导数的极值、最值及其应用(重点)
导数及其应用知识点总结

导数及其应用知识点总结导数及其应用是微积分中的重要概念,它可以用来描述一个函数在其中一点的变化率,进而用于求解曲线的切线、求解最值、优化问题等。
在学习导数及其应用的过程中,我们需要掌握导数的定义、导数的计算法则、导数与函数性质的关系以及导数在几何和物理问题中的应用等知识点。
一、导数的定义1.函数在其中一点的导数:函数f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) (f(a+h)-f(a))/h2.函数的导函数:函数f(x)在定义域上每一点的导数所构成的新函数,被称为函数f(x)的导函数,记作f'(x)。
二、导数的计算法则1.常数法则:对于常数k,有:(k)'=0。
2.幂函数法则:对于幂函数y=x^n,其中n为常数,则有:(x^n)'=n*x^(n-1)。
3.基本初等函数法则:对于基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数),可以通过求导法则求得其导函数。
4.乘积法则:对于函数u(x)和v(x),有:(u*v)'=u'*v+u*v'。
5.商数法则:对于函数u(x)和v(x),有:(u/v)'=(u'*v-u*v')/v^26.复合函数法则:对于复合函数y=f(g(x)),有:y'=f'(g(x))*g'(x)。
三、导数与函数性质的关系1.导函数与函数的单调性:若函数f(x)在区间I上可导,则f'(x)在I上的符号与f(x)在I上的单调性一致。
2.导函数与函数的极值:若函数f(x)的导函数在点x=a处存在,且导数的符号在x=a左侧从正数变为负数,那么函数在点x=a处取得极大值;若导数的符号在x=a左侧从负数变为正数,那么函数在点x=a处取得极小值。
3.导函数与函数的凹凸性:函数f(x)的导函数f''(x)的符号与函数f(x)的凹凸性一致。
导数在求值(极值、最值)中的应用

导数在求值(极值、最值)中的应用一、预备知识1.若函数f(x)在闭区间〔a,b〕上连续,根据闭区间连续函数的性质,函数f(x)在闭区间〔a,b〕上必取到最大值与最小值.而最大点或最小点可能在区间端点a或b 上;也可能取在开区间(a,b)内部某点上,此时的最大点即为极大点;最小点即为极小点.因此,函数f(x)在闭区间〔a,b〕上连续,在开区间(a,b)内可导,且x1,x2,…,x n是函数f(x)在开区间(a,b)内的所有驻点(隐定点),则函数值f(a),f(x1),f(x2),…f(x n),f(b)中最小者就是函数f(x)的最小值;最大者就是函数f(x)的最大值.2.若函数f(x)在有界开区间(a,b)或无界开区间(a,+∞)(或(-∞,b))上可导,且x1,x2,…,x n是函数f(x)在开区间(a,b)或(a,+∞)(或(-∞,b))的所有驻点(隐定点),设:存在;f(x i)=max{f(x1),f(x2),…,f(x n)},f(x j)=min{f(x1),f(x2),…,f(x n)}.则f(x i)为最大值,则f(x j)为最小值.二、应用例题f(x)=(x+b+c)3-(x+b-c)3-(b+c-x)3-(c+x-b)3.f′(x)=3〔(x+b+c)2-(x+b-c)2+(b+c-x)2-(c+x-b)2〕=24bc.对上式求原函数,有.f(x)=∫24bcdx=24xbc+c则c1=f(0)=(b+c)3-(b-c)3-(b+c)3+(b-c)3=0,从而f(x)=24xbc或f(a)=24abc.为定值.证明设M(x,y)是星形线上任一点,将星形线方程对x求导,得过点M的切线l方程为令Y=0,则得l在x轴上截距令X=0,则得l在y轴上截距于是,二坐标轴所截线段长为例3已知p1,p2,…,p n∈N,a1,a2,…,a n∈R+,且p1a1+p2a2+…解不失一般性,令a1=min{a1,a2,…,a n},a n=max{a1,a2,…,a n},p=p1+p2+…+p n,则将a2,a3,…,a n看作常量,a1看作变量,设函数(将a1用x表示)则为所求的最小值.例6从半径为R的圆形铁片中剪去一个扇形(如图),将剩余部分围成一个圆形漏斗,问剪去的扇形的圆心角多大时,才能使圆锥形漏斗的容积最大?解设剪后剩余部分的圆心角是x(θ≤x≤2π).圆锥形漏斗的斜高是R,圆是圆锥的底面积S是于是,圆锥的体积是下面求函数V(x)在〔0,2π〕上的最大值.例7测量某个量A,由于仪器的精度和测量的技术等原因,对量A做了n次测量,测量的数值分别为a1,a2,…,a n取数x作为量A的近似值,问x取何值才能使x与a i(i=1,2,…,n)之差的平方和为最小?解由题意,求函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2的最小值.f′(x)=2(x-a1)+2(x-a2)+…+2(x-a n)=2〔nx-(a1+a2+…+a n)〕f″(x)=2n>0,值作为量A的近似值,才能使函数f(x)取最小值.例8一个容器,下半部是圆柱,上半部是半球,且圆柱底面半径和半球的半径相等,设容器表面积为S,问圆柱的高与底面半径之比为何值时,容器的容积最大.解设圆柱的高为h,底面半径为r,则容器的容积为将(*)式代入上式,整理得例9设有底为等边三角形的直柱体,体积为V,要使其总面积为最小,问底边的长应为多少?等边三角形的直柱体总面积为例10求内接于半径为R的球的体积最大的圆柱体的高.