高中数学必修五 第一章教案
高中数学新教材解三角形教案

高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。
人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。
通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。
第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。
通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。
第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。
通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。
第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。
通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。
第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。
通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。
人教A版高中数学《必修5第一章解三角形》单元教材教学分析

第一课时:1.1.1正弦定理
通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
第二课时:1.1.2余弦定理
掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
第三课时:1.2解三角形应用举例(一)
学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语
第四课时:1.2解三角形应用举例(二)
能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题
说明
1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
普通高中数学必修5教案

普通高中数学必修5教案
教学内容:函数的概念和性质
教学目标:学生能够理解函数的概念,掌握函数的性质,能够应用函数解决问题。
教学重点:函数的定义、函数的性质、函数的图像。
教学难点:函数的性质的应用。
教学方法:讲解结合示例,引导学生思考。
教学过程:
一、引入(5分钟)
教师通过提问引入函数的概念,让学生思考函数在日常生活中的应用。
二、讲解函数的定义(10分钟)
教师讲解函数的定义及符号表示,帮助学生理解函数的概念。
三、讲解函数的性质(15分钟)
教师讲解函数的奇偶性、增减性、最值等性质,引导学生思考函数的特点。
四、演示函数的图像(10分钟)
教师通过示例展示函数的图像,让学生理解函数与图像之间的关系。
五、练习与讨论(10分钟)
教师布置练习题让学生巩固所学知识,并讨论解题过程。
六、作业布置(5分钟)
教师布置作业,要求学生完成相关练习。
七、课堂总结(5分钟)
教师总结本节课的重点内容,激励学生继续学习。
评价与展望:本节课通过讲解、示例、练习等方式,帮助学生理解函数的概念和性质,为后续学习奠定基础。
未来将继续引导学生深入理解函数的应用,提高数学解题能力。
高中数学必修五第一章解三角形家教教案(最新整理)

正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.余弦定理:)形式一:,,2___________________a =2_________________b =2_________________c =,,,(角到边的转换)bc 2a c b A cos 222-+=ac 2b c a B cos 222-+=ab2c b a C cos 222-+=absinC=bcsinA=acsinB,S △=))()((c S b S a S S ---=Sr 1212c +,r 为内切圆半径)=R abc 4(R 为外接圆半径).在三角形中大边对大角,反之亦然.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos=sin , sin =cos 2C 2A B +2C 2A B+ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC;、C 成等差数列的充要条件是B=60°;;;)。
7.如图3,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.图38.如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得AB B C D ,并在点测得塔顶的仰角为,求塔高.BCD BDC CD s αβ∠=∠==,,C A θAB本章思维总结1.解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b ;(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角;(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C 。
