高中数学必修五 等差数列(一)
高中数学必修五-等差数列

等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。
北师大版高中数学必修5同步学案:第1章 等差数列的概念及其通项公式

§2 等差数列2.1 等差数列第1课时等差数列的概念及其通项公式学习目标核心素养1.理解等差数列的概念.(难点)2.掌握等差数列的判定方法.(重点) 3.会求等差数列的通项公式及利用通项公式求特定的项.(重点、难点) 1.通过等差数列概念的学习培养学生的数学抽象素养.2.借助于等差数列的通项公式提升学生的数学运算素养.1.等差数列的概念阅读教材P10~P11例1以上部分,完成下列问题.文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫作等差数列.这个常数称为等差数列的公差,通常用字母d 表示符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列思考:(1)数列{a n}的各项为:n,2n,3n,4n,…,数列{a n}是等差数列吗?[提示] 不是,该数每一项与其前一项的差都是n,不是常数,所以不是等差数列.(2)若一个数列从第二项起每一项与它前一项的差都是常数,这个数列一定是等差数列吗?[提示] 不一定,当一个数列从第二项起每一项与它前一项的差都是同一个常数时,这个数列才是等差数列.如数列:1,2,3,5,7,9,就不是等差数列.2.等差数列的通项公式如果等差数列{a n}的首项为a1,公差为d,那么它的通项公式为a n=a1+(n-1)d.思考:(1)若已知等差数列{a n}的首项a1和第二项a2,可以求其通项公式吗?[提示] 可以,可利用a2-a1=d求出d,即可求出通项公式.(2)等差数列的通项公式一定是n的一次函数吗?[提示] 不一定,当公差为0时,等差数列的通项公式不是n的一次函数,而是常数函数.3.等差数列通项公式的推导如果等差数列{a n}的首项是a1,公差是d,根据等差数列的定义得到a2-a1=d,a3-a2=d,a4-a3=d,…所以a2=a1+d,a 3=a 2+d =a 1+d +d =a 1+2d, a 4=a 3+d =a 1+2d +d =a 1+3d, ……由此归纳出等差数列的通项公式为a n =a 1+(n -1)d .1.等差数列{a n }中a 1=2,公差d =3,则a n =( ) A .2n +1 B .3n +1 C .2n -1D .3n -1D [a n =a 1+(n -1)d =2+3(n -1)=3n -1.] 2.在等差数列{a n }中,a 1=0,a 3=4,则公差d =( ) A .4 B .2 C .-4D .-2B [a 3-a 1=4-0=2d,故d =2.]3.等差数列32,-12,-52,…的第10项为( )A .-372B .-332C .372D .332B [由a 1=32,d =-12-32=-2,得a n =32+(n -1)(-2)=-2n +72.所以a 10=-2×10+72=-332.]4.已知等差数列{a n }中,d =-13,a 7=8,则a 1=________.10 [由a 7=a 1+6d =8且d =-13代入解得a 1=8-6d =8+2=10.]等差数列的判定【例1(1)a n =3-2n ;(2)a n =n 2-n.[解] (1)因为a n +1-a n =[3-2(n +1)]-(3-2n)=-2,是常数,所以数列{a n }是等差数列.(2)因为a n +1-a n =[(n +1)2-(n +1)]-(n 2-n)=2n,不是常数,所以数列{a n }不是等差数列.等差数列的判断方法——定义法等差数列的定义是判断一个数列是否为等差数列的重要依据,要证明一个数列是等差数列,可用a n +1-a n =d(常数)或a n -a n -1=d(d 为常数且n≥2).但若要说明一个数列不是等差数列,则只需举出一个反例即可.[提醒] 当d >0时,等差数列{a n }是递增数列; 当d <0时,等差数列{a n }是递减数列; 当d =0时,等差数列{a n }是常数列.1.若数列{a n }满足a n +1=a n2a n +1,a 1=1,求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.[证明] 由a n +1=a n 2a n +1得1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列.