解设球的内接圆柱体的高为h(如图),则圆柱体底面半径圆柱体体积为例11要使内接于一个半径为R的球内的圆锥体的侧面积为最大,问圆锥体的高应为多少?解设球的内接锥体的高为h(如图),则锥体底面的圆半径所以圆锥体的侧面积为例12平面上通过一个已知点P(1,4)引一条直线,要使它在两个坐标轴上的截距都为正,且它们的和为最小,求这直线的方程.解过点p(1,4)且斜率为k的直线方程为设两截距之和为S,则所以极小值即为最小值,故所求的直线方程为例13求内接于半径为R的半圆的周长最大的矩形的边长.例14要做一个圆锥形漏斗,其母线长20厘米,要使其体积为最大,问其高应为多少?漏斗的体积为例15 三个点A、B和C不在同一直线上,∠ABC=60°,汽车以80公里/小时的速度由A向B行驶,同时火车以50公里/小时的速度由B向C行驶.如果AB=200公里,问运动开始几小时后汽车与火车的距离为最短?解设运动t小时后,汽车行至D点,火车行至E点,两车的距离为DE=S(如图),则例16在一半径为R的圆形广场中心挂一灯,问要挂多么高,才能使广场周围的路上照得最亮?(灯光的亮度与光线投射角的余弦成正比,与光源距离的平方成反比,而投射角是经过灯所作垂直于地面的直线与光线所夹的角).解设灯位于Q点离地面的高度为h(如图),则广场周围的路上,灯光的亮度为例17有甲乙两城,甲城位于一直线形的河岸,乙城离岸40公里,乙城到岸的垂足与甲城相距50公里,两城在此河边合建一水厂供水,从水厂到甲城与乙城安装水管费用分别为每公里500元与700元,问此水厂建在河边何处,才能使安装水管费最省?解设水厂建在离甲城x公里(如图),则安装水管费为令S′(x)=0,即渔站.如果送信人步行每小时5公里,船速每小时4公里,问应在何处登岸再走,才可使抵达渔站的时间最省?解设渔艇停泊在A处,海岸渔站位于B处(如图),过A且垂直于海岸线交于C,令T′(x)=0,即于是登岸处距渔站3公里时,所需的时间最省.。
利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题六《导数》讲义6.3导数与函数的极值、最值知识梳理.极值与最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.题型一. 极值、最值的概念1.函数y=x sin x+cos x的一个极小值点为()A.x=−π2B.x=π2C.x=πD.x=3π22.(2017·全国2)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1 3.(2013·全国2)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(﹣∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0 )=04.已知函数f (x )=x 3+ax 2﹣4x +5在x =﹣2处取极值(a ∈R ). (1)求f (x )的解析式;(2)求函数f (x )在[﹣3,3]上的最大值.题型二.已知极值、最值求参 考点1.利用二次函数根的分布1.若函数f (x )=x 3﹣3bx +b 在区间(0,1)内有极小值,则b 的取值范围是( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(﹣1,0)2.已知函数f (x )=13x 3−12ax 2+x 在区间(12,3)上既有极大值又有极小值,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞)C .(2,52)D .(2,103)考点2.参变分离3.若函数f (x )=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( ) A .(2,52)B .[2,52)C .(2,103) D .[2,103)4.已知函数f(x)=e xx 2+2klnx −kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A .(−∞,e 24] B .(−∞,e 2]C .(0,2]D .[2,+∞)考点3.分类讨论5.已知函数f (x )=ax −1x −(a +1)lnx +1在(0,1]上的最大值为3,则实数a = . 6.已知函数f(x)=(12x 2−ax)lnx −12x 2+32ax .(1)讨论函数f (x )的极值点;(2)若f (x )极大值大于1,求a 的取值范围.7.已知函数f (x )=lnx −a x(a ∈R ) (1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e ]上的最小值为32,求a 的值.考点4.初探隐零点——设而不求,虚设零点8.(2013·湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.f(x1)>0,f(x2)>−12B.f(x1)<0,f(x2)<−12C.f(x1)>0,f(x2)<−12D.f(x1)<0,f(x2)>−129.已知f(x)=(x﹣1)2+alnx在(14,+∞)上恰有两个极值点x1,x2,且x1<x2,则f(x1)x2的取值范围为()A.(−3,12−ln2)B.(12−ln2,1)C.(−∞,12−ln2)D.(12−ln2,34−ln2)10.