自然界(例如生物体)存在的纳米材料及其特性功能
纳米科技与材料纳米材料的特性与应用

纳米科技与材料纳米材料的特性与应用纳米科技与材料:纳米材料的特性与应用纳米科技是指在纳米尺度下研究和应用材料,其中纳米材料是纳米科技的核心之一。
纳米材料具有特殊的结构和属性,因此在各个领域都具有广泛的应用前景。
本文将重点探讨纳米材料的特性及其应用领域。
一、纳米材料的特性纳米材料具有以下几个主要特性:1. 尺寸效应:当材料的尺寸缩小到纳米级别时,其性能表现会与宏观尺寸的材料有显著差异。
例如,纳米材料的比表面积相对更大,导致更多的原子或分子暴露在表面上,因此纳米材料具有更高的反应活性。
2. 量子效应:在纳米尺度下,由于粒子的量子行为显著影响了材料的电、磁、光等性能,从而产生新的特性。
例如,纳米材料的电导率、光学性质和磁性可能与宏观尺寸材料截然不同。
3. 界面效应:界面是纳米材料中不可忽视的因素之一。
纳米材料的界面与周围环境之间的相互作用对其性能具有重要影响。
界面性质的调控可以改变纳米材料的导电性、磁性和光学性能等。
4. 热力学效应:纳米材料由于其特殊的表面性质,可能造成不稳定的热力学状态,导致一系列与热力学平衡相关的现象发生,如相变温度的变化、熔点降低等。
二、纳米材料的应用领域1. 电子领域:纳米材料在电子器件中的应用正日益重要。
例如,纳米颗粒可以用于制备高效的太阳能电池;纳米线可以用于制作柔性电子器件;纳米薄膜能够改善电子器件的导电性能。
2. 光学领域:纳米材料具有特殊的光学性质,广泛应用于光学器件制备和光学传感器等领域。
例如,纳米粒子的表面等离子共振效应使其具有优异的荧光性能,可用于生物分析和生物成像。
3. 医学领域:纳米材料在医学领域有着广泛的应用前景。
纳米载体可以用于药物的传输和靶向给药;纳米生物传感器能够检测和监测生物分子;纳米材料也可以用于修复组织和组织工程等。
4. 能源领域:纳米材料在能源转换和储存领域有着重要应用。
纳米材料的高比表面积、导电性和导热性能使其成为高效能源器件的理想选择。
浅论纳米材料的特性及应用

浅论纳米材料的特性及应用纳米材料(Nanomaterials)是指至少有一条尺寸小于100纳米的尺度,无论是从纵向、横向和表面上来看,都表现出特殊性质的材料。
纳米材料具有巨大的比表面积、高的表面活性和优异的物理、化学和生物性能,这些与其微观结构、形态、成分等相关。
因此,纳米材料是当前研究的热点之一,也是各个领域中需要重点关注的关键材料之一。
本文将就纳米材料的特性及应用进行浅析。
纳米材料的特性1. 比表面积大:纳米材料具有巨大的比表面积,这是由于纳米尺度下,物质表面与体积比不断增大,因此比表面积增加。
跟传统的微米材料相比,纳米材料表面积增加了数倍或数十倍。
这也是纳米材料在催化、传感、吸附等应用中常常被用到的原因。
2. 物理、化学性质优异:在纳米材料表面存在的大量表面活性位点,使其物理、化学性质得到了显著提高。
纳米材料表面活性位点的数量增加,强度加强,表面性质集中,因此性能更稳定,催化效率更高,电化学活性更强等等。
3. 尺寸效应、量子效应:由于纳米材料尺寸在纳米以下,材料某些性质与材料本身的大小呈现出非线性关系,如吸收光波长的变化、激发能量的变化、输运特性的变化等。
这就是所谓的尺寸效应。
同时,当纳米材料具有能量量子化效应时,控制其尺寸、形态、组成等因素能够使其能带结构、光学响应和磁学等性质发生改变,进而调节其电学、光学、磁学性能。
纳米材料的应用1. 催化剂:纳米材料的高比表面积、表面活性位点及在某些纳米材料上出现的空间初始化的结构使得它们表现出高度优异的催化活性。
以Pt纳米材料为例,由于其高的催化活性,广泛应用于汽车尾气净化、电化学电极、燃料电池等领域。
