比较冒泡排序和快速排序的时间性能
算法性能实验报告

一、实验目的本次实验旨在通过对比分析几种常用排序算法的性能,深入了解各种算法在不同数据规模和不同数据分布情况下的时间复杂度和空间复杂度,为实际应用中算法的选择提供参考。
二、实验环境- 操作系统:Windows 10- 编程语言:C++- 编译器:Visual Studio 2019- 测试数据:随机生成的正整数序列三、实验内容本次实验主要对比分析了以下几种排序算法:1. 冒泡排序(Bubble Sort)2. 选择排序(Selection Sort)3. 插入排序(Insertion Sort)4. 快速排序(Quick Sort)5. 归并排序(Merge Sort)6. 希尔排序(Shell Sort)四、实验方法1. 对每种排序算法,编写相应的C++代码实现。
2. 生成不同规模(1000、5000、10000、50000、100000)的随机正整数序列作为测试数据。
3. 对每种排序算法,分别测试其时间复杂度和空间复杂度。
4. 对比分析不同算法在不同数据规模和不同数据分布情况下的性能。
五、实验结果与分析1. 时间复杂度(1)冒泡排序、选择排序和插入排序的平均时间复杂度均为O(n^2),在数据规模较大时性能较差。
(2)快速排序和归并排序的平均时间复杂度均为O(nlogn),在数据规模较大时性能较好。
(3)希尔排序的平均时间复杂度为O(n^(3/2)),在数据规模较大时性能优于冒泡排序、选择排序和插入排序,但不如快速排序和归并排序。
2. 空间复杂度(1)冒泡排序、选择排序和插入排序的空间复杂度均为O(1),属于原地排序算法。
(2)快速排序和归并排序的空间复杂度均为O(n),需要额外的空间来存储临时数组。
(3)希尔排序的空间复杂度也为O(1),属于原地排序算法。
3. 不同数据分布情况下的性能(1)对于基本有序的数据,快速排序和归并排序的性能会受到影响,此时希尔排序的性能较好。
(2)对于含有大量重复元素的数据,快速排序的性能会受到影响,此时插入排序的性能较好。
常用排序算法分析比较

常用排序算法分析比较排序算法是计算机科学中的基本概念之一,它主要用于对一组元素进行排序,使得这些元素按照某种规则有序排列。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等等,这些算法都有自己的特点和适用场景,下面针对这些排序算法进行分析比较。
1.冒泡排序冒泡排序是一种简单的排序算法,它的主要思想是依次比较相邻的两个元素,如果它们的顺序不对就交换它们的位置,可以保证每次循环后最后一个元素是已经排序好的。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
2.插入排序插入排序是一种稳定的排序算法,它的基本思想是将待排序的数据分为两个区间,已排序区间和未排序区间,在未排序区间内遍历,将每个元素插入到已排序区间的合适位置。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
3.选择排序选择排序是一种比较简单的排序算法,它的主要思想是通过不断选择未排序区间内的最小值,然后和未排序区间的第一个元素交换位置,以此类推,直到排序完毕。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
4.快速排序快速排序是一种经典的排序算法,它的思想是采用分治的思想,将序列分为左右两个子序列,通过递归的方式对左右两个子序列进行快速排序,最后合并两个排好序的子序列。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
5.归并排序归并排序是一种稳定的排序算法,它的基本思想是采用分治的思想,将序列分为左右两个子序列,通过递归的方式对左右两个子序列进行排序,最后将两个排好序的子序列合并成一个有序序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
通过比较以上五种排序算法,可以发现每种算法都有自己的特点和适用场景,对于元素数量较少的情况下,可以选择冒泡排序、插入排序或选择排序,这些算法思路简单易懂,实现也比较容易;对于大规模数据排序,可以选择归并排序或快速排序,因为它们的时间复杂度比较优秀。
三大常规语句运行时间排序