(2017·全国2)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.课后作业.极值、最值1.若函数f (x )=(x 2+ax +3)e x 在(0,+∞)内有且仅有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,﹣2)B .(﹣∞,﹣2]C .(﹣∞,﹣3)D .(﹣∞,﹣3]2.已知函数f(x)=xe x −13ax 3−12ax 2有三个极值点,则a 的取值范围是( ) A .(0,e )B .(0,1e)C .(e ,+∞)D .(1e,+∞)3.已知f (x )=e x ,g (x )=lnx ,若f (t )=g (s ),则当s ﹣t 取得最小值时,f (t )所在区间是( ) A .(ln 2,1)B .(12,ln 2)C .(13,1e)D .(1e,12)4.已知函数f (x )=lnx +x 2﹣ax +a (a >0)有两个极值点x 1、x 2(x 1<x 2),则f (x 1)+f (x 2)的最大值为( ) A .﹣1﹣ln 2B .1﹣ln 2C .2﹣ln 2D .3﹣ln 25.已知函数f(x)=lnx +12ax 2+x ,a ∈R . (1)求函数f (x )的单调区间;(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.。
高考数学导数及其应用知识点

高考数学导数及其应用知识点数学导数及其应用知识点一函数的单调性在a,b内可导函数fx,f′x在a,b任意子区间内都不恒等于0.f′x≥0?fx在a,b上为增函数.f′x≤0?fx在a,b上为减函数.1、f′x>0与fx为增函数的关系:f′x>0能推出fx为增函数,但反之不一定.如函数fx=x3在-∞,+∞上单调递增,但f′x≥0,所以f′x>0是fx为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′x0=0是可导函数fx在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.数学导数及其应用知识点二函数的极值1、函数的极小值:函数y=fx在点x=a的函数值fa比它在点x=a附近其它点的函数值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函数y=fx的极小值点,fa叫做函数y=fx的极小值.2、函数的极大值:函数y=fx在点x=b的函数值fb比它在点x=b附近的其他点的函数值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函数y=fx的极大值点,fb叫做函数y=fx的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.数学导数及其应用知识点三函数的最值1、在闭区间[a,b]上连续的函数fx在[a,b]上必有最大值与最小值.2、若函数fx在[a,b]上单调递增,则fa为函数的最小值,fb为函数的最大值;若函数fx在[a,b]上单调递减,则fa为函数的最大值,fb为函数的最小值.数学导数及其应用知识点四求可导函数单调区间的一般步骤和方法1、确定函数fx的定义域;2、求f′x,令f′x=0,求出它在定义域内的一切实数根;3、把函数fx的间断点即fx的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数fx的定义区间分成若干个小区间;4、确定f′x在各个开区间内的符号,根据f′x的符号判定函数fx在每个相应小开区间内的增减性.数学导数及其应用知识点五函数极值的步骤1、确定函数的定义域;2、求方程f′x=0的根;3、用方程f′x=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f′x=0根的两侧导数的符号来判断f′x在这个根处取极值的情况.六、求函数fx在[a,b]上的最大值和最小值的步骤1、求函数在a,b内的极值;2、求函数在区间端点的函数值fa,fb;3、将函数fx的各极值与fa,fb比较,其中最大的一个为最大值,最小的一个为最小值.感谢您的阅读,祝您生活愉快。
导数极值最值问题

导数极值最值问题导数极值是高等数学中的一个重要概念,广泛应用于物理、经济、工程等领域的问题求解中。
对于一个函数,在某一点处取得最大值或最小值,我们称之为极值。
导数极值问题则是求解函数导数为零的点,以及在这些点处的函数值,以确定函数的极值。
为了解决导数极值问题,我们需要掌握相关的理论、方法和技巧。
下面是一些相关内容的参考:1. 导数的定义:首先,我们需要了解导数的定义,即一个函数在某一点处的导数是该函数在该点的斜率。
对于函数y=f(x),其导数可以表示为dy/dx,也可以表示为f'(x)或y',表示函数f(x)对于自变量x的变化率。
2. 极值的判定条件:在一般情况下,求解导数极值的思路是找出函数的导数为零的点,然后判断这些点是否为极值点。
判定导数为零的点是否为极值点,需要应用导数的增减性或二阶导数的符号判定方法。
其中,- 导数的增减性:若导数在某点的左侧为正,右侧为负,则该点为极大值点;若导数在某点的左侧为负,右侧为正,则该点为极小值点。
- 二阶导数的符号判定:若函数的二阶导数大于零,则该点为极小值点;若二阶导数小于零,则该点为极大值点;若二阶导数等于零,则该方法无法判断。
这些判定条件可以帮助我们确定极值点的性质。