高中数学正弦定理教案5篇

高中数学正弦定理教案5篇高中数学正弦定理教案篇1一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
即指导学生掌握“观察——猜想——证明——应用”这一思维方法。
学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。
高中数学第一章 数列人教版必修五

第一章数列一、课程要求数列作为一种特殊的函数,是反映自然规律的基本模型。
在本模块中,学生将通过对日常中大量实际问题的分析,建立等差数列和等比数列这两种模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
1、了解数列的概念,概念2、理解等差数列的概念,探索并掌握等差数列的通项公式,体会等差数列的通项公式与一次函数之间的关系。
3、探索并掌握等差数列的前n项和公式,体会等差数列的前n项和公式与二次函数之间的关系。
4、理解等比数列的概念,探索并掌握等比数列的通项公式,体会等比数列的通项公式与指数函数之间的关系。
5、探索并掌握等比数列的前n项和公式,体会等比数列的前n项和公式与指数型函数之间的关系。
6、能在具体的问题情境中,发现数列的等差或等比关系,并能用有关知识解决相应问题。
二、编写意图:1、数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。
2、本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。
编写中表达了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。
3、教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。
4、教材在内容设计上突出了一些重要的数学思想方法。
如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。
5、教材在知识内容设计上,注意了数列与函数、算法、微积分、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。
三、教学内容及课时安排建议。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_28

《秦九韶-海伦公式》教案【教学内容】人教版数学必修五《秦九韶-海伦公式》【教学对象】高一学生【教材分析】本节内容是高中数学必修五的第一章,是阅读与思考部分中的内容,本节课的主要意在引领学生运用所学知识对“秦九韶-海伦公式”进行证明,并进行有效的应用,让同学们从中体会到数学之美。
【知识背景】海伦公式与秦九韶公式古希腊的几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式“如果一个三角形的三边长分别为a,b,c,记那么三角形的面积为:..这一公式称为海伦公式;海伦公式又译作希伦公式、海龙公式、希罗公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式。
中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。
它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。
所以他们想到了三角形的三条边。
如果这样做求三角形的面积也就方便多了。
但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。
“术”即方法。
三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。
相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。
我国南宋时期数学家秦九韶也曾提出利用三角形的三边长求面积的秦九韶公式:.其实这两个公式实质是一致的,聪明的你能够推导出来吗?对比这两个公式,我们发现海伦公式形式漂亮,便于记忆,但是如果一个三角形的三边长是无理数的时候,还是秦九韶公式处理比较方便,现在请您选择适当的公式解决一些问题吧。
【学情分析】高二学生在进入本节课的学习之前,需要熟悉前面已学过的余弦定理、三角形面积公式以及平方差公式和完全平方公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修五第一章教案1.1.1 正弦定理1.1.2 余弦定理1.角度问题1.三角形中的几何计算1.正弦定理和余弦定理-章末归纳提升1.2应用举例距离和高度问题1.1.1 正弦定理高一年级数学备课组(总第课时)主备人:时间:年月日【问题导思】 正弦定理1.如图在Rt △ABC 中,C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,∠A 、∠B 与∠C 的正弦值有怎样的关系?【提示】 ∵sin A =a c ,sin B =b c,∴a sin A =bsin B=c . 又∵sin C =sin 90°=1,∴a sin A =b sin B =csin C .2.对于锐角三角形中,问题1中的关系是否成立? 【提示】 成立. 3.钝角三角形中呢? 【提示】 成立. 1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等.