常微分方程的差分方法分解54页PPT

合集下载

常微分方程与差分方程

常微分方程与差分方程

数值解法的改进
高精度算法
随着计算机技术的发展,人们开发出了许多高精度、高效率的数值解法,如谱方法、有限元方法等。
自适应算法
自适应算法可以根据问题的复杂性和解的特性自动调整计算精度和计算量,提高了数值解法的可靠性和效率。
THANKS FOR WATCHING
感谢您的观看
常微分方程的解法
总结词
求解常微分方程的方法有多种,如分离变量法、积分 因子法、参数变易法等。
详细描述
求解常微分方程的方法有多种,其中分离变量法和积 分因子法是比较常用的方法。分离变量法是将方程中 的变量分离出来,转化为多个简单的微分方程,然后 分别求解。积分因子法是通过引入一个因子,将原方 程转化为易于求解的形式。此外,参数变易法也是求 解常微分方程的一种常用方法,它通过将参数引入到 原方程中,使得原方程转化为易于求解的形式。
VS
详细描述
根据形式和性质的不同,常微分方程可以 分为多种类型。常见的一阶常微分方程是 形式为dy/dx = f(x, y)的方程,其中f(x, y)是一个关于x和y的函数。二阶常微分方 程是形式为y'' = f(x, y')的方程,其中y'表 示y对x的导数。此外,根据是否含有线性 项和非线性项,常微分方程还可以分为线 性常微分方程和非线性常微分方程。
02 差分方程的基本概念
差分方程的定义
差分方程是描述离散变量之间关系的 数学模型,通常表示为离散时间点的 函数值的差分关系式。
它与微分方程类似,但时间变量是离 散的,而不是连续的。
差分方程的分类Leabharlann 01一阶差分方程只包含一个差分的方程,如 (y(n+1) - y(n) = f(n))。

计算方法常微分方程的差分方法

计算方法常微分方程的差分方法

y' (xn ) phy'' (xn ) O(h2 )
从而有 而
yn1 y(xn ) hy' (xn ) ph2 y'' (xn ) O(h3 )
有: λp=1/2。
y ( xn1 )
y(xn ) hy' (xn )
h2 2
y'' (xn ) O(h3 )
——二阶Runge-Kutta格式
yn1 yn' f
yn (xn ,
h[(1 yn )
)
yn' 1
yn'
]
yn' 1
f ( xn1, yn1)
yn1
yn
h 2
( yn' 1
yn' )
二阶隐式Adams格式
37
• 三阶隐式Adams格式
yn1
yn
h 12
(5
yn' 1
8 yn'
yn' 1)
• 四阶隐式Adams格式
yn1
yn
33
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的开关按键来实现功 能的一种设计方式。
传统机械按键结构层图:
按键
PCBA
开关键
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
2.开关按键和塑胶按键设计间隙建议 留0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公 差,以防按键手感不良。
h 24
(9 yn' 1
19 yn'
5 yn' 1

常微分方程的差分的方法

常微分方程的差分的方法

对于二阶常微分方程 $y'' = f(t, y, y')$,可以采用隐式差分法或显式差 分法进行求解。
VS
隐式差分法需要解方程组,计算量大, 但精度高;显式差分法精度低但计算 量小。
复杂微分方程组的求解实例
对于多个一阶或二阶常微分方程组成的复杂微分方程组,可以采用耦合差分法或龙格-库塔法进行求 解。
差分方法的基本概念和原理
基本概念
差分方法的基本概念是将时间或空间离散化,将连续的微分方程转化为离散的差 分方程。在时间离散化中,我们使用向前、向后或中心差分近似微分项;在空间 离散化中,我们使用有限差分近似微分项。
原理
差分方法的原理是将连续的微分方程转化为离散的差分方程,然后通过迭代或递 推的方式求解该差分方程。在每一步迭代或递推中,我们使用已知的函数值和差 分近似来计算新的函数值,直到达到所需的精度或收敛条件。
耦合差分法是将多个微分方程转化为耦合的差分方程组进行求解;龙格-库塔法是一种迭代算法,通过 已知的$y_n$和$y'_n$来求解$y_{n+1}$。
THANKS
感谢观看
REPORTING
https://
改进的龙格-库塔方法
引入预估校正步骤
为了提高数值解的精度和稳定性,可以在龙 格-库塔方法中引入预估校正步骤。通过预 估和校正两个步骤的结合,可以减小数值误 差并提高方法的收敛速度。
考虑非线性项的处理
在求解二阶常微分方程时,非线性项的处理 对于数值解的精度和稳定性具有重要影响。 通过改进非线性项的处理方式,可以进一步 提高改进的龙格-库塔方法的性能。
有限差分法
有限差分法的原理
有限差分法是一种基于离散化的数值方法, 通过将微分方程转化为差分方程来求解。该 方法的关键在于选择合适的差分格式和离散 化方案,以保证数值解的精度和稳定性。