2. 生物传感器:纳米材料特有的表面活性,催化作用以及生物兼容性等特性,可用于生物传感器的制备和应用。
纳米材料实现了对生物分子、细胞的高灵敏度、高特异性识别和检测。
著名的纳米生物传感器如Au纳米颗粒、石墨烯等。
3. 纳米药物:临床上长期以来一直致力于研究如何制备高质量、优异性能的新型药物,纳米材料作为药物载体在药物的输送过程中提高了药物的效应和减少了副作用。
纳米材料的结构特征

纳米材料的结构特征一、概论纳米材料是新型结构材料的一种,主要是指材料的基本结构单元至少有一维处于纳米尺度范围(一般在11100 nm),并由此具有某些新特性的材料。
纳米材料相对于其他材料而言有五大物理效应即:体积效应、表面效应、量子尺寸效应、量子隧道效应和介电限域效应,这五大效应成就了纳米材料的诸多优势,这里就不一一介绍了。
纳米材料相对于其他材料的优势正是因为其结构的特点,下面讲述纳米材料的结构特征。
二、自然界中存在的纳米材料早在宇宙诞生之初,纳米材料和纳米技术就已经存在了,比如,那些溶洞中的石笋就是一纳米一纳米的生长起来的,所以才千奇百怪;贝壳和牙齿也是一纳米一纳米的生长的,所以才那样坚硬;植物和头发是一纳米一纳米生长的,所以才那样柔韧;荷叶上有用纳米技术生长出来的绒毛,所以才能不沾水,就连人类的身体,也是一纳米一纳米生长起来的,所以才那样复杂。
在地球的漫长演化过程中,自然界的生物,从亭亭玉立的荷花、丑陋的蜘蛛,到诡异的海星,从飞舞的蜜蜂、水面的水黾,到海中的贝壳,从绚丽的蝴蝶、巴掌大的壁虎,到显微镜才能看得到细菌…应该说,它们个个都是身怀多项纳米技术的高手。
它们通过精湛的纳米技艺,或赖以糊口,或赖以御敌,一代一代,在大自然中地顽强存活着,不仅给人们留下了深刻的印象,而且给现代的纳米科技工作者带来了无数灵感和启示。
三、纳米材料的概论1、纳米材料:纳米材料是指三维空间尺度上至少有一维处于纳米量级或由它们作为基本单元构成的材料。
2、纳米科技:纳米科技(纳米科学技术)是指在纳米尺度上研究物质的特性和相互作用以及利用这种特性开发新产品的一门科学技术。
3、纳米结构单元:构成纳米材料的结构单元包括限定的团簇或人造原子团簇、纳米微粒、纳米管、纳米棒、纳米丝、同轴纳米电缆、纳米单层膜及多层膜等。
(1)原子团簇指几个至几百个原子的聚集体,如Fen,CunSm,CnHm(n和m都是整数)和碳簇(C60,C70和富勒烯等)等。
纳米材料的性质和应用

纳米材料的性质和应用在当今的科技发展中,纳米材料起到了越来越重要的作用。
纳米材料指的是尺寸在1-100纳米之间的材料,由于其独特的物理、化学、生物性质,纳米材料已经成为材料科学领域中的研究热点,并在多个领域展现了广泛的应用前景。
本文将会介绍纳米材料的性质和应用。
一、纳米材料的性质1.1 尺寸效应与大尺寸的材料相比,纳米材料拥有独特的尺寸效应。
在纳米材料中,相对于大尺寸材料,电量子尺寸效应、表面效应以及量子点效应等加强,这使得纳米材料在电子与光学等性能方面呈现出独特且出色的表现。
1.2 比表面积相同质量的纳米材料,其比表面积远大于大尺寸材料。
这是因为纳米材料的表面积与体积比远大于大尺寸材料,这种高比表面积使得纳米材料在吸附、反应、催化等方面具有更高的活性,具备更强的活性表面。
1.3 催化性质纳米材料由于具有较高的比表面积和尺寸大小效应,因而在催化反应中展现出了优异的催化性质。
纳米金属催化剂普遍具有较高的活性和选择性,可被应用于氧化还原反应、氢化反应等多个领域。
1.4 原子结构微观结构上,纳米材料由于晶粒尺寸小于传统材料晶体中晶粒尺寸的平均距离,因而在晶体结构和晶格纵横比等方面也表现出与大尺寸材料显著不同的情况。
二、纳米材料的应用2.1 纳米材料在催化领域的应用纳米材料因其独特的催化性质,在催化领域中展现了广泛的应用前景。
例如,氧化铁纳米颗粒是市场应用较广泛的催化剂之一。