即: asin A =b sin B =csin C.2.三角形中的元素与解三角形 (1)三角形的元素把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素. (2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.(对应学生用书第3页)知识运用 已知两角及一边解三角形例1在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小.【思路探究】 (1)由sin B =12能解出∠B 的大小吗?∠B 唯一吗?(2)能用正弦定理求出边b 吗? (3)怎样求其他边与角的大小? 【自主解答】 ∵sin B =12,∴B =30°或150°,当B =30°时,由A =60°得,C =90°; 当B =150°时,不合题意,舍去. 由正弦定理可得:b sin B =c sin C =asin A .故b =sin B sin A ·a =sin 30°sin 60°×3=3,c =sin C sin A ·a =sin 90°sin 60°×3=2 3.1.解答本题时首先应把已知条件sin B =12进行转化,把问题化归为已知两角及一边解三角形问题,要注意当B =150°时不合题意.2.解决已知两角及一边类型的解题方法是:(1)若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,最后由正弦定理求第三边.(2)若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边.在△ABC 中,c =3,A =75°,B =60°,则b 等于( ) A.322 B.322C.32D.62【解析】 因为A =75°,B =60°,所以C =180°-75°-60°=45°.因为c=3,根据正弦定理得b sin B =c sin C ,所以b =c sin B sin C=3×3222=322.【答案】 A已知两边及一边的对角解三角形例2 在△ABC 中,若c =6,C =π3,a =2.求A ,B ,b .【思路探究】 (1)条件中已知边c 和其对角C ,又知边a ,能否用正弦定理求得A值?(2)求得A 值后,怎样求其他元素? 【自主解答】 由a sin A =csin C ,得sin A =a sin C c =22. ∴A =π4或A =34π.又∵c >a ,∴C >A ,∴只能取A =π4,∴B =π-π3-π4=5π12,b =c sin Bsin C =6·sin5π12sinπ3=3+1.1.解题时由已知条件用正弦定理直接得到的是sin A 的值,由sin A 求A 可能有两种情况,要根据题意进行取舍.2.在△ABC 中,已知a ,b 和角A 时,解的情况如下:角A 为锐角角A 为钝角或直角图形关系式①a =b sin A②a ≥b b sin A <a <b a <b sin Aa >ba ≤b解的个数一解两解无解一解无解(2013·青岛高二检测)在△ABC 中,已知b =30,c =15,C =26°,则此三角形的解的情况是( )∴sin(B +C )=2sin B cos C . ∴sin B cos C -cos B sin C =0, 即sin (B -C )=0,∴B -C =0,即B =C . ∴△ABC 是等腰直角三角形.1.判断三角形的形状,可以从考察三边的关系入手,也可以从三个内角的关系入手,从条件出发,利用正弦定理进行代换、转化,呈现出边与边的关系或求出角与角的关系或大小,从而作出准确判断.2.正弦定理的变形公式:(1)a =2R sin A ,b =2R sin B ,c =2R sin C . (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R.实际题目中,我们是通过以上两个变形公式完成边化角和角化边的.(2013·淄博高二期中)已知a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,且a cos A =b cos B ,则△ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰三角形或直角三角形【解析】 由正弦定理,已知条件可以变形为sin A cos A =sin B cos B ,所以sin 2A =sin 2B ,故2A =2B 或2A +2B =π,即A =B 或A +B =π2,△ABC 为等腰三角形或直角三角形.易错专练 解三角形时忽视大边对大角致误在△ABC 中,已知A =45°,a =2,b =2,求B . 【错解】 ∵a sin A =bsin B ,∴sin B =b sin A a =2sin 45°2=12, ∴B =30°或150°.1.1.2余弦定理高一年级数学备课组(总第课时)主备人:时间:年月日【自主解答】 (1)法一 cos 15°=cos(45°-30°)=6+24,sin 15°=sin(45°-30°)=6-24. 由余弦定理,得c 2=a 2+b 2-2ab cos C =4+8-22×(6+2)=8-43, ∴c =6- 2.又b >a ,∴B >A ,∴角A 为锐角. 由正弦定理,得sin A =a csin C =26-2×6-24=12. ∴A =30°,∴B =180°-A -C =180°-30°-15°=135°. 法二 cos 15°=cos(45°-30°)=6+24, 由余弦定理,得c 2=a 2+b 2-2ab cos C =4+8-22×(6+2)=8-43,∴c =6- 2.