3. 极值问题的求解步骤:一般来说,求解导数极值问题的步骤如下:- 求出函数的导数;- 找出导数为零或不存在的点,即驻点;- 判断驻点是否为极值点,并求解极值点的函数值;- 若函数的定义域是一个闭区间,还需比较区间端点处的函数值。
这些步骤可以帮助我们系统化地求解导数极值问题。
4. 实际问题的应用:导数极值问题在实际问题中有广泛的应用,例如:- 经济学中的最优化问题;- 物理学中的最小作用量原理;- 工程学中的控制系统设计等。
学习与掌握导数极值问题的相关理论和方法,对于解决这些实际问题具有重要意义。
总之,导数极值问题是高等数学中一个重要的主题,通过分析函数导数为零的点及其性质,可以确定函数的极值点。
导数的极值与最值

导数的应用二------函数的极值与最值【考点梳理】考点一、函数的极值(一)函数的极值的定义:一般地,设函数)(x f 在点0x x =及其附近有定义,(1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(0x f y =极大值;(2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值. 极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.注意:(1)一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.(2)区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.(二)用导数求函数极值的的基本步骤:①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根;④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)注意:①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.②可导函数)(x f 在点0x 取得极值的充要条件是0()0f x '=,且在0x 两侧)(x f '的符号相异。
【典型例题】类型一: 求函数的极值 例1. 下列函数的极值。
(1)2()x f x x e -=; 【解析】(1)函数的定义域为R 。
22'()2()'2(2)x x x x x f x xe x e x xe x e x x e -----=+⋅-=-=-。
令'()0f x =,得x=0或x=2。
当x 变化时,'()f x ,()f x 变化状态如下表:由上表可以看出,当x=0时,函数有极小值,且(0)0f =。
数学教案导数复习函数的极值与最值,导数的综合运用

数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。
2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。
3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。
(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。
(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。
二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。
2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。
3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。
(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。
(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。
三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。
2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。
3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。
(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。
(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。
四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。
2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。
3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。
(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程
一.课程导入:
我们之前学过函数的图像,函数的导数,在这基础上我们引申出我们今天要学的最值和极值,但是这两个虽一字之差但是却大不相同,我们可以先从最值,极值的定义先了解一下
思考下面的图像的最值,极值分别为什么?