鉴于纳米铁颗粒活性高,对有机物的还原作用也得到了广泛应用。
此外,纳米催化剂在车用领域中得到广泛应用,节约了能源。
2.2 纳米材料在生物医学中的应用纳米材料的性质控制能力、可定制性将其应用范围扩大到医学领域。
由于纳米材料具有高比表面积,可改善材料与细胞之间的接触面积和其它物理-化学相互作用。
其在生物医学中的应用包括:基因治疗、肿瘤治疗、药物输送和生物成像等。
2.3 纳米材料在能源领域的应用纳米材料也被广泛应用于能源领域,例如纳米结构材料的光电特性,可以用于太阳能电池,而纳米材料也可用于如锂离子电池等的电储能设备中。
纳米材料在物理领域有哪些独特性质和应用

纳米材料在物理领域有哪些独特性质和应用在当今的科学领域中,纳米材料无疑是一颗璀璨的明星。
纳米材料,指的是在三维空间中至少有一维处于纳米尺度范围(1 100 纳米)的材料。
由于其尺寸微小,纳米材料展现出了许多独特的物理性质,这些性质为其在物理领域的广泛应用奠定了基础。
首先,让我们来了解一下纳米材料的独特性质。
其中之一就是表面效应。
随着颗粒尺寸的减小,纳米材料的比表面积会显著增大。
这意味着表面原子所占的比例大幅增加,从而导致表面能和表面活性显著提高。
比如说,纳米金属颗粒在空气中会迅速氧化燃烧,而大块的金属则相对稳定。
量子尺寸效应也是纳米材料的重要特性之一。
当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象,以及纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽的现象,均称为量子尺寸效应。
这使得纳米材料的电学、磁学和光学性质等发生了显著变化。
例如,纳米级的半导体材料能发出特定颜色的光,可用于制造新型的发光器件。
小尺寸效应同样不可忽视。
当纳米材料的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化。
比如,纳米颗粒的熔点通常会显著低于大块材料的熔点。
此外,纳米材料还具有宏观量子隧道效应。
微观粒子具有贯穿势垒的能力称为隧道效应。
一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量等也具有隧道效应,称为宏观的量子隧道效应。
接下来,我们看看纳米材料在物理领域的广泛应用。
在电子学领域,纳米材料有着巨大的应用潜力。
由于量子尺寸效应,纳米半导体材料的电学性能得到了优化,可以用于制造更小、更快、更节能的电子器件。
例如,纳米晶体管的尺寸可以做到更小,从而提高芯片的集成度和性能。
纳米材料还可以用于制造高性能的电容器和电阻器,改善电子设备的性能。
在磁学领域,纳米磁性材料展现出了独特的性质。
生物体中存在的纳米材料及其特性

生物体中存在的纳米材料及其特性摘要:本文简单罗列了一些生物界中常见的动植物中的纳米结构及其特性,通过这些简介可以清晰地体现出纳米材料的重要性,也可以直观的为我们展现自然界中的纳米材料及其特性,更加可以通过这些让我们联想到现实生活中纳米技术的应用。
关键词:纳米材料生物体结构原因自然界中,纳米材料和它的形成过程早已存在。
只是先前人们不认识而已。
在地球的漫长演化过程中,在自然界的生物中,存在许多通过纳米技术形成的纳米材料。
亭亭玉立的荷花、丑陋的蜘蛛,到诡异的海星,从飞舞的蜜蜂、水面的水黾,到海中的贝壳,从绚丽的蝴蝶、巴掌大的壁虎,到显微镜才能看得到细菌… 个个都是身怀多项纳米技术的高手。
它们通过精湛的纳米技艺,或赖以糊口,或赖以御敌,一代一代,顽强存活着。
只是在现代科学技术发展起来之后,人们才对自然界中的纳米技术和纳米材料有了一些认识。
例如,知道了石灰岩溶洞中的石笋是一纳米一纳米生长起来的,它们的形状才会那么千奇百怪。