三大常规语句运行时间排序
排序算法的运行时间:
可以发现:
归并排序最快,而希尔排序与快速排序也比较快。
1.冒泡排序(Bubble sort)
冒泡排序是最直觉的比较算法了,它的思想是:
将相邻的元素两两比较,若顺序不对则交换顺序,直到没有需要交换的数对为止。
算法复杂度O(n2)O(n2),举例:排序(5 1 4 2)
2.插入排序
基本思想类似于扑克牌的起牌,总是将后一个元素插入到前面有序的数组中。
算法复杂度:O(n2)O(n2)
3.希尔排序
该排序是插入排序的扩展,基本思想是:使数组中任意间隔为hh的元素都是有序的。
算法复杂度为:O(n3/2)O(n3/2)或O(n4/3)O(n4/3),算法复杂度的证明比较复杂,与数列hh的选择有关。
4.归并排序
归并排序的思想是:利用二分法,将一个数组分成两个子数组,对每个子数组分别排序,然后将排序好的子数组合并。
注意:该算法需要一个辅助数组,为了加快运算速度,在分治之前就应该定义初始化好辅助数组,否则在子数组中频繁初始化辅助数组,就会大大增加计算时间。
算法复杂度:O(nlgn)O(nlgn)
注:将一个数组用二分法,共有lgnlgn层,没一层有nn次比较,因此得出该算法复杂度。
5.快速排序
快速排序是java默认的排序算法,其基本思想是:
1.从数列中调出一个元素作为基准;
2.对基准元素左侧与右侧分别扫描,将比基准元素小的放在基准元素左侧,大的放在右侧;
3.基准元素左右两端得到了两个子数列,对子数列重复以上步骤。
其算法复杂度为O(nlg(n))。
排序算法比较

排序算法比较在计算机科学中,排序算法是一类重要且基础的算法。
通过对数据进行排序,我们可以更高效地检索、查找以及分析数据。
在实际应用中,我们经常需要比较不同排序算法的性能和效率,以便选择最适合特定任务的排序算法。
本文将对几种常见的排序算法进行比较。
一、冒泡排序冒泡排序是一种简单但效率较低的排序算法。
其基本思想是通过多次交换相邻的元素,将最大(或最小)的元素逐渐“冒泡”到待排序序列的末尾。
具体实现过程如下:从头开始依次比较相邻的两个元素,如果顺序不正确,则进行交换。
重复此过程,直到没有任何交换发生。
冒泡排序的时间复杂度为O(n^2),其中n为待排序序列的长度。
这使得冒泡排序在大规模数据排序时表现较差。
二、插入排序插入排序是一种简单且高效的排序算法。
它的基本思想是将未排序部分的元素依次插入到已排序部分的正确位置,直到全部元素都有序。
具体实现过程如下:将未排序部分的第一个元素插入到已排序部分中的正确位置,然后再将第二个元素插入到已排序部分中,依此类推。
插入排序的时间复杂度为O(n^2),但在实际应用中,插入排序通常要比冒泡排序快得多。
插入排序对于小规模或基本有序的数据集合表现良好。
三、选择排序选择排序是一种简单但不稳定的排序算法。
其基本思想是从未排序部分选择最小(或最大)的元素,将其放到已排序部分的末尾。
具体实现过程如下:从未排序部分中选出最小的元素,将其与未排序部分的第一个元素交换位置,然后将已排序部分的长度加1。
重复此过程,直到全部元素都有序。
选择排序的时间复杂度为O(n^2),与冒泡排序和插入排序相同。
尽管选择排序的性能较差,但由于其实现简单,对于小规模数据集合仍然是一种可用的排序方法。
四、快速排序快速排序是一种高效的排序算法,常被用作标准库中的排序函数实现。
其基本思想是通过分治的策略将待排序序列划分为较小和较大的两个子序列,然后分别对子序列进行递归排序。
具体实现过程如下:选择一个基准元素,通过一趟排序将待排序序列分割为两部分,使得左边部分的元素都小于等于基准元素,右边部分的元素都大于等于基准元素。
七大基本排序算法

一.七大排序算法基本属性1.稳定性KMP模糊匹配算法二叉树的建立顺序查找:哨兵设置二.七大排序算法()/jingmoxukong/p/4329079.html1.冒泡排序:冒泡排序是一种交换排序。
什么是交换排序呢?交换排序:两两比较待排序的关键字,并交换不满足次序要求的那对数,直到整个表都满足次序要求为止。
算法思想它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端,故名。
假设有一个大小为N 的无序序列。
冒泡排序就是要每趟排序过程中通过两两比较,找到第i 个小(大)的元素,将其往上排。
图-冒泡排序示例图以上图为例,演示一下冒泡排序的实际流程:假设有一个无序序列{ 4. 3. 1. 2, 5 }第一趟排序:通过两两比较,找到第一小的数值1 ,将其放在序列的第一位。
第二趟排序:通过两两比较,找到第二小的数值2 ,将其放在序列的第二位。
第三趟排序:通过两两比较,找到第三小的数值3 ,将其放在序列的第三位。
至此,所有元素已经有序,排序结束。
要将以上流程转化为代码,我们需要像机器一样去思考,不然编译器可看不懂。
假设要对一个大小为N 的无序序列进行升序排序(即从小到大)。
(1) 每趟排序过程中需要通过比较找到第i 个小的元素。
所以,我们需要一个外部循环,从数组首端(下标0) 开始,一直扫描到倒数第二个元素(即下标N - 2) ,剩下最后一个元素,必然为最大。
(2) 假设是第i 趟排序,可知,前i-1 个元素已经有序。
现在要找第i 个元素,只需从数组末端开始,扫描到第i 个元素,将它们两两比较即可。
所以,需要一个内部循环,从数组末端开始(下标N - 1),扫描到(下标i + 1)。
核心代码public void bubbleSort(int[] list) {int temp = 0; // 用来交换的临时数// 要遍历的次数for (int i = 0; i < list.length - 1; i++) {// 从后向前依次的比较相邻两个数的大小,遍历一次后,把数组中第i小的数放在第i个位置上for (int j = list.length - 1; j > i; j--) {// 比较相邻的元素,如果前面的数大于后面的数,则交换if (list[j - 1] > list[j]) {temp = list[j - 1];list[j - 1] = list[j];list[j] = temp;}}}}时间复杂度若文件的初始状态是正序的,一趟扫描即可完成排序。
各种排序方法的综合比较