常微分方程差分法

常微分方程差分法

i.常微分方程初值问题差分法i.1 常微分方程差分法考虑常微分方程初值问题:求函数()u t 满足(,), 0du f t u t T dt=<≤ (i.1a ) 0(0)u u = (i.1b)其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。

我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-∀∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在、唯一,并且连续依赖于初值0u 。

常微分方程初值问题(i.1)的精确解是从给定初始点00(,)t u 出发的一条连续曲线,通常情况下不可能用简单的解析表达式给出,只能求近似解。

差分法是常微分方程初值问题的主要数值解法,其目的是求得若干个离散点来逼近这条解曲线。

本章讨论常微分方程最常用的近似数值解法—差分方法。

构造差分法有两个基本途径。

一个是简单地用离散点上的差商近似替代微商。

另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。

先来看最简单的Euler 方法。

为此,首先将求解区域[0,]T 离散化为若干个离散点n t hn =:0110N N t t t t T -=<<<<= (i.3) 其中0h >称为步长。

在微积分课程中我们熟知,微商(即导数)是差商的极限。

反过来,差商就是微商的近似。

在0t t =处,在(i.1a )中用向前差商10()()u t u t h-代替微商du dt ,便得10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到1000(,)u u hf t u -=一般地,我们有1Euler (,), 0,1,,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

第三章 常微分方程的差分方法

第三章 常微分方程的差分方法
P1 P1 P0 Pi+1 Pn y=y(x) Pi Pn Pi Pi+1
Euler法的求解过程是:从初始点 P0(即点(x0,y0))出发,作积分曲线 y=y(x)在P0点上切线 P0 P (其斜率 1 为 y( x0 ) f ( x0 , y0 ) ),与x=x1直线
x0
x1
xi
xi+1
自 动 化 工 程 学 院
School of Automation Engineering
第 三 章
P1 P1 P0
常微分方程的差分方法
Pi+1 Pn Pi Pi+1 Pi y=y(x) Pn
x0
x1
xi
xi+1
xn
由此获得了P2的坐标。重复以上过程,就可获得一系列的 点:P1,P1,…,Pn。对已求得点 Pn ( xn , y n ) 以 y ( xn ) = f ( xn , yn )为斜率作直线 当 x xn1 时,得 取 y( xn ) y n
第 三 章
常微分方程的差分方法
第三章 常微分方程的差分方法
引言
包含自变量、未知函数及未知函数的导数或微分的方
程称为微分方程。在微分方程中, 自变量的个数只有一个, 称为常微分方程。自变量的个数为两个或两个以上的微分 方程叫偏微分方程。微分方程中出现的未知函数最高阶导 数的阶数称为微分方程的阶数。如果未知函数y及其各阶导 数
对于初值问题
散化,建立求数值解的递推公式。递推公式通常有两类,一 类是计算yi+1时只用到xi+1, xi 和yi,即前一步的值,因此有了 初值以后就可以逐步往下计算,此类方法称为单步法;其代 表是龙格—库塔法。另一类是计算yi+1时,除用到xi+1,xi和yi以 外,还要用到 xi p , yi p ( p 1,2,, k ) ,即前面k步的值,此类 方法称为多步法;其代表是亚当斯法。

第三章 常微分方程的差分法

第三章 常微分方程的差分法

2.后退的欧拉法
3.梯形法 4.改进Euler法
1. 简单的欧拉(Euler)方法
考虑模型:
f ( x, y) y y( x0 ) y0
欧 拉 方 法
a xb
(1.1) (1.2)
最简单而直观 实用方法
弄清常微方程初值 问题数值解法的一 些基本概念和构造 方法的思路.
一个或一组具有所要求阶连续导数的解析函数,将 它代入微分方程(组),恰使其所有条件都得到满 足的解称为解析解(或古典解),称为真解或解。 寻找解析解的过程称为求解微分方程组。
4.什么是微分方程的数值解?
虽然求解微分方程有许多解析方法,但解析方法 只能够求解一些特殊类型的方程,从实际意义 上来讲
我们更关心的是某些 特定的自变量在某一个 定义范围内的一系列离散点上的近似值. 把这样一组近似解称为 微分方程在该范围内的
如果单步差分公式的局部截断误差为O(hp+1), 则称该公式为p阶方法.这里p为非负整数. 显然,阶数越高,方法的精度越高.
Taylor展开式,一元函数的Taylor展开式为:
若某算法的局部截断误差为O(hp+1),则称该算法有p 阶精度。
y ( x n ) 2 y ( x n ) 3 y( x n 1 ) y( x n h) y( x n ) y ( x n )h h h 2! 3! Ri 的主项 2 /* leading term */ h R y( x ) y [ y ( x ) hy( x ) y( x ) O(h3 )] [ y hf ( x , y )] i i 1 i 1 i i i i i i 2
或用向前差 商近似导数
y ( xn 1 ) y ( xn ) y ( xn ) h

