第九章 偏微分方程差分方法

合集下载

偏微分方程的数值方法

偏微分方程的数值方法

偏微分方程的数值方法偏微分方程是描述自然界许多现象的一种数学模型,它包含多个独立变量,并且方程中的未知函数同时取决于这些变量。

偏微分方程的数值方法是一种求解这类方程的途径,它通过将连续的方程转化为离散的方程,从而使得问题成为一个适用于计算机求解的形式。

本文将介绍几种常用的偏微分方程数值方法。

1. 有限差分法 (Finite Difference Method)有限差分法是最常用的偏微分方程数值方法之一、它将连续的偏微分方程转化为离散的差分方程,通过计算差分方程的近似解来获得原方程的数值解。

在有限差分法中,首先将空间域离散化成网格,再将时间域离散化成步长。

通过近似替代偏微分方程中的导数,将方程转化为差分方程。

通过求解差分方程的解,可以得到偏微分方程的数值解。

2. 有限元法 (Finite Element Method)有限元法是另一种常用的偏微分方程数值方法。

它将连续的偏微分方程转化为离散的代数方程,通过求解代数方程来获得原方程的数值解。

在有限元法中,首先将空间域离散化成有限个小区域,称为有限元。

然后通过选取适当的试探函数和权重函数在每个有限元内部进行插值。

通过将插值函数带入原方程,使用变分原理和加权残差法推导出离散的代数方程。

再通过求解代数方程组的解来得到偏微分方程的数值解。

3. 边界元法 (Boundary Element Method)边界元法也是一种常用的偏微分方程数值方法。

它将连续的偏微分方程转化为边界上的积分方程,通过求解积分方程来获得原方程的数值解。

在边界元法中,将问题的物理域分为两个区域:内域和外域。

通过在内域内求解偏微分方程,得到内域的数值解。

然后通过边界条件将内域的解扩展到整个物理域的边界上。

最后将边界上的积分方程转化为代数方程组,并求解之得到最终的数值解。

4. 谱方法 (Spectral Method)谱方法是一种高精度的偏微分方程数值方法,它同时利用了空间域和频率域的特性。

偏微分方程的分类及其求解方法

偏微分方程的分类及其求解方法

偏微分方程的分类及其求解方法偏微分方程是数学中的一个重要分支,它是描述现实世界中各种自然现象的一种工具。

通俗来说,偏微分方程是一种与时间、空间或空间位置有关的方程式。

偏微分方程的应用范围极广,如物理、数学、金融等领域,它的求解方法也因其类别不同而不同。

偏微分方程的分类偏微分方程可以按照方程中未知函数的数量和自变量的数量分类。

1. 偏导数方程偏导数方程是指方程中只有一个未知函数,但它依赖于多个独立变量(通常是时间和空间)的变量。

常见的偏导数方程包括热传导方程和波动方程。

热传导方程:热传导方程可以描述物质中的热传导过程。

在物质内部,热会沿着温度梯度传导,从高温区域传到低温区域。

因此,热传导方程与物质的热扩散有关。

波动方程:波动方程可以描述许多物理过程,特别是电磁波、声波和其他类型的波动。

波动方程的形式类似于二阶线性常微分方程。

2. 广义保守方程系广义保守方程是指方程中有多个未知函数和多个独立变量的变量。

它们可以描述流体动力学、多相系统等系统。

常见的广义保守方程系包括纳维-斯托克斯方程和零阻力欧拉方程。

纳维-斯托克斯方程:纳维-斯托克斯方程可以描述流体运动。

纳维-斯托克斯方程可以分为不可压缩纳维-斯托克斯方程和可压缩纳维-斯托克斯方程。

零阻力欧拉方程:零阻力欧拉方程是一种部分解析的解对称的不可压缩流体运动的偏微分方程。

它是最基本的转子动量方程之一,在研究飞行器、导弹、宇宙航行器等方面起着重要的作用。

偏微分方程的求解方法1. 分离变量法分离变量法是偏微分方程求解的一种基本方法。

其主要思想是将多元函数表示为各变量的单元函数乘积形式,再通过互相作为超定条件的单个变量的恒等式得到未知参数。

例如,假设在一维的热传导方程中,温度场函数是t(x,t),其中x是空间变量,t是时间变量。

则可以将温度场函数写成t(x,t)=X(x)T(t)的形式,从而将偏微分方程转化为两个常微分方程。

通过求解这些常微分方程可以得到解。

2. 有限差分法有限差分法是一种数值解偏微分方程的方法。

第九章 偏微分方程差分方法

第九章 偏微分方程差分方法

第9章 偏微分方程的差分方法含有偏导数的微分方程称为偏微分方程。

由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。

偏微分方程的数值方法种类较多,最常用的方法是差分方法。