∴cos A =b 2+c 2-a 22bc =32.又0°<A <180°,∴A =30°,∴B =180°-A -C =180°-30°-15°=135°. (2)法一 由余弦定理知b 2=a 2+c 2-2ac cos B ,∴2=3+c 2-23·22c , 即c 2-6c +1=0,解得c =6+22或c =6-22. 当c =6+22时,由余弦定理得cos A =b 2+c 2-a 22bc =2+6+222-32×2×6+22=12.∵0°<A <180°,∴A =60°,∴C =75°.当c =6-22时, 由余弦定理得cos A =b 2+c 2-a22bc=2+6-222-32×2×6-22=-12.∴A =120°,C =15°. 法二 由正弦定理知sin A =a sin Bb =3sin 45°2=32. ∵a =3>2=b ,∴A 有两解.∴A =60°或120°.当A =60°时,C =75°,这时c =a sin Csin A=3×6+2432=6+22.当A =120°时,C =15°,这时c =a sin Csin A=3×6-2432=6-22.1.本题的两小题均为已知两边及一角解三角形.但(1)中角为夹角;(2)中角为已知边的对角,故解法不同,解题时应注意体会解法.2.已知两边及其中一边的对角解三角形的方法:(1)先由正弦定理求出另一条边所对的角,用三角形的内角和定理求出第三角,再用正弦定理求出第三边.要注意判断解的情况.(2)用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长.这样可免去取舍解的麻烦.若把本例(2)条件改为“b =3,c =33,B =30°”,试解此三角形. 【解】 法一 由余弦定理b 2=a 2+c 2-2ac cos B , 得32=a 2+(33)2-2a ×33×cos 30°, ∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理sin A =a sin Bb =6×123=1.∵0<A <180°,∴A =90°,C =60°.法二 由b <c ,B =30°,b >c sin 30°=33×12=332知本题有两解.由正弦定理sin C =c sin B b =33×123=32,∴C =60°或120°.当C =60°时,A =90°,由勾股定理a =b 2+c 2=32+332=6,当C =120°时,A =30°,△ABC 为等腰三角形,则a =3. 故a =3或6. 已知三边解三角形在△ABC 中,a ∶b ∶c =3∶5∶7,求其最大内角. 【思路探究】 (1)由a ∶b ∶c =3∶5∶7,如何设出三边的长度?(2)最大内角应该是哪条边所对的角?能否用余弦定理求解?【自主解答】 由于a ∶b ∶c =3∶5∶7,不妨设a =3k ,b =5k ,c =7k (k >0).因此c 边是最大边,其所对角C 为最大内角.由余弦定理推论得:cos C =a 2+b 2-c 22ab =9k 2+25k 2-49k 22·3k ·5k =-12,∴C =120°, 即最大内角为120°.1.本题已知的是三边的关系,设出三边的大小是解题的关键.2.已知三边解三角形的方法:先用余弦定理求出一个角,再用正弦定理或余弦定理求出另一角,最后用三角形的内角和定理求第三角.(2013·洛阳高二检测)边长为5,7,8的三角形中,最大角与最小角之和为( )A .90°B .120°C .135°D .150° 【解析】 设边长为5、7、8的对角分别为A 、B 、C . 则A <B <C .由题意cos B =52+82-722×5×8=12.∴cos(A +C )=-cos B =-12,∴A +C =120°.【答案】 B 判断三角形的形状在△ABC 中,(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试判断△ABC 的形状.【思路探究】 可以先利用三边之间的数量关系式,应用余弦定理求A ,再应用三角公式求出另外两角,进而判断△ABC 的形状.【自主解答】 因为(a +b +c )(b +c -a )=3bc ,所以a 2=b 2+c 2-bc ,由余弦定理有a 2=b 2+c 2-2bc cos A ,所以cos A =12,即A =60°.又因为sin A =sin(B +C )=sin B cos C +cos B sin C ,且sin A =2sin B cosC ,所以sin B cos C =cos B sin C ,即sin(B -C )=0,所以B =C , 又因为A =60°,所以B +C =180°-A =120°,即B =C =60°, 故△ABC 为等边三角形.1.利用三角形的边角关系判断三角形的形状时,需要从“统一”入手,即使用转化思想解决问题.一般有两条思考路线:①化边为角,再进行三角恒等变换,求出三角之间的数量关系.②化角为边,再进行代数恒等变换,求出三边之间的数量关系.2.判断三角形的形状时,经常用到以下结论:①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2. ②△ABC 为锐角三角形⇔a 2+b 2>c 2且b 2+c 2>a 2且c 2+a 2>b 2. ③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2. ④若sin 2A =sin 2B ,则A =B 或A +B =π2.