贝壳和牙齿是一纳米一纳米生长的,才会那么坚硬。
植物茎和头发也是一纳米一纳米生长的,才那么柔韧。
那么什么是纳米材料呢?纳米(nm)和米、微米等单位一样,是一种长度单位,一纳米等于十的负九次方米,约比化学键长大一个数量级。
纳米科技是研究由尺寸在0.1至100纳米之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
可衍生出纳米电子学、机械学、生物学、材料学加工学等。
纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
由于其组成单元的尺度小,界面占用相当大的成分。
因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。
纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。
纳米材料种类及应用

纳米材料种类及应用纳米材料是指材料的尺寸在纳米量级的材料,具有特殊的物理、化学以及力学性质。
纳米材料种类繁多,根据材料的组成、结构和性质可以分为无机纳米材料、有机纳米材料和生物纳米材料等。
下面将就一些常见的纳米材料种类及其应用进行介绍。
1. 纳米金属颗粒:金属纳米颗粒具有独特的电子结构和表面物理性质,广泛用于催化、传感、光学、电子学等领域。
例如,纳米银颗粒具有优异的导电和抗菌性能,可应用于导电胶、导电墨水、抗菌涂料等领域。
纳米金颗粒还可以用于纳米电子器件和磁性材料中。
2. 纳米氧化物:氧化物纳米颗粒具有独特的光学和电学性质,广泛应用于催化、能源存储、传感、环境治理等领域。
例如,二氧化钛纳米颗粒具有良好的光催化性能,可用于光催化水分解、废水处理等。
纳米氧化铁颗粒在废水处理、磁性材料等领域也有广泛应用。
3. 纳米碳材料:纳米碳材料包括纳米碳管和石墨烯等。
纳米碳管具有优异的力学、导电和导热性能,可应用于电子器件、储能器件等。
石墨烯则因其出色的导电性、透明性和力学性能,在柔性显示器、锂离子电池、传感器等方面有广泛应用。
4. 纳米复合材料:纳米复合材料由纳米颗粒和基底材料组成,具有较高的强度、硬度和耐磨性。
纳米复合材料被广泛应用于电子器件、汽车制造、建筑材料等领域。
例如,纳米陶瓷材料可用于制作高性能陶瓷刀具、陶瓷齿轮等。
纳米纤维增强复合材料则可用于制作航空航天领域的结构件。
5. 纳米生物材料:纳米生物材料是将纳米材料应用于生物医学领域的一种材料。
例如,纳米药物载体可以用于精准给药,提高药物的生物利用度;纳米生物传感器可用于检测生物标志物,诊断疾病;纳米生物图像剂可用于改善生物影像学性能。
总之,纳米材料具有独特的物理、化学和力学性质,广泛应用于催化、能源、传感、医学、环境等领域。
随着纳米科技的不断发展,纳米材料的应用前景将更加广阔。
纳米材料的特性与性能解析

纳米材料的特性与性能解析纳米材料是一种具有特殊结构和性质的材料,其颗粒大小在纳米级别(1纳米=10-9米)范围内。
相对于传统材料而言,纳米材料拥有独特的物理、化学和生物学特性,展现出出色的性能和广泛的应用前景。
本文将深入解析纳米材料的特性和性能,帮助读者更好地了解纳米技术的重要性和潜力。
首先,纳米材料的特性之一是其巨大的比表面积。
由于颗粒尺寸极小,纳米材料的比表面积远大于同等体积的传统材料。
这意味着纳米材料提供了更多的活性位点,具有更多的反应表面,更高的反应速率和更高的化学反应活性。
此外,纳米材料的巨大比表面积还使其具有更好的吸附能力,可以被用于环境污染物的吸附和分解,有助于解决环境保护问题。
其次,纳米材料还表现出优异的力学性能。
由于其小尺寸、高表面能和大应变能力,纳米材料通常具有高强度、高硬度和高韧性。