差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。

本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。

9.1椭圆型方程边值问题的差分方法9.1.1 差分方程的建立最典型的椭圆型方程是Poisson (泊松)方程G y x y x f yux u u ∈=∂∂+∂∂-≡∆-),(),,()(2222 (9.1)G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。

当f (x ,y )≡0时,方程(9.1)称为Laplace(拉普拉斯)方程。

椭圆型方程的定解条件主要有如下三种边界条件第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件),(y x nuβ=∂∂Γ (9.3) 第三边值条件 ),()(y x ku nuγ=+∂∂Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。

满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。

用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。

差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。

设G ={0<x <a , 0<y <b }为矩形区域,在x ,y 平面上用两组平行直线x =ih 1, i =0,1,…,N 1, h 1=a /N 1 y =jh 2, j =0,1,…,N 2, h 2=b /N 2将G 剖分为网格区域,见图9-1。

偏微分方程的差分方法与数值解

偏微分方程的差分方法与数值解

显式差分格式
01
利用前一时间步长的温度值,通过差分公式计算下一
时间步长的温度分布。
隐式差分格式
02 需要求解线性方程组,但具有更好的稳定性,适用于
大时间步长。
Crank-Nicolson格式
03
结合了显式与隐式格式的优点,具有二阶精度和无条
件稳定性。
波动方程的数值解法
01
有限差分时间域( FDTD)方法
数值解法的稳定性和收敛性需要仔细考虑,否则可能导致计算结果不准确 。
未来发展趋势和挑战
发展趋势
随着计算机技术的不断发展,更高性能的计算机和更先进的算法将使得偏微分方程的数值解法更加高效 和精确。
结合人工智能和机器学习技术,可以开发出更加智能化的数值解法,提高计算效率和精度。
未来发展趋势和挑战
未来发展趋势和挑战
数值解的应用
数值解在各个领域都有广泛的应用,如物理学中的波动方程、热传导方程和量子力学方程,化学中的 反应扩散方程,生物学中的生态模型和神经网络模型,以及工程学中的结构力学、流体力学和电磁场 问题等。
02
偏微分方程的基本概念和性质
偏微分方程的定义和分类
定义
偏微分方程是包含未知函数及其偏导数的方程。
分类
根据方程中未知函数的最高阶偏导数的阶数,可分为一阶、二阶和高阶偏微分方程;根据方程中是否包含未知函 数的非线性项,可分为线性和非线性偏微分方程。
偏微分方程的定解条件和适定性
定解条件
为了使偏微分方程的解唯一确定,需要 给出定解条件,如初始条件、边界条件 等。
VS
适定性
适定性是指偏微分方程定解问题的解的存 在性、唯一性和稳定性。对于线性偏微分 方程,通常可以通过能量方法等方法研究 其适定性;对于非线性偏微分方程,适定 性的研究更加复杂,需要运用不动点定理 、上下解方法、变分方法等工具。

偏微分方程的有限差分法

偏微分方程的有限差分法

偏微分方程的有限差分法
有限差分法:是一种数学计算概念,是指在计算过程中,以差分的形势来代替微分,从而使整个计算过程具有有限差分法的出发点,以此达到微分议程和积分微分方式数值解的一种计算过程。

微分方程和积分微分方程数值解的方法。

基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。

然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。

在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。

有限差分法求解偏微分方程的步骤如下:
1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
2、近似替代,即采用有限差分公式替代每一个格点的导数;
3、逼近求解。