等差数列的通项公式及应用【例2】 (1)求等差数列8,5,2,…的第20项;(2)在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . [解] (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 故a n =8-3(n -1)=11-3n, 则a 20=11-3×20=-49.(2)由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2,故a n =2n.等差数列通项公式的四个应用(1)已知a n ,a 1,n,d 中的任意三个量,可以求出第四个量.(2)由等差数列的通项公式可以求出该数列中的任意项,也可以判断某一个数是不是该数列中的项. (3)根据等差数列的两个已知条件建立关于“基本量”a 1和d 的方程组,求出a 1和d,从而确定通项公式,求出待求项.(4)若数列{a n }的通项公式是关于n 的一次函数或常数函数,则可判断数列{a n }是等差数列.2.(1)等差数列{a n }中,a 2=4,公差d =3,a n =22,求n ;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?[解] (1)由条件知⎩⎪⎨⎪⎧a 1+3=4,a 1+3(n -1)=22,解得a 1=1,n =8;(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的实际应用[1.一种游戏软件的租金,第一天5元,以后每一天比前一天多1元,那么第n(n≥2)天的租金怎样表示?每天的租金数有什么特点?[提示] 每天的租金构成以5为首项,以1为公差的等差数列,a n =5+(n -1)×1=n +4(n≥2). 2.直角三角形三边长成等差数列,你能求出三边的比吗?[提示] 设直角三角形的三边长分别为a,a +d,a +2d(a >0,d >0),则(a +2d)2=a 2+(a +d)2,即a 2-2ad -3d 2=0,解得a =3d,则三边长分别为3d,4d,5d, 故三边长的比为3∶4∶5.【例3】 某市出租车的计价标准为1.2 元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?思路探究:某人需支付的车费构成等差数列,运用等差数列的知识去解决.[解] 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费. 令a 1=11.2,表示4 km 处的车费,公差d =1.2, 那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).即需要支付车费23.2元.1.(变条件)在例3中,若某人乘坐该市的出租车去往18.5 km(不足1 km,按1 km 计费),且一路畅通,等候时间为0,那么,需支付多少车费?[解] 由题意知,当出租车行至18.5 km 处时,n =16,此时需支付车费a 16=11.2+(16-1)×1.2=29.2(元).2.(变结论)在例3中,若某人乘坐该市的出租车去往n km(n ∈ N +)处的目的地,求其需支付的车费a n .[解] 当n ∈{1,2,3}时,a n =10,当n ∈N +,且n≥4时,a n =11.2+(n -4)×1.2=1.2n +6.4.所以a n =⎩⎪⎨⎪⎧10,n ∈{1,2,3},1.2n +6.4,n≥4且n ∈N +.应用等差数列解决实际问题的步骤(1)审题,读懂题意,把握已知条件与求解问题. (2)将实际问题抽象为等差数列模型. (3)利用等差数列解决问题.(4)验证答案是否符合实际问题的意义.1.等差数列的通项公式为a n =a 1+(n -1)d,已知a 1,n,d,a n 这四个量中的三个,可以求得另一个量. 2.等差数列的判定关键是看a n +1-a n (或a n -a n -1(n≥2))是否为一个与n 无关的常数. 3.对于通项公式的理解.a n =a 1+(n -1)d ⇒a n =nd +(a 1-d),所以,当d≠0时,a n 是关于n 的一次函数,一次项系数就是等差数列的公差,当d =0时,等差数列{a n }为常数列:a 1,a 1,a 1,…,a 1,…1.判断正误(正确的打“√”,错误的打“×”) (1)常数列是等差数列.( )(2)-1,-2,-3,-4,-5不是等差数列.( ) (3)若数列{a n }是等差数列,则其公差d =a 7-a 8.( ) [答案] (1)√ (2)× (3)×[提示] (1)正确,(2)不正确,数列-1,-2,-3,-4,-5是公差为-1的等差数列;(3)不正确,公差d =a 8-a 7.2.