各种排序方法的综合比较在计算机科学中,排序是一种常见的算法操作,它将一组数据按照特定的顺序重新排列。
不同的排序方法具有不同的适用场景和性能特点。
本文将综合比较几种常见的排序方法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单但效率较低的排序方法。
它通过多次遍历数组,每次比较相邻的两个元素,将较大的元素逐渐“冒泡”到数组的末尾。
冒泡排序的时间复杂度为O(n^2),其中n为待排序元素的数量。
二、选择排序选择排序是一种简单且性能较优的排序方法。
它通过多次遍历数组,在每次遍历中选择最小的元素,并将其与当前位置交换。
选择排序的时间复杂度同样为O(n^2)。
三、插入排序插入排序是一种简单且适用于小规模数据的排序方法。
它通过将待排序元素逐个插入已排序的部分,最终得到完全有序的数组。
插入排序的时间复杂度为O(n^2),但在实际应用中,它通常比冒泡排序和选择排序更快。
四、快速排序快速排序是一种高效的排序方法,它通过分治法将数组划分为两个子数组,其中一个子数组的所有元素都小于另一个子数组。
然后递归地对两个子数组进行排序,最终将整个数组排序完成。
快速排序的平均时间复杂度为O(nlogn),但最坏情况下可能达到O(n^2)。
五、归并排序归并排序是一种稳定且高效的排序方法。
它通过将数组分成两个子数组,递归地对两个子数组进行排序,然后合并两个有序的子数组,得到最终排序结果。
归并排序的时间复杂度始终为O(nlogn),但它需要额外的空间来存储临时数组。
综合比较上述几种排序方法,可以得出以下结论:1. 冒泡排序、选择排序和插入排序都属于简单排序方法,适用于小规模数据的排序。
它们的时间复杂度都为O(n^2),但插入排序在实际应用中通常更快。
2. 快速排序和归并排序都属于高效排序方法,适用于大规模数据的排序。
它们的时间复杂度都为O(nlogn),但快速排序的最坏情况下性能较差,而归并排序需要额外的空间。
关于算法的实验报告(3篇)

第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的时间复杂度和空间复杂度分析。
3. 通过实验验证快速排序算法的效率。
4. 提高编程能力和算法设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。
快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。
在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。
四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。
3. 分析快速排序算法的时间复杂度。
4. 对不同规模的数据集进行测试,验证快速排序算法的效率。
六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。
五种排序算法的性能分析