换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程(Leon,Lapidus,GeorgeF。

Pinder,1985)。

偏微分方程的数值解方法及源程序

偏微分方程的数值解方法及源程序

如果偏微分方程定解问题的解存在,唯一且连续依赖于定解数据(即出现在方程 和定解条件中的已知函数) ,则此定解问题是适定的。可以证明,上面所举各种定解问 题都是适定的。 §2 偏微分方程的差分解法 差分方法又称为有限差分方法或网格法, 是求偏微分方程定解问题的数值解中应用 最广泛的方法之一。它的基本思想是:先对求解区域作网格剖分,将自变量的连续变化 区域用有限离散点(网格点)集代替;将问题中出现的连续变量的函数用定义在网格点 上离散变量的函数代替; 通过用网格点上函数的差商代替导数, 将含连续变量的偏微分 方程定解问题化成只含有限个未知数的代数方程组(称为差分格式) 。如果差分格式有 解, 且当网格无限变小时其解收敛于原微分方程定解问题的解, 则差分格式的解就作为 原问题的近似解(数值解) 。因此,用差分方法求偏微分方程定解问题一般需要解决以 下问题: (i)选取网格; (ii)对微分方程及定解条件选择差分近似,列出差分格式; (iii)求解差分格式; (iv)讨论差分格式解对于微分方程解的收敛性及误差估计。 下面我们只对偏微分方程的差分解法作一简要的介绍。 2.1 椭圆型方程第一边值问题的差分解法 以 Poisson 方程(1)为基本模型讨论第一边值问题的差分方法。 考虑 Poisson 方程的第一边值问题(3)
(8)
∂u ∂u +a =0 ∂t ∂x
物理中常见的一维振动与波动问题可用二阶波动方程
2 ∂ 2u 2 ∂ u =a ∂t 2 ∂x 2
(9)
(10)
描述,它是双曲型方程的典型形式。方程(10)的初值问题为
2 ⎧ ∂ 2u 2 ∂ u ⎪ 2 =a ∂t ∂x 2 ⎪ ⎪ ⎨u ( x,0) = ϕ ( x) ⎪ ∂u ⎪ = φ ( x) ⎪ ⎩ ∂t t =0

第九章 差分方法

第九章 差分方法

差分方程模型的理论和方法青岛建筑工程学院胡京爽引言1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。

通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。

差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。

通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。

2、应用:差分方程模型有着广泛的应用。

实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。

差分方程模型有着非常广泛的实际背景。

在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。

可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。

3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。

或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。

在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。

偏微分方程离散差分式差分方法等

偏微分方程离散差分式差分方法等

(5)
6
3.1.3 差分方程的修正方程(续)
u ku 2 p 1u 2 pu k 2 p 1 2 p 1 2 p 2 p t k 1 x k x x p 0 p 1
基本解为 e ( i ) t eikx
(1) p 2 p k 2 p
u f (u ) 0 t x
相容的,且当时间和空间步长趋于零时,差分解一致有界,几乎处处收敛于 分片连续可微的函数,则这个收敛的函数就是守恒律的一个弱解。
推论:守恒型差分各式的收敛解能自动满足间断关系。 用途: (加上熵条件)可以得到正确的激波,研究中大量使用 例如:Lax-Friedrichs 格式,Lax-Wendroff格式,Mac Cormack格式
~n
1 J 2
~ t f n 1 t
J 2
再对n求和 :
j J n 1 j
~ x u x f k
j J k 0
N
1 J 2
~ t f k 1 t
k 0 J 2
N
可以看成是积分

x J 1 / 2
u ( x, t n 1 )dx
Fourier稳定性 : ikx ikx 2 ikx A A 1 (e e ) (e 2 e ikx ) 2 2 An 1 G n 1 i sin kx 2 (coskx 1) A G 1 1
n 1 n

1
称为CFL条件 (Courant, Friedrichs, Levy)
10
3.1.5 守恒型差分格式
• 流体力学方程组描述物理量的守恒性;守恒律组:
u d f 0 t i 1 xi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

170第9章 偏微分方程的差分方法含有偏导数的微分方程称为偏微分方程。

由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。

偏微分方程的数值方法种类较多,最常用的方法是差分方法。

差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。

本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。

9.1椭圆型方程边值问题的差分方法9.1.1 差分方程的建立最典型的椭圆型方程是Poisson (泊松)方程G y x y x f yux u u ∈=∂∂+∂∂-≡∆-),(),,()(2222 (9.1)G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。