二、复习预习
本讲复习时,应注重导数在研究函数极值与最值中的工具性作用,会将一些实际问题抽象为数学模型,从而用导数去解决.复习中要注意等价转化、分类讨论等数学思想的应用.
函数的极值
三、知识讲解 考点1、极值的定义
1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点
2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0)就说f(x 0)
是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点
3.点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值1x 是极大值点,4x 是极
小值点,而)(4x f >)(1x f (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
考点2、最值的定义
函数的最大值和最小值:在闭区间[]b a,上连续的函数)(x f在[]b a,上必有最大值与最小值.⑴在开区间(,)a b 内连续的函数)(x f不一定有最大值与最小⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f在闭区间[]b a,上连续,是)(x f在闭区间[]b a,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个
考点3、求最值极值的步奏
1.求函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f′(x)
(2)求方程f′(x)=0(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格。
检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值
2.利用导数求函数的最值步骤:⑴求)(x f在(,)
a b内的极值;⑵将)(x f的各极值与)(a f、)(
b f比较得出函数)(x f在[]b a,上的最值
四、例题精析
考点一 求函数的极值 【例题1】
【题干】求列函数的极值: (1)22)2()1(--=x x y ;(2)21
22-+=x x
y
【答案】见解析
【解析】(1)2/22)2)(75)(1()(,)2()1()(---=∴--=x x x x f x x x f 令0)(/=x f ,得点2,7
,1321===x x x
0)1(=∴f 是函数的极大值;3125
)5(-
=f 是函数的极小值
(2)2
2222/
2)
1()1)(1(2)1(22)1(2)(,212)(x x x x x x x x f x x x f ++-=+⋅-+=∴-+= 令0)(/=x f ,得驻点121,1x x =-=
∴当1-=x 时,f 极小=-3;当1=x 时,f 极大=-1值
考点二 求函数的极值点 【例题2】
【题干】设e e x ax x f x ()1()(2-⋅-+=为自然对数的底,a 为常数且R x a ∈<,0),)(x f 取极小值时,求x 的值
【答案】见解析
【解析】)1()1()12()(2-⋅⋅-++⋅+='--x x e x ax e ax x f )2)(1(-+⋅-=-x ax e z
令210)(或a
x x f -=⇒='
(1)01
21<<->-a 即当,由表
)(,1
x f a
x 时-=∴取极小值
(2)0)2(21)(,21212≤-⋅⋅-='-==--x e x f a a x 时即当无极值
(3)1
21-<<-a 即当时,由表
取极小值时时当综上取极小值时)(,,02,.)(,2x f a
x a x f x -=<<-
-=∴
取极小值时时当)(,2,2
1x f x a -=-<
考点三函数的单调性及其应用
【例题3】
【题干】设函数f(x)=1
2
x-ax,其中a>0,求a的范围,使函数f(x)在区间[0,+∞)上是单调函数
【答案】见解析 【解析】f ′(x )=2
1x
x +-a
当x >0时,
01<
<
因为a >0,所以当且仅当a ≥1时,f ′(x )= 2
1x
x +-a 在[0,+∞)上恒小于0,此时f (x )是单调
递减函数
课后评价。