第3章 常微分方程的差分方法

第3章 常微分方程的差分方法
2
件有两种:一种是给出积分曲线在初始点的状态,称为 初始条件,相应的定解问题称为初值问题 ;另一种是 给出积分曲线首尾两端的状态,称为边界条件 ,相应 的定解问题则称为边值问题。 例如,弹簧-质量系统的振动问题(图7-1),作一定的 简化后,可用一个二阶常微分方程
d x c x0 2 dt m
d x c dt m x 0 x(t ) x (t t ) x(t ) x
2 2 0 0 0 0 0
4
x
m x c o
图7-1
本章先从一阶常微分方程的初值问题:
dy f ( x, y ), x [a, b] (1.1) dx y (a)
y(xi+1 )和 y(xi )用其近似值 yi+1 和 yi 代入,则得
y y hf ( x , y )(i 0,1,2,..., n 1)
i 1 i i i
16
此即(2.2)(欧拉格式)。 显然,欧拉格式具有递推性,在计算yi+1时只要用到前一
步所得结果 yi 一个信息就够了,因此是一种单步格式或称一
(2.6)称为向后欧拉格式,又称为隐式欧拉格式。因 为在此式的右边也包含未知的yi+1,所以是yi+1的一个 函数方程,故称它为隐式格式。(2.2)的右边则没有 未知的yi+1,因此是一种显式格式。隐式格式的计算 当然比显式格式要困难得多,一般情况下,只能用迭 代法求解,计算量比较大。
19
再如,用中心差商表示的三点数值微分公式
(i 0,1,2,..., n 1)
(2.9)
21
不论是显式欧拉格式(2.2),还是隐式欧拉格式 (2.6),它们都是单步格式或称为一步格式。因 为它们在计算yi+1时只用到前一步所得结果yi一个信 息;而格式(2.8)则除了yi外,还需用到更前一步 所得信息yi-1,即需调用前两步的信息,因此(2.8) 称为两步欧拉格式,或称为中点欧拉格式。 比较(2.3),(2.7)和(2.9)可知,两步欧 拉格式比显式或隐式欧拉格式具有更高的精度,因 为它的局部截断误差是O(h3)。 由(2.3)和(2.7)可见,显式欧拉格式与隐式 欧拉格式的局部截断误差的符号正好相反,因此可 以设想取(2.2)和(2.6)的平均,即两式相加除以 2,得

常微分方程 PPT课件

常微分方程 PPT课件

分曲线和积分曲线族的概念,只不过此时积分曲线所在的空间维数不同,我们将
在第4章详细讨论.
最后,我们要指出,本书中按习惯用
代替
而 分别代表
本节要点: 1.常微分程的定义,方程的阶,隐式方程,显式方程,线性方程,非线性方程. 2.常微分方程解的定义,通解,特解,通积分,特积分. 3.初值问题及初值问题解的求法. 4.解的几何意义,积分曲线.
所以它们都是一阶齐次方程.因此,一阶齐次微分方程可以 写为
(1.27)
1.3.1 齐次方程的解法 方程(1.27)的特点是它的右端是一个以为
变元的函数,经过如下的变量变换,它能化 为变量可分离方程.
令 则有 代入方程(1.27)得
(1.28)

方程(1.28)是一个 变量可分离方程,当 时,分离 变量并积分,得到它的通积分 (1.29)
常微分方程课件
第一章 初等积方法 第二章 基本定理 第三章 线性微分方程 第四章 线性微分方程组 第五章 定性与稳定性概念 第六章 一阶偏微方程初步
第1讲 微分方程与解 微分方程
什么是微分方程?它是怎样产生的?这是首先要回答的问题.
300多年前,由牛顿(Newton,1642-1727)和莱布尼兹 (Leibniz,1646-1716)所创立的微积分学,是人类科学史上划
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档