在△ABC 中,若a cos A +b cos B =c cos C .试判断△ABC 的形状. 【解】 由余弦定理可得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac =c ·a 2+b 2-c 22ab,等式两边同乘以2abc ,得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)=c 2(a 2+b 2-c 2),整理化简得a 4+b 4-2a 2b 2=c 4, ∴(a 2-b 2)2=c 4.因此有a 2-b 2=c 2或b 2-a 2=c 2,即a 2=b 2+c 2或b 2=a 2+c 2,故△ABC 是以A (或B )为直角的直角三角形.正余弦定理的综合应用(12分)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sinB +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B .【思路点拨】 (1)由已知条件用正弦定理替换变形,找到a ,b 的关系. (2)用余弦定理求cos B 的值进而求B .【规范解答】 (1)由正弦定理,得a sin B =b sin A , 所以b sin 2A +b cos 2A =2a ,所以b a= 2.6分 (2)由余弦定理及c 2=b 2+3a 2,得cos B =1+3a2c.8分由(1)知b 2=2a 2,故c 2=(2+3)a 2,所以cos 2B =12.10分又cos B >0,故cos B =22,∴B =45°.12分在三角形中,正、余弦定理可以实现边角转化,通过正、余弦定理就搭建起了边和角关系的桥梁,结合三角知识,既可以求边也可以求角.巩固练习:1.三角形的两边AB 、AC 的长分别为5和3,它们的夹角的余弦值为-35,则三角形的第三边长为( )A .52B .213C .16D .4【解析】 由条件可知cos A =-35,则BC 2=AB 2+AC 2-2AB ·AC ·cos A=52+32-2×5×3×(-35)=52,∴BC =213.【答案】 B2.(2013·青岛高二期中)在△ABC 中,若a =10,b =24,c =26,则最大角的余弦值是( )A.1213 B.513 C .0 D.23【解析】 ∵c >b >a ,∴c 所对的角C 为最大角.由余弦定理得cos C =a 2+b 2-c 22ab=0. 【答案】 C 3.在△ABC 中,若a 2-c 2+b 2=ab ,则cos C =________.1角度问题高一年级数学备课组(总第课时)主备人:时间:年月日方位角与方向角【问题导思】课上,老师让同学们画148°的方位角,有二位同学提出疑问,甲说:老师的说法不对,应具体说出148°角是哪个方向偏哪个方向的角度,如南偏东148°.乙说:方位角应该小于90°,不应该为148°.你认为老师说法正确吗?二位同学产生疑问的原因是什么?【提示】老师说法是正确的.二位同学产生疑问的原因是混淆了方位角与方向角的概念.图1-2-171.方位角:从指北方向顺时针方向转到目标方向线所成的水平角.如点B的方位角为α°(如图1-2-17).方位角的取值范围:0°~360°. 2.方向角:从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.俯角、仰角与坡角(1)仰角和俯角是指与目标视线在同一铅垂平面内的水平视线与目标视线的夹角,目标视线在水平视线上方时叫做仰角,目标视线在水平视线下方时叫做俯角.如图1-2-18,仰角为∠1,俯角为∠2.图1-2-18(2)坡角是指斜坡所在平面与水平面的夹角.坡度(坡比)是指坡面的垂直高度和水平宽度的比.确定航向的角度问题一艘海轮从A出发,沿北偏东75°的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32°的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01 n mile)图1-2-19【思路探究】 (1)如图AB ,BC 已知,只要求出它们的夹角ABC 就可以用余弦定理求出AC ,∠ABC 怎样求?(2)∠CAB 怎样求?若求出∠CAB ,航向该怎样表示?【自主解答】 在△ABC 中,∠ABC =180°-75°+32°=137°,根据余弦定理,AC =AB 2+BC 2-2AB ×BC ×cos ∠ABC=67.52+54.02-2×67.5×54.0×cos 137°≈113.15.由正弦定理,得BCsin ∠CAB =ACsin ∠ABC, sin ∠CAB =BC sin ∠ABCAC=54.0×sin 137°113.15≈0.3255,所以∠CAB =19.0°,75°-∠CAB =56.0°.答:此船应该沿北偏东56.0°的方向航行,需要航行113.15 n mile.1.本题中由于A 、C 均为固定点,故所求航向是确定的,只要解出∠CAB 的大小,可用方向角表示出来.2.在解三角形问题中,求某些角的度数时,最好用余弦定理求角.因为余弦函数在(0,π)上是单调递减的,而正弦函数在(0,π)上不是一一对应,一个正弦值可以对应两个角.但角在(0,π2]上时,用正、余弦定理皆可.如图1-2-20所示,从A 到B ,方位角是50°,距离是470 m ,从B 到C ,方位角是80°,距离是860 m ,从C 到D ,方位角是150°,距离是640 m ,试计算从A 到D 的方位角和距离.