下列数列是等差数列的是( ) A .13,15,17,19 B .1,3,5,7 C .1,-1,1,-1D .0,0,0,0D [由等差数列的定义知:0,0,0,0是等差数列,选D .] 3.在等差数列{a n }中,a 2=4,a 8=a 6+3,则a 1=________.52 [由已知得⎩⎪⎨⎪⎧a 1+d =4,a 1+7d =a 1+5d +3,解得a 1=52.]4.在等差数列{a n }中,a 5=10,a 12=31,求a 20,a n . [解] 由a 5=10,a 12=31, 得7d =a 12-a 5=21,所以d =3,a 1=a 5-4d =10-4×3=-2. 所以a 20=a 1+19d =-2+19×3=55,a n =a 1+(n -1)d =-2+3(n -1)=3n -5(n ∈N +).。
高中数学必修5等差数列知识点总结和题型归纳

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。
等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。
—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。
≤d<3 D.<d≤36、。
在数列中,,且对任意大于1的正整数,点在直上,则=_____________。
人教版高三数学必修五《等差数列》教案及教学反思

人教版高三数学必修五《等差数列》教案及教学反思一、引言等差数列是高中数学中的重要内容,它在数学中的运用十分广泛。
在教学过程中,我们需要注重培养学生的思维能力和解决问题的能力,让他们能够灵活地运用所学知识,提高数学应用能力。
本文将会介绍人教版高三数学必修五《等差数列》的教学反思和教案。
二、教学反思1. 教学目标通过本次授课,我们的教学目标是:•掌握等差数列的概念,理解等差数列的性质和运用;•能够分析等差数列的通项公式和求和公式,灵活掌握运用;•培养学生的数学思维能力和解决实际问题的能力。
2. 教学内容本次授课的教学内容包括:•等差数列的定义、通项公式和求和公式;•等差数列的性质和运用;•等差中项和等差数列的应用。
3. 教学方法我们采用了多种教学方法,包括:•讲授法:通过精心准备的PPT和示例,向学生讲解等差数列的定义、通项公式和求和公式,并阐述等差数列的性质和运用;•互动式教学法:通过提问、举例和解题过程中的互动讨论,培养学生的思考能力和分析问题的能力;•组织小组讨论:通过小组讨论,让学生自主探索等差数列的应用,培养学生的团队合作精神和创新精神。
4. 教学效果经过本次教学,我们发现学生的数学知识水平有了明显的提高。
在讲解等差数列的性质和运用时,学生能够将数学知识与实际问题结合起来,灵活掌握应用技巧。
在解题过程中,学生能够主动思考和分析问题,掌握解题方法,并能够独立解答一些复杂题目。
三、教案设计1. 教学目标通过本节课的教学,让学生掌握等差数列的相关概念、性质和运用,并能够通过实际问题,灵活运用所学知识,提高数学应用能力。
2. 教学内容和教学步骤:第一步:引入通过实际问题导入,引发学生兴趣,激发学生对等差数列的认识和探索欲望。
第二步:讲授•定义等差数列的概念,并介绍等差数列的通项公式和求和公式。
•阐述等差数列的性质和运用,主要包括公差、项、数列取值等。
•介绍等差中项的概念,引入等差中项的应用。
第三步:练习通过练习巩固所学知识,提高学生的运用能力。
高中数学人教A版必修5《等差数列》PPT课件

一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)
人教版高中数学必修52.2等差数列(一)课件

an a1 (n 1)d
求通项公式的关键步骤:
求基本量a1和d :根据已知条件列方程,由 此解出a1和d ,再代入通项公式。
像这样根据已知量和未知量之间的关系,列出 方程求解的思想方法,称方程思想。 这是数学中的常用思想方法之一。
【课堂小结】
§
探要点·究所然 情境导学
第一届现代奥运会于1896年在希腊雅典举行,此后每4年 举行一次,奥运会如因故不能举行,届数照算.这样举行 奥运会的年份数构成一个数列,这个数列有什么特征呢? 这个数列叫什么数列呢?本节我们就来一起研究这个问 题.
思考1 下面我们来看这样的一些数列: (1)0,5,10,15,20. (2)48,53,58,63. (3)18,15.5,13,10.5,8,5.5. (4)10 072,10 144,10 216,10 288,10 360. 以上四个数列有什么共同的特征?