② 一组 待排 序记 录存 放在 静 态链 表 中 , 录 记
之间 的次 序关 系 由指 针 指示 , 则实 现 排序 不 需要
移动记 录 , 需 移动 指针 即可 . 仅
③ 待排 序 记 录 本 身存 储 在 一 组 地 址 连续 的 存 储单 元 内 , 同时另设 一个 指 示各 个 记 录存 储位
杨 有 (9 5一) 男 , 庆 粱 平 人 , 士 , 教 授 , 要 从 事 数 字 图像 处 理方 面 的研 究 16 , 重 博 副 主 45
认 为按升序 排序 .
记 录 R k 将 它 与无 序 区 的第 1个 记 录 R 0 [ ], [] 交 换 , 有序 区记 录增 加 1 , 序 区记 录减少 1 使 个 无 个; ③第 i 次排 序. 在开始 时 , 当前 有序 区和无 序 区分别 为 R[ , ,] R[ +1 … , 0 … i和 i , n一1 0≤ ](
…
,
n一1 )其存 储 位 置 也 相邻 . 这 种存 储 方式 在
中 , 录之 间 的 次序 关 系 由其 存 储 的位 置 决 定 , 记
排 序 通过移 动 记录来 实 现.
及 的存 储 器 , 可将 排 序 方 法 分 为两 大类 … : 类 一 是 内部排 序 , 的是 待排 序记 录存放 在 计算 机 存 指 储器 中进 行 的排 序 过 程 ; 一类 是 外 部排 序 , 另 指 的是 待排 序记 录 的数量 很大 , 以致 于 内存 一次 不
通 过描 述 冒泡 、 选择 、 入 、 并和 快 速 5种 排 序 算 法 , 结 了它们 的 时 间复 杂 性பைடு நூலகம்和 空 间复 杂 插 归 总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南华大学
计算机科学与技术学院实验报告
(2010 ~2011学年度第二学期)
课程名称算法设计与分析
实验名称比较冒泡排序
与快速排序的时间性能
姓名陈亮学号20094100104 专业数媒班级091
地点8-212 教师刘立
1.实验目的
比较冒泡排序与快速排序的时间性能。
2.实验内容
(1)利用随机数产生函数获取数据;
(2)分别用两种不同的排序方法对数据进行排序;
(3)用记时函数对两张排序算法分别进行记时;
(4)用十组以上数据进行实验(10~10000)。
3.实验过程
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#define MAX 2000 // 元素个数
#define NUM_MAX 100000 // 随机数的最大值+1
int Partition(int a[],int n,int low,int high)//快速寻找分界点{ int pivotkey,t;
pivotkey=a[low];
while(low<high)
{
while(low<high&&a[high]>=pivotkey)
high--;
t=a[low];
a[low]=a[high];
a[high]=t;
while(low<high&&a[low]<=pivotkey)
low++;
t=a[low];
a[low]=a[high];
a[high]=t;
}
return low;
}
void QSort(int a[],int n,int low,int high)//快速排序
{ int pivotloc;
if(low<high)
{
pivotloc=Partition(a,n,low,high);
QSort(a,pivotloc,low,pivotloc-1);
QSort(a,high-pivotloc,pivotloc+1,high);
}
}
void HeapAdjust(int a[],int s,int m)
{
int rc = a[s];
int j=0;
for(j=2*s+1;j<=m;j=j*2+1)
{
if(j<m && a[j] < a[j+1])
++j;
if(rc > a[j])
break;
a[s] = a[j];
s = j;
}
a[s] = rc;
}
void BubbleSort(int a[],int n)//冒泡排序
{ int t,i,j;
for(j=1;j<=n-1;j++)
for(i=1;i<=n-j;i++)
if(a[i-1]>a[i])
{
t=a[i-1];
a[i-1]=a[i];
a[i]=t;
}
}
int main()
{
srand(time(00));
int i,a[MAX];
clock_t begin, end;
double cost;
for(i=0;i<MAX;i++)
a[i]=rand()%NUM_MAX;
begin = clock();
BubbleSort(a,MAX);
end = clock();
cost = (double)(end - begin) / CLOCKS_PER_SEC; printf("冒泡排序用时为:%lf 秒\n", cost);
begin = clock();
QSort(a,MAX,0,MAX-1);
end = clock();
cost = (double)(end - begin) / CLOCKS_PER_SEC; printf("快速排序用时为:%lf 秒\n", cost);
return 0;
}
元素个数为10的结果截图
元素个数为200的结果截图
元素个数为1000的结果截图
元素个数为4000的结果截图
元素个数为6000的结果截图
元素个数为8000的结果截图
元素个数为9000的结果截图
元素个数为9500的结果截图
实验数据表
实验数据曲线图
0.10.20.30.40.50.6
实验结论:从以上数据表和数据曲线图均可以看出,在元素个数比较小的情况下,两者的时间性能区分不是很明显。
但当元素个数比较大的情况下,快速排序的时间性能明显优于冒泡排序的时间性能。
由此可以得出结论:快速排序的时间性能优于冒泡排序的时间性能。
(在实验中遇到了一个问题,就是当元素个数超过9500的时候,只能显示冒泡排序的执行时间,而没有显示快速排序的时间,如截图所示:
现在还是不太理解为什么会出现这种情况)
实验总结:做完这次实验之后,回忆了一下C++的知识,同时也对算法有了新的了解。
在算法的过程中,最重要的是问题求解的方法和过程。
只要了解的这个,大多数问题的解决法案都会有的。