这些优异的力学性能使得纳米材料在材料加工、摩擦减磨、机械工程等领域具有广泛的应用前景。
例如,纳米材料用于制备高强度的纳米复合材料,可以提高材料的强度和韧性,延长材料的使用寿命。
此外,纳米材料还表现出独特的光学性能。
在纳米尺度下,光的吸收、散射和透射等特性会发生明显变化。
纳米材料的颜色、荧光等光学性质可以通过纳米颗粒的形状、大小和组成来控制和调节。
这使得纳米材料在电子显示器、光电器件、传感器等领域具有广泛的应用。
例如,利用纳米材料的荧光特性,科学家们开发了高效的荧光探针,广泛应用于生物医学研究和临床诊断中。
此外,纳米材料还具有独特的热学性能。
由于其小尺寸和表面效应,纳米材料表现出与体积相同的传统材料相比更高的热导率和更低的热膨胀系数。
这使得纳米材料在热传导和热管理方面具有潜力。
例如,纳米材料被广泛应用于制备高效热界面材料,用于改善电子元器件的散热性能,提高器件的稳定性和可靠性。
最后,纳米材料还表现出独特的电学性能。
相对于传统材料而言,纳米材料具有更高的载流子迁移率、更低的电阻率和更好的电化学活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然界(例如生物体)存在的纳米材料及其特性功能摘要:纳米是一个长度单位,指的是一米的十亿分之一。
纳米技术技,则是在纳米尺度(1到1000纳米之间)上研究物质的特性和相互作用,以及利用这些特性的技术。
在纳米技术中,纳米材料是其主要的研究对象与基础。
事实上,纳米技术并不神秘,也并不是人类的专利。
早在宇宙诞生之初,纳米材料和纳米技术就已经存在了,比如,那些溶洞中的石笋就是一纳米一纳米的生长起来的,所以才千奇百怪;贝壳和牙齿也是一纳米一纳米的生长的,所以才那样坚硬;植物和头发是一纳米一纳米生长的,所以才那样柔韧;荷叶上有用纳米技术生长出来的绒毛,所以才能不沾水,就连人类的身体,也是一纳米一纳米生长起来的,所以才那样复杂。
在地球的漫长演化过程中,自然界的生物,从亭亭玉立的荷花、丑陋的蜘蛛,到诡异的海星,从飞舞的蜜蜂、水面的水黾,到海中的贝壳,从绚丽的蝴蝶、巴掌大的壁虎,到显微镜才能看得到细菌… 应该说,它们个个都是身怀多项纳米技术的高手。
它们通过精湛的纳米技艺,或赖以糊口,或赖以御敌,一代一代,在大自然中地顽强存活着,不仅给人们留下了深刻的印象,而且给现代的纳米科技工作者带来了无数灵感和启示。
关键词 :纳米材料;生物纳米材料;仿生材料。
一,纳米材料纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。
真正有意识的研究纳米粒子可追溯到20世纪30年代的日本的为了军事需要而开展的“沉烟试验”,但受到当时试验水平和条件限制,虽用真空蒸发法制成了世界第一批超微铅粉,但光吸收性能很不稳定。
到了20世纪60年代人们开始对分立的纳米粒子进行研究。
1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。
1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。
Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。
1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience&Technology),正式宣布纳米材料科学为材料科学的一个新分支。
自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段:第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。
