情况下,这些方程很难通过解析方式求解,因此需要数值求解方法。
本文将介绍偏微分方程的数值求解方法及其应用。
一、有限差分法有限差分法是一种常见的偏微分方程数值求解方法。
它将原本连续的区域离散化,将偏微分方程转化为差分方程。
例如对于一维热传导方程:$$\frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} $$其中 $u(x, t)$ 是温度,$\alpha$ 是热扩散系数。
我们可以选择将空间分成 $N$ 个网格,时间分成 $M$ 个步骤。
则有:$$u_i^{m+1} = u_i^m + \frac{\alpha\Delta t}{\Deltax^2}(u_{i+1}^m - 2u_i^m + u_{i-1}^m)$$其中 $u_i^m$ 表示在位置 $i\Delta x$,时间 $m\Delta t$ 时的温度值。
这是一个显式求解方程,可以直接按照时间步骤迭代计算。
不过由于它的误差可能会增长,因此需要小心选择时间步长和空间步长,以保证误差不会过大。
二、有限元法有限元法是一种更加通用的偏微分方程数值求解方法。
它将连续区域离散化成一些小段,称为单元。
然后针对每个单元,将其上的偏微分方程转化为局部插值函数的方程求解。
例如对于一维波动方程:$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$$我们可以选择将空间分成 $N$ 个网格,用有限元方法将每个网格分成若干个单元。
则对于每个单元 $i$,我们可以得到一个局部插值函数 $u^i(x, t)$ 来近似解该单元上的偏微分方程。
这里不再赘述该函数的形式。
另外,我们还需要满足界面上的连续性和斜率匹配条件,以保证整体解是连续的。
偏微分方程的有限元法

第五章 偏微分方程的有限元法
有限元法特点有限元法的物理意义直观明确,理论完整可靠。 因为变分原理描述了支配物理现象的物理学中的最小作用原理(如力学中的最小势能原理)。 优异的解题能力。有限元法对边界几何形状复杂以及媒质物理性质变异等复杂物理问题求解上,有突出优点: ① 不受几何形状和媒质分布的复杂程度限制。 ②不必单独处理第二、三类边界条件。 ③ 离散点配置比较随意,通过控制有限单元剖分密度和单元插值函数的选取,可以充分保证所需的数值计算精度。
有限元法于上世纪50年代首先在力学领域-----飞机结构的静、动态特性分析中得到应用,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元法主要用于求解拉普拉斯方程和泊松方程所描述的各类物理场中。
第1页/共106页
第五章 偏微分方程的有限元法
有限元法---变分原理
第4页/共106页
5.1 泛函与变分原理
数学上,通常自变量与因变量间的关系称为函数,而泛函则是函数集合的函数,也就是函数的函数,即自变量为函数,而不是变量。
5.1.1 泛函的定义 泛函通常是指一种定义域为函数,而值域为实数的“函数”。 设C是函数的集合,B是实数集合。如果对C中的任一元素y(x),在B中都有一个元素J与之对应,则称J为y(x)的泛函,记为J[y(x)]。
5.1.3 泛函的变分
定义最简泛函
F(x,y,y’)称为泛函的“核函数”
泛函的变分
最简泛函: 核函数只包含自变量 x、未知函数y(x)以及导数y’(x)
第9页/共106页
5.1 泛函与变分原理
利用二元函数的泰勒展开
第10页/共106页
5.1 泛函与变分原理
其中
分别称为泛函的一阶变分和二阶变分。
galerkin有限元法

galerkin有限元法
galerkin有限元法
Galerkin有限元法,也称为Galerkin有限体积法(FV),是一种数值解决偏微分方程的有限元方法,用于快速求解各种椭圆型方程的数值求解。
它把椭圆型方程分解成多个有限元,然后对每个有限元计算其权重,将所有有限元的权重加起来就是椭圆型方程的数值解。
在使用Galerkin有限元法来解决椭圆型方程时,首先要确定有限元的形状与大小,这将影响有限元法求解时的准确程度。
一般来说,有限元的形状可以是矩形、三角形或其他任意多边形,但大小是由实际情况决定的,需要根据椭圆型方程质量结构以及实际求解精度来确定。
确定有限元的形状与大小之后,就可以为每个有限元应用Galerkin有限元法,主要步骤如下:
1. 对每个有限元确定一个适当的坐标系,以便计算其权重;
2. 将系数函数投影到有限元上,并且确定每个有限元的质点分布情况;
3. 确定每个有限元的权重,并将所有有限元的权重加起来就是椭圆型方程的数值解。
Galerkin有限元法的优点是可以快速求解出准确的解,而且可以灵活应用于解决多种椭圆型方程。
但是它也有一定的缺点,比如假设有限元的形状和大小得不到充分考虑,那么计算精度可能会降低;另外,在计算权重时,需要考虑每个有限元上的局部梯度,如果选取
的有限元尺度过小,必须计算大量的梯度,从而增加计算难度。
偏微分方程的有限元法求解