当f (x ,y )≡0时,方程(9.1)称为Laplace(拉普拉斯)方程。

椭圆型方程的定解条件主要有如下三种边界条件第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件),(y x nuβ=∂∂Γ (9.3) 第三边值条件 ),()(y x ku nuγ=+∂∂Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。

满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。

用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。

差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。

设G ={0<x <a , 0<y <b }为矩形区域,在x ,y 平面上用两组平行直线x =ih 1, i =0,1,…,N 1, h 1=a /N 1 y =jh 2, j =0,1,…,N 2, h 2=b /N 2将G 剖分为网格区域,见图9-1。

h 1,h 2分别称为x 方向和y 方向的剖分步长,网格交点(x i ,y i )称为剖分节点(区域内节点集合记为G h ={(x i ,y i ); (x i ,y i )∈G }),网格线与边界Γ的交点称为边界点,边界点集合记为Γh 。

171现在将微分方程(9.1)在每一个内节点(x i ,y i )上进行离散。

在节点(x i ,y i )处,方程(9.1)为h i i i i i i i i G y x y x f y x yuy x x u ∈=∂∂+∂∂-),(),,()],(),([2222 (9.5) 需进一步离散(9.5)中的二阶偏导数。

为简化记号,简记节点(x i ,y i )=(i ,j ),节点函数值u (x i ,y i )=u (i ,j )。

利用一元函数的Taylor 展开公式,推得二阶偏导数的差商表达式)(0)]1,(),(2)1,([1),()(0)],1(),(2),1([1),(222222212122h j i u j i u j i u h j i y u h j i u j i u j i u h j i x u +-+-++=∂∂+-+-++=∂∂代入(9.5)式中,得到方程(9.1)在节点(i ,j )处的离散形式h j i G j i h h f j i u j i u j i u h j i u j i u j i u h ∈++=-+-+--+-+-),(),(0)]1,(),(2)1,([1)],1(),(2),1([12221,2221其中),(,i i j i y x f f =。

舍去高阶小项)(02221h h +,就导出了u (i ,j )的近似值u i ,j 所满足的差分方程h j i j i j i j i j i j i j i G j i f u u u h u u u h ∈=+--+---+-+),(,]2[1]2[1,1,,1,22,1,,121 (9.6) 在节点(i ,j )处方程(9.6)逼近偏微分方程(9.1)的误差为)(2221h h O +,它关于剖分步长是二阶的。

这个误差称为差分方程逼近偏微分方程的截断误差,它的大小将影响近似解的精度。

在差分方程(9.6)中,每一个节点(i ,j )处的方程仅涉及五个节点未知量u i ,j ,u i +1,j ,u i -1,j ,u i ,j +1,u i ,j -1,因此通常称(9.6)式为五点差分格式,当h 1= h 2=h 时,它简化为172h j i j i j i j i j i j i G j i f u u u u u h∈=-+++--+-+),(,]4[1,,1,1,,1,12 差分方程(9.6)中,方程个数等于内节点总数,但未知量除内节点值u i ,j ,(i ,j )∈G h 外,还包括边界点值。

例如,点(1,j )处方程就含有边界点未知量u 0,j 。

因此,还要利用给定的边值条件补充上边界点未知量的方程。

对于第一边值条件式(9.2),可直接取u i ,j =α(x i ,y i ), (i ,j )∈Γh (9.7) 对于第三(k =0时为第二)边值条件式(9.4), 以左边界点(1,j )为例,见图9-2, 利用一阶差商公式)(),1(),0(),0(11h O h j u j u j n u +-=∂∂ 则得到边界点(0,j )处的差分方程j j j jj r u k h u u ,0,0,01,1,0=+- (9.8)联立差分方程(9.6)与(9.7)或(9.8)就形成了求解Poisson 方程边值问题的差分方程组,它实质上是一个关于未知量{u i ,j }的线性代数方程组,可采用第2,3章介绍的方法进行求解。