第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。
第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。
国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。
它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。
纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。
它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。
目前对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。
而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。
二,自然界中的纳米材料1,自然界中的各类纳米现象自然通过数千万年进化出来的生物体有着人们无法想象的复杂性。
微观角度看,很多生物体特殊的功能都与纳米息息相关。
更加令人惊奇的是,不仅生物体所用的材料尺度是微观的,而且,生物体还对这有机、无机材料进行了进一步的处理,使得整体显示出一种微观度上的高度有序性,同时,正是由于这种微观尺度上的有序组装,使得材料的性质与普通宏观材料显示了极大的不同。
进一步研究发现,生物体采用这些组装结构都与其所需性能密切相关。
首先 ,在材料的机械性质上 ,微观尺度的组装能够极大的提升特定材的机械性能。
通过对贝壳、牙齿、骨骼等的研究发现 ,这些生物体中最坚硬的部分,其主要组成为各种无机矿物质,如碳酸钙、二氧化硅、轻基磷灰石等。
尤其是碳酸钙 ,其被大量用作无脊椎动物的保护部分,如贝壳、甲壳等。
这种常见的化合物,在我们的建筑上随处可见,其本身的强度和硬度是有限的,原本不足以抵抗外界很大压力。
然而,生物体却创造性的使用了有机、无机杂化的方法,并通过微观尺度上的组装,增强了其机械性能,使得这种矿物质能够满足生物体保护自身的作用。
以软体动物贝壳为例,经研究发现其主要成分为碳酸钙的两种最稳定晶型之一:方解石或文石。
这些碳酸钙一定的方式组织起来,尤其是珍珠质部分,这部分材料呈一种有序的堆叠结构。
这种结构与建筑上常用的砖泥结构相类似,以碳酸钙晶体 (多为文石)单元为“砖”,以有机体如蛋白质等为“泥”,使用层层堆砌的方式形成如图1所示。
研究发现,这种结构比普通碳酸钙矿物有着更高的强度和硬度,可以很好的分散外界的压力,从而起到保护和支撑生物体的作用。
图1 贝壳珍珠质层中有机无机杂化等级结构的SEM图及示意图生物体选用的有序材料不仅用于提升机械性能,在光学性能的提高上,生物体也显示了强大的实力。
一种被称为结构色的生物体显色方式被发现是纳米层次上的有序和无序结构相互作用的结果。
生物如蝴蝶(图2 (a),(b))、鸟类(图2 (e),(d)),蛾子等许多有着非常绚丽的色彩研究发现,这些色彩不一定是色素产生的,很大一部分与生物体微观结构有关。
电镜观察发现,这部分生物体通过将微观材料在特定度空间的排列,使得某一波段的可见光在其间发生干涉、衍射或散等,过滤出特定波长的光,从而显示出美丽的色彩。
这其中最著名的是光子晶体,这是一类特殊的晶体,其原理很像半导体,有一个光子能隙,在此能隙里电磁波无法传播。
蛋白石是其中的典型,它的组成仅仅是宏观透明的二氧化硅,其立方密堆积结构的周期性使其具有了光子能带结构,随着能隙位置的变化,反射光也随之变化,最终显示出绚丽的色彩(图2 (e) ,(f))。
(a ,b)大闪碟M 。
d ididus ,(c,d )孔雀 ,(e ,f)蛋白石图2 自然界中有结构色的生物照片及其形成结构色的组成部分的S E M图除结构色外,生物体还用特殊组装形式来完成对外界光线的感应 ,如形成复眼结构等。