16.901讲义笔记一维有限%首先,我们考虑•个比上一节稍微复杂点的问题; 豎二f(X),卫冲,V(O) = O.V(L)=O在这里,f(X)是)C的般函数,我们来看•个特别的情形:f(x)=x(L-x),此时,方程的梏确解如F:有限元方法利用加权残差的方法■其中:(1)设va)=£«Ma), v()()是我们对v(x)的近似,省为未知常数9 V|(x)是用户选择的歯数,即形状朗数:(2)定义N个加权残差LRj = p^(x)R(V)dx • j = l-> N to其中,RV)二器・f为绒差凹⑴足“用户”选择的加权函数,即权函数:(3)令加权残并为冬•町以确定⑷的值,即求耳使得对所fi 1=I->N, Rj=Oe令限元方法( )是加权残若法的一种,下血看看我们是如何用它来解决问题的。
一维有限元方法有限元方法(〉扌野个连续区域离散化-系列小单尤,这些单元与有限差分法()或有限体积法()产牛的网格完全相同,而佼之前两者主耍的优点在于:能够容易地把握单元的变化范囤。
对于我们讨论的一维问题,可以将区域(数轴〉离散化为如下图所示:这里,叫三单•元的个数。
我们还会用別下血i些定义:个三角划分;尽管令限元法对于一维,二维,三维甚至高细问题都是仃效的,们我们还是要谈及区域离散化的一种方浓,即三角划分。
4 T定义为第I个单元所在的区域。
对于_维问题,这表明,TS-个满足片心的X的集合。
接卜来耍确定的是毎个单兀该用什么样的函数,典型的函数形式就是用从一个单元到卜一个单兀保持解连续的多项式。
例如:一个线性有限元如卜團;i示:在毎个单元内的函数是线形的,在毎两个单元的交点处足连续的。
对于专门诜择的满足线件变化的形状函数,右估计残差时有一个很明显的问题:回忆前曲的内容,RV)二器一f,它在一个单冗里等于什么呢?因为函数是线性的,所以器=0,则有:R(V)=f ,即R(V)与无关。
冋时,满足线性变化的形状函数似乎也是一个好的近似,我们举-个例子来说明。
有限元法与偏微分方程的数值解法

有限元法与偏微分方程的数值解法在现代科学技术中,物理和工程问题通常涉及到方程的解析解。
然而,有很多复杂的问题,没有精确的解析解。
在这些情况下,我们可以使用数值方法来解决问题。
其中,有限元法(Finite Element Method,FEM)被广泛应用于求解偏微分方程(Partial Differential Equation,PDE)的数值解法。
有限元法是一种数值解法,用于解决连续介质(如固体、液体和气体)的差分方程。
它通常涉及将整个计算域分成许多小区域,称为有限元。
这些有限元被视为形状简单的几何单元(如三角形、四边形、六边形等),并且为每个元素分配了未知值。
在有限元方法中,偏微分方程被转换为一个离散方程,其中未知数在局部有限元中定义。
该方法通常涉及将初始有限元网格粗略地分配到整个计算区域,以构建数值解的近似值。
我们可以使用数学方法,如高斯消元法或迭代方法,来求解这个离散的线性系统。
有限元方法在许多领域中发挥着重要作用,包括结构力学、流体力学、电磁学、信息学和生物工程等。
它可以用于求解几乎所有类型的PDE,例如:椭圆、双曲和抛物型等。
在有限元方法中,解取决于网格的精度。
对于较小的网格,精度较高,但计算时间较长;反之亦然。
因此,在选择网格时需要进行权衡。
此外,一个好的网格应该是稳定的,能够保证数值解的收敛性和精度。
一些常见的有限元方法包括:显式和隐式欧拉方法、二阶Runge-Kutta 方法和高阶方法等。
这些方法主要涉及将初始条件和边界条件应用到整个计算区域。
作为一种广泛使用的数值解法,有限元法已经成为许多计算机辅助工程计算软件的主要工具,例如有限元分析软件 ANSYS 等。
此外,计算机的性能提高了许多,使得我们能够处理更多的网格和更大的计算域。
结论有限元法是一种强大的数值解法,可用于求解广泛的物理和工程问题。
然而,对于不同的应用,有不同的适用条件和精度要求。
因此,在设计计算方案之前,需要进行仔细的分析和权衡,以确保最终的数值解具有良好的收敛性和精度。
二阶偏微分方程的Matlab有限元法求解