1. 通过本节学习,第一要理解与掌握等差数列的定义;
2.要会推导等差数列的通项公式,并掌握其基本应用; (方程思想). 3.理解等差数列的初步证明(归纳、叠加法);
4.等差数列与一次函数的关系(数列与函数的关系)。
谢谢观看
探究点二 等差中项
如果三个数x,A,y组成等差数列,那么A叫做x和y的 等差中项,试用x,y表示A.
例2 在-1与7之间顺次插入三个数a,b,c使这五 个数成等差数列,求此数列.
跟踪训练2 若m和2n的等差中项为4,2m和n的等差 中项为5,求m和n的等差中项.
例3 在等差数列{an}中,已知a6=12,a18=36,求通
当堂测·查疑缺
1.已知等差数列{an}的通项公式an=3-2n,则它的公差d 为( )
等差数列教学设计(一课时)

2.2.1《等差数列》教案设计难点理解等差数列“等差”的特点及通项公式的含义环节1 创设情境,提出问题在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:(1)1682,1758,1834,1910,1986,()你能预测出下一次的大致时间吗?主持人问: 最近的时间什么时候可以看到哈雷慧星?天文学家陈丹说: 2062年左右。
学生活动通过情景引出数列,观察发现其规律,通过规律填写内容。
通常情况下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。
(2) 28, 21.5, 15, 8.5, 2, …, -24. 教师活动:提出问题,组织学生解决问题1、你能根据规律在()内填上合适的数吗?(1)、1682,1758,1834,1910,1986,(2062).(2)、28,21.5,15,8.5,2, …,(-24).(3)、1,4,7,10,( 13 ),16.(4)、2, 0, -2, -4, -6,( 8 ).问题2、它们有何共同的规律?(1)d=76 (2)d=-6.5 (3)d=3 (4)d=-2 学生活动通过多个数列观察发现其共同规律,环节二环节三环节等差数列的定义:的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母教师活动:回归问题,组织学生解决问题(1)1, 3, 5, 7, 9,2, 4, 6, 8, 10(2)5(3)环节教师活动:问题驱动问题(((问题a在尝试最终得项公式这一性质。
引导学生推导等差数列的通项公式,并使用方法二再次推导,为学生提供多种推导思路与方法。
dn a a n )1(1-+=叠加的 (累加相消法)等差数列的通项公式:环节5 能力提升例1、(1) 求等差数列8,5,2,…,的第20项。
解:(2)-401是否是等差数列 -5,-9,-13,…,的项?如果是,是第几项 ? 解:因此 解得学生活动教师辅助学生自主完成例题。
《等差数列》说课稿

“等差数列”说课稿说课人:唐小博尊敬的各位评委老师,你们好!今天我说课的内容是人必修五高二上第一章第二节“等差数列”,下面我将从以下五个方面阐述我对本节课的理解和设计。
它们分别是教材分析、教法学法分析、教学过程、以及教学评价。
一、教材分析教材分析主要体现在以下三个方面其一,教材的地位和作用等差数列是高中数学的必修部分,在学习等差数列之前,学生已经学习了数列的概念及其简单的表示方法。
它的学习起着承上启下的作用,为以后学习等比数列和数列的极限打下基础。
除此之外,它在高考中是必考内容,主要以选择题和填空题的形式考查,等差数列的学习利于提高学生用数学去解决实际问题的能力,从而培养学生的数学思维能力,因此有极其重要的地位和作用。
其二,教学重点和难点教学重在过程,重在学生在探索的过程中能够主动认知、建构创造力,使得学生的潜力得以充分发挥。
在吃透教材的基础上,我将重点定为:等差数列的概念和等差数列数学表达式及通项公式的运用。
根据高中学生的年龄特征、思维认知水平的局限性。
我将教学难点定为:使用不完全归纳法推导等差数列的通项公式以及用等差数列解决实际应用问题。
为了突出重点,突破和分散难点,采取的方法是充分发挥教师的主导作用,适时点拨领导,使学生在与他人合作交流中能获得新知识,并使学生个性思维得以发展。
其三,教学目标新课改的精神在于以学生发展为本、能力培养为重。
根据上述教材分析,结合课程标准的课程目标、课程内容、课程要求,以及本节课的内容与结构。
我确定了如下三维教学目标:.(1).知识与技能目标掌握等差数列的概念,了解等差数列的通项,公式的推导过程及思想,初步引入“数学建模”的思想方法并能运用。
(2).过程与方法目标培养学生的知识、方法迁移能力;把研究函数的方法迁移来研究数列,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。
(3).情感态度与价值观目标通过个性化学习,培养学生主动探索、勇于发现、大胆创新的精神;养成细心观察、认真分析、善于总结的良好思维习惯;增强学生学习的自信心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某此系统抽样所抽取的样本号分别是: 7,19,31,43,55,67,79,91,103,115. 某长跑运动员7天里每天的训练量(单位:m)是: 7500,8000,8500,9000,10000,10500.