以蚊子的复眼为例,其不仅仅是由无数微米级的小眼组成,而且每个小眼表面都有无数纳米结构的整齐排列,这使得蚊子复眼具有了优异的超疏水性,从而具有很好的防雾能力。
纳米在此继续显示着其巨大的威力,还有一种名为Melanophila acuminate的甲虫的可以感知8Okm以外的森林火灾。
它们通过由50到100个15um的传感器组成的特殊陷窝器来侦测红外线,这种优异的传感能力如能很好的运用 ,必将对人类的遥感技术产生深远的影响。
这些器官主要是特殊的有机材料,也有生物体利用纯无机材料显示自己的光学性能。
如海蛇尾brittlestars利用单晶方解石作为自身的光探测器,对不同的光线显示出不同的颜色。
生物体还通过纳米层次的组装来实现各种特殊而令人惊奇的力。
部分植物叶和昆虫、鸟类等的翅膀上有特殊的疏水性能 ,这是由其表面微米或纳米尺度的规则或不规则排列所产生的,这种组合所产生的超疏水性能使其能轻易的使水滴在表面形成水珠,通过重力作用自然滚落 ,同时带走叶面上的污染物,这种行为称为植物等的自清洁能力,这种性质以荷叶为代表,又称为荷叶效应。
还有一些更加令人惊奇的现象,如水龟可以在水面上自由行走,研究发现水龟的这种本领,来源于其腿部数千根同向排列的多层微米尺寸刚毛。
这些刚毛使水龟的腿能够在水中划出多倍于己的水量,从而使其具有非凡的浮力,这种浮力让水龟可以沉着应对各种恶劣的自然环境而永不沉没(图3(a),(b))。
类似的甲虫的脚上无数细小的刚毛 ,使其能够紧紧的粘在物体上(图3 (c),(d))。
还有,壁虎能够自由的在光滑的墙壁上行走,经研究发现,壁虎脚上有无数微米级的刚毛阵列,而这些刚毛每个又由无数纳米级的刚毛排列组成,如此众多的微结构单元 ,最终使得壁虎脚能够通过范德华力粘附在物体上,从而在光滑平面上行走自,如(图3(e) -(h))。
如此种种,随着研究的深入,可以发现许许多多奇特的生物现象均来自于纳米世界。
(a)水龟腿部在水中 (b)水龟腿部的SEM图 (c)甲虫照片 (d) 甲虫脚部SEM图 (e-h) 壁虎脚上刚毛逐级放大图图3 自然界中显示从纳米到微米级组装结构的生物足部的照片及放大显示的SEM图2,自然界中具有纳米现象的生物(1)洁身自好的莲花一提到莲花,人们就会很自然地联想到荷叶上滚动的露珠,即所谓的莲花效应。
那么,什么原因导致了这种莲花效应呢?莲花效应又能给莲花本身带来什么好处?现代电子显微镜技术给可以帮助我们给出正确的答案。
通过电子显微镜,可以观察到莲叶表面覆盖着无数尺寸约10个微米突包,而每个突包的表面又布满了直径仅为几百纳米的更细的绒毛。
这是自然界中生物长期进化的结果,正是这种特殊的纳米结构,使得荷叶表面不沾水滴。
借助莲花效应,莲花可保持叶子清洁。
当荷叶上有水珠时,风吹动水珠在叶面上滚动,水珠可以粘起叶面上的灰尘,并从上面高速滑落,从而使得莲叶能够更好地进行光合作用。
(2)飞檐走壁的壁虎壁虎可以在任何墙面上爬行,反贴在天花板上,甚至用一只脚在天花板上倒挂。
它依靠的就是纳米技术。
壁虎脚上覆盖着十分纤细的茸毛,可以使壁虎以几纳米的距离大面积地贴近墙面。
尽管这些绒毛很纤弱,但足以使所谓的范德华键发挥作用,为壁虎提供数百万个的附着点,从而支撑其体重。
这种附着力可通过“剥落”轻易打破,就像撕开胶带一样,因此壁虎能够穿过天花板。
(3)贝类--娴熟的粘合高手普通的贝类就是与蔬菜一起烹饪、在饭店每天都可以吃到的那种,堪称纳米粘合技术的高手。
当它想把自己贴在一块岩石上时,就会打开贝壳,把触角贴到岩石上,它将触角拱成一个吸盘,然后通过细管向低压区注射无数条黏液和胶束,释放出强力水下胶粘剂。
这些黏液和胶束瞬间形成泡沫,起到小垫子的作用。