二阶偏微分方程的 Matlab有限元法求解摘要:本文基于偏微分方程有限元法求解原理,运用Matlab中的偏微分方程工具箱(PDE Toolbox)对三类典型的二阶偏微分方程:椭圆型方程、双曲线型方程和抛物线型方程算例进行求解,为求解偏微分方程的提供参考。
关键词:偏微分方程,有限元,Matlab偏微分方程工具箱0引言偏微分方程定解问题是描述许多自然现象或工程问题的最重要的数学模型,应用非常广泛[1]。
解析法只能求解非常简单的偏微分方程,远远不能满足科学研究和工程实际的需要。
随着计算机技术和科学计算的迅速发展,数值解法成为求解偏微分方程的重要工具[2-3]。
数值解法将连续问题离散化,最后将偏微分方程化成线性代数方程组。
根据离散化方法不同,偏微分方程数值解法主要有差分法和有限元法。
有限元法是分片定义试函数与变分原理相结合的产物。
它能适应各种形状的区域,且通用性强,现已成为求解偏微分方程定解问题的一种有效数值方法[4]。
本文首先简述了偏微分方程有限元法原理,然后,对Matlab中的偏微分方程工具箱(Partial Differential Equations Toolbox)的功能和求解思路进行了阐述[5-6],最后,给出了用PDE Toolbox求解椭圆方程、、双曲线方程和抛物线方程的计算实例。
1偏微分方程有限元法原理偏微分方程有限元法的基本思想是将实际上连续的整个求解域进行离散化处理,即用一些假想的面或线将求解域分割为一系列的单元,各个单元之间仅在有限个节点处相互连接。
取未知函数的节点值作为基本未知量,在每个单元上选取一个近似的插值函数表示单元中场函数的分布规律。
利用变分原理来获得单元的刚度方程,然后按一定的规则把所有单元的刚度方程组集合起来,经适当的边界条件处理,便得到整个系统的总体方程组。
这样,偏微分方程便转化为一组常微分方程。
最后,求解总体方程组,得到节点值和用插值函数确定整个求解域上的场函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%对于d2u/dx2=f的FEM解算器,其中f=x*(1-x)
%
%边界条件u(0)=0, u(1)=0.
%精确解用以比对
xx=linspace(0,1,101);%产生0-1之间的均分指令,101为元素个数
uex=(1/6).*xx.^3-(1/12).*xx.^4-(1/12).*xx;
%对力项设置高斯点的数目
NGf=2;
if (NGf==2)
xiGf=[-1/sqrt(3);1/sqrt(3)];%ξ1、ξ2的值
aGf=[1 1];
else,
NGf=1;
xiGf=[0.0];
aGf=[2.0];
end
%单元数目
Ne=5;
%建立网格节点
x=linspace(0,1,Ne+1);
%零刚性矩阵
K=zeros(Ne+1,Ne+1);
b=zeros(Ne+1,1);
%对所有单元循环计算刚性和残差
for ii=1:Ne,
kn1=ii;
kn2=ii+1;
x1=x(kn1);
x2=x(kn2);
dx=x2-x1;%每一个单元的长度
dxidx=2/dx;%dξ/dx
dxdxi=1/dxidx;%dx/dξ
dN1dxi=-1/2;%dζ1/dξ
dN2dxi=1/2;%dζ2/dξ
dN1dx=dN1dxi*dxidx;%-1/(x j-x j-1)
dN2dx=dN2dxi*dxidx;%1/(x j-x j-1)
K(kn1,kn1)=K(kn1,kn1)-2*dN1dx*dN1dx*dxdxi;%Rj的第二项
K(kn1,kn2)=K(kn1,kn2)-2*dN1dx*dN2dx*dxdxi;
K(kn2,kn1)=K(kn2,kn1)-2*dN2dx*dN1dx*dxdxi;
K(kn2,kn2)=K(kn2,kn2)-2*dN2dx*dN2dx*dxdxi;
%用高斯积分估计力项的积分
for nn=1:NGf%NGf=2
xiG=xiGf(nn);%得到高斯点的ξ
N1=0.5*(1-xiG);%求N1和N2(即在xiG的权重/插值) 形状函数在ξ的值
N2=0.5*(1+xiG);%ζ值
fG=xiG*(1-xiG);%对ξ点求f
gG1=N1*fG*dxdxi;%在节点处估计权函数在高斯点的被积函数gG2=N2*fG*dxdxi;%估计是个积分值
b(kn1)=b(kn1)+aGf(nn)*gG1;% aGf为1
b(kn2)=b(kn1)+aGf(nn)*gG2;
end
end
%在x=0处设置Dirichlet条件
kn1=1;
K(kn1,:)=zeros(size(1,Ne+1));
K(kn1,kn1)=1;
b(kn1)=0;
%在x=1处设置Dirichlet条件
kn1=1;
K(kn1,:)=zeros(size(1,Ne+1));
K(kn1,kn1)=1;
b(kn1)=0;
%求解方程
v=K\b;%v为Kx=b的解
plot(x,v,'*-');%画图并比较
hold on;
plot(xx,uex);
hold off;
xlabel('x');
ylabel('u');。