交流
这三个数列有何共同特征 从第2项起,每一项与其前一项之差等 于同一个常数。 请尝试着给具有上述特征的特殊数列 用数学的语言下定义
a2 a1 d, a3 a2 d, a4 a3 d,
an an1 d
}
n 1个
方法二 叠加法
将所有等式相加得
an a1 (n 1)d
例1 ⑴求等差数列8,5,2,…的第20项. ⑵- 401是不是等差数列-5,-9,-13,…的项?如果是 ,是第几项? 解: ⑴由a1=8,d=5-8=-3,n=20,得 a20=8+(20-1) ×(-3)=-49. ⑵由a1=-5,d =-9-(-5)=-4,得到这个数列的通项公式 为an=-5-4(n-1). 由题意得-401=-5-4(n-1),解这个关于n的方程,得 n=100,即-401是这个数列的第100项.
在过去的三百 多年里,人们 分别在下列时 间里观测到了 哈雷慧星:
相差76
(1)1682,1758,1834,1910,1986,( 2062 )
你能预测出下一次 的大致时间吗?
通常情况下,从地面 到10公里的高空,气 温随高度的变化而变 化符合一定的规律, 请你根据下表估计一 下珠穆朗玛峰峰顶的 温度。
探究
1、等差数列的定义 如果一个数列从第2项起,每一项与其前一项的差 等于同一个常数,那么这个数列就叫做等差数列,这个 常数叫做等差数列的公差,公差通常用字母d表示。 (1)指出定义中的关键词: 从第2项起 每一项与其前一项的差等于同一个常数
an1 an ⑵由定义得等差数列的递推公式:
d (d是常数)
巩固练习 1.等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1, 则 a 等于( ) A. 1 B. -1
提示: (-3a-5 )-(a-6)=(-10a-1) -(-3a-5 ) -35 2. 在数列{a }中a =1,a = a +4,则a =
n 1 n n+1 10
1 C.3
思考:已知等差数列{an}中,a3=9,a9=3,求a12,a3n.
解法一: 依题意得: a1+2d=9 a1 =11
a1+8d=3 解之得 1)=12-n
解法二:
d =-1∴这个数列的通项公式是:an=11- (n故 a12= 0, a 3n = 12 – 3 n.
练一练
a4 15 ,
an a1 (n 1)d
高度(km)
8844.43米
减少6.5
1
2
21.5
3
15
4
8.5
5
2
6
-4.5
7
-11
… …
9
-24
温度(℃) 28
(2) 28, 21.5, 15, 8.5, 2, …, -24.
引入
(观察以下数列)
全国统一鞋号中成年男鞋的各种尺码
(表示鞋底长,单位:cm)分别是: 23 1 , 24, 24 1 , 25, 25 1 , 26, 26 1 , 27, 27 1 , 28, 28 1 , 29, 29 1 , 30. 2 2 2 2 2 2 2
5 D. 11
.
提示: d=an+1- an=-4 3. 在等差数列{an}中a1=83,a4=98,则这个数列有 多少项在300到500之间?40 提示: 300< n=45,46,…,84
2 2 83+5×(n-1)500 44 n 84 5 5
结论
1、已知等差数列的首项与公差,可求得 其任何一项; 2、在等差数列的通项公式中,a1,d,n, an四个量中知三求一.