这个方程组的解就称为偏微分方程的差分近似解,简称差分解。

考虑更一般形式的二阶椭圆型方程G y x y x f Eu yu D x u C y u B y x u A x ∈=+∂∂+∂∂+∂∂∂∂+∂∂∂∂-),(),,(])()([(9.9) 其中A (x ,y )≥A m in >0, B (x ,y ) ≥B m in >0, E(x ,y ) ≥0。

引进半节点,12121h x xi i ±=±,22121h y yi i ±=±利用一阶中心差商公式,在节点(i ,j )处可有)(2),1(),1(),()(]),1(),(),(),1([1)()],21)((),21)([(1),)((211211,211,211211h O h j i u j i u j i x u h O h j i u j i u A h j i u j i u A h h O j i x u A j i x u A h j i x u A x j i j i +--+=∂∂+----+=+-∂∂-+∂∂=∂∂∂∂-+173对yu y u B y ∂∂∂∂∂∂),(类似处理,就可推得求解方程(9.9)的差分方程 hj i j i j i j i j i j i j i j i j i j i G j i j i f u a u a u a u a u a ∈=-+++---++---+),(),,(][,,1,1,1,1,,1,1,1,1 (9.10)其中⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧++++=-=+=-=+=-+--+----+-+---+-+ji j i j i j i j i j i j i j i j i j i j i j i j i j i j i j i j i j i E B B h A A h a D h B h a D h B h a C h A h a C h A h a ,21,21,22,21,2121,,221,221,,221,221,,1,2121,1,1,2121,1)()()2()2()2()2( (9.11) 显然,当系数函数A (x ,y )=B (x ,y )=1, C (x ,y )=D (x ,y )=E (x ,y )=0时,椭圆型方程(9.9)就成为Poisson 方程(9.1),而差分方程(9.10)就成为差分方程(9.6)。

容易看出,差分方程(9.10)的截断误差为)(2221h h O +阶。

9.1.2 一般区域的边界条件处理前面已假设G 为矩形区域,现在考虑G 为一般区域情形,这里主要涉及边界条件的处理。

考虑Poisson 方程第一边值问题⎩⎨⎧Γ∈=∈=∆-),(),,(),(),,(y x y x u Gy x y x f u α (9.12) 其中G 可为平面上一般区域,例如为曲边区域。

仍然用两组平行直线:x =x 0+ih 1,y =y 0+jh 2,i ,j =0,±1,…,对区域G 进行矩形网格剖分,见图9-3。

如果一个内节点(i ,j )的四个相邻节点(i +1,j ),(i -1,j ),(i ,j +1)和(i ,j -1)属于Γ⋃=G G ,则称其为正则内点,见图9-3中打“。

”号者;如果一个节点(i ,j )属于G 且不为正则内点,则称其为非正则内点,见图9-3中打“.”号者。

记正则内点集合为hG ',非正则内点集合为h Γ'。

显然,当G 为矩形区域时,174h h h hG G Γ=Γ'=',成立。

在正则内点(i ,j )处,完全同矩形区域情形,可建立五点差分格式h j i j i j i j i j i j i j i G j i f u u u h u u u h '∈=+--+---+-+),(,]2[1]2[1,1,,1,22,1,,121 (9.13) 在方程(9.13)中,当(i ,j )点临近边界时,将出现非正则内点上的未知量,因此必须补充非正则内点处的方程。

若非正则内点恰好是边界点,如图9-4中 D 点,则利用边界条件可取u D =α(D)对于不是边界点的非正则内点,如图9-4中B 点,一般可采用如下两种处理方法。

a.直接转移法.取与点B 距离最近的边界点(如图9-4中E 点)上的u 的值作为u (B )的近似值u B ,即u B =u (E)=α(E)直接转移法的优点是简单易行,但精度较低,只为一阶近似。

b .线性插值法.取B 点的两个相邻点(如图9-4中边界点A 和正则内点C 作为插值节点对u (B )进行线性插值)()()()(21h O C u x x x x A u x x x x B u AC AB AC B C +--+--=则得到点B 处的方程 A B C B x x u h A h h u -=+++=δδδαδ,)(111 线性插值法精度较高,为二阶近似。

相关文档
最新文档