跟踪训练
在等差数列中, ⑴若a1 2,d 3,n 10,则an 29 .
⑵若a1 3,an 21 ,d 2,则n 10 .
⑶若a1 12,a6 27,则d 3 .
例2
在等差数列{an}中,已知 a5=10,a12=31,求首项a1与公差d .
a1+ 4d = 10 a1+11d=31 这是一个以a1和d 为未知数的二元一次方程组,解之得:
解:由题意得:
a1 = - 2
d=3 ∴这个数列的首项a1是-2,公差d =3.
小结:已知数列中任意两项,可求出首项和公差,主要是联立 二元一次方程组。这种题型有简便方法吗?请同学们思考并做 以下练习。
说明:此公式是判断、证明一个数列是否为等差 数列的主要依据.
练习:判断下列数列中哪些是等差数列, 哪些不是?如果是,写出首项a1和公差d, 如果不是,说明理由。
(1) 1, 1, 1, 1, 1. (2) 4, 7,10,13,16. (3) 3, 2, 1,1, 2,3. (4) 1, 2,3, 4,5, 6. (5) 5,9,13, , 4n 1, .
4、等差数列通项公式的推广
思考:在等差数列{an }中,项an与am有何关系?
解析:由等差数列的通项公式得
an a1 (n 1)d
am a1 (m 1)d
an am (n m)d .
①
②
① - ②得an am (n m)d .
an am 进一步可以得到 d . nm
a4 a3 d (a1 2d ) d a1 3d
由此得到an a1 (n 1)d
(n 2)
当n 1时,上面等式两边均为a1,即等式也成立
等差数列的通项公式为an a1 (n 1)d
2、等差数列的通项公式
思考:已知等差数列{an }的首项为a1,公差为d,求an .
2、等差数列的通项公式
思考:已知等差数列{an }的首项为a1,公差为d,求an . 根据等差数列的定义得到 方法一:不 完全归纳法 a a d, a4 a3 d, a3 a2 d, 2 1
所以a2 a1 d
a3 a2 d (a1 d ) d a1 2d
等差数列(一)
河口一中
DONGYINGSHIHEKOUQUDIYIZHONGXUE
复习
一、数列的定义,通项公式:
按一定次序排成的一列数叫做数列。一般写成 a1,a2,a3 ,… an,… 如果数列{an}的第n项an与n的关系可以用一个 公式来表示,那么这个公式就叫做这个数列的 通项公式。 二、数列的简单表示: 三、给出数列的方法:
⑷若d 1 ,a7 8,则a1 10 . 3
3.等差中项 如果 a, A, b 成等差数列,那么 A 叫做 a 与 b 的 等差中项 . 由等差中项的定义可知, a, A, b 满足关系:
ab b A A a A b 2 A a( 或a 2 A b ) 2 意义:
任意两个数都有等差中项,并且这个等差中项
是唯一的.当 a=b 时,A = a = b .
例3 (1)在等差数列{an}中,是否有
an 1 an 1 an (n 2)? 2
(2)在数列{an}中,如果对于任意的正整数n(n≥2 ),都有
an 1 an 1 an 2
那么数列{an}一定是等差数列吗?
a7 27, a10 39
1. 求等差数列3,7,11,…的第4,7,10项; 2. 100是不是等差数列2,9,16,…中的项 ? 100 2 (n 1) 7 n 15 3. ;
7 -20是不是等差数列0,- 2
,-7…中的项
47 7 20 0 (n 1) n (舍) 7 2
练一练
4. 在等差数列中
(1)已知a4 10, a7 19, 求a1与d .
a1 1, d 3
思考题:第15届现代奥运会于1952年在芬兰赫 尔辛基举行,每4年举行一次。奥运会如因故不 能举行,届数照算。 (1)试写出由举行奥运会的年份构成的数列的 通项公式。 (2)2008年北京奥运会是第几届? (3)2050年举行奥运会吗?