图1-2-20【解】 连接AC ,在△ABC 中,∠ABC =50°+(180°-80°)=150°,由余弦定理,得AC =AB 2+BC 2-2AB ·BC cos 150°≈1 289 m,由正弦定理,得sin ∠BAC =BC sin ∠ABC AC ≈860sin 150°1 289≈0.333 6, ∴∠BAC ≈19.5°,∴∠ACB ≈10.5°.在△ACD 中,∠ACD ≈80°-10.5°+30°=99.5°.由余弦定理,得AD =AC 2+CD 2-2AC ·CD cos ∠ACD ≈1 531 m. ∴cos ∠CAD =AC 2+AD 2-CD 22AC ·AD≈0.911 1, ∴∠CAD ≈24.3°.∴从A 到D 的方位角为50°+19.5°+24.3°=93.8°.即从A 到D 的方位角约为93.8°,距离约为1 531 m.不确定航向的角度问题某渔船在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°,距离A 为10海里的C 处,并测得渔船正沿方位角为105°的方向,以10海里/时的速度向小岛B 靠拢,我海军舰艇立即以103海里/时的速度前去营救,求舰艇的航向和靠近渔船所需的时间.【思路探究】 (1)你能否根据题意画出图形?(2)舰艇与渔船在何处相遇?相遇时有怎样的等量关系?【自主解答】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t ,在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,可得:(103t )2=102+(10t )2-2×10×10t cos 120°.整理得:2t 2-t -1=0,解得t =1或t =-12(舍去), 所以舰艇需1小时靠近渔船,此时AB =103,BC =10.在△ABC 中,由正弦定理得:BC sin ∠CAB =AB sin 120°, ∴sin ∠CAB =BC ·sin 120°AB =10×32103=12. ∴∠CAB =30°.所以舰艇航行的方位角为75°.1.本题欲求方位角,先求边长,而要求边长,需先求时间,由于舰艇与渔船同时在移动,故相遇点不确定,即舰艇的航向不确定,解题时画图的关键是设出相遇点B ,画出可以求解的三角形.2.解决这类问题首先明确题中所给各个角的含义,然后分析题意,根据题意画出正确的示意图,将实际问题转化为数学问题,运用正弦定理或余弦定理求解.体现了数形结合与方程的数学思想方法.在甲船A 处观察到乙船在它的北偏东60°方向的B 处,两船相距a 海里,乙船正向北行驶,若甲船速度是乙船速度的3倍,问甲船应取什么方向前进才能在最短时间内追上乙船?此时乙船行驶了多少海里?【解】 设甲船沿直线与乙船同时到C 点,则A 、B 、C 构成△ABC ,如图,设乙船速度为v ,则甲船速度为3v ,到达C处用时为t .由题意BC =vt ,AC =3vt ,∠ABC =120°.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 120°,∴3v 2t 2=a 2+v 2t 2+avt . ∴2v 2t 2-avt -a 2=0,解得vt =-a2(舍去)或vt =a . ∴BC =a , 在△ABC 中AB =BC =a ,∴∠BAC =∠ACB =30°. 60°-30°=30°.即甲船应取北偏东30°的方向去追乙船,此时乙船行驶了a 海里. 易错辨析题:应用正余弦定理时出现增根致误图1-2-21某观测站C 在A 城的南偏西20°方向上,由A 城出发的一条公路走向是南偏东40°.在C 处测得公路上距C 为31 km 的B 处有一人正沿公路向A 城走去,走了20 km 后到达D 处,此时CD 间的距离为21 km ,则这人还要走多远才可到达A 城?【错解】 如题图所示,∠CAD =60°,在△BCD 中,由余弦定理,得:cos B =BC 2+BD 2-CD 22BC ·BD =312+202-2122×31×20=2331. 所以sin B =1-cos 2B =12331. 在△ABC 中,AC =BC sin B sin ∠BAC=24(km). 在△ACD 中,由余弦定理,得:CD 2=AC 2+AD 2-2AC ·AD cos ∠CAD ,即212=242+AD 2-24AD . 所以AD =15或AD =9,即这人还要走15 km 或9 km 才能到达A 城.【错因分析】 余弦定理中线段都带着平方,故求值时会出现两个值,未检验解是否合题意,导致了错误.【防范措施】 求解应用题一定要注意验根,看是否符合题意或符合实际问题.【正解】 设∠ACD =α,∠CDB =β,在△CBD 中,由余弦定理,得:cos β=BD 2+CD 2-CB 22BD ·CD =202+212-3122×20×21=-17. 所以sin β=437. 所以sin α=sin(β-60°)=sin βcos 60°-sin 60°cos β=437×12+32×17=5314. 在△ACD 中,由正弦定理,得CD sin 60°=ADsin α,所以AD =21×sin αsin 60°=15(km). 即这人还要走15 km 才可以到达A 城.巩固练习:图1-2-221.对右图正确的描述应为( ) A .东偏北α° B .东北方向α° C .北偏东α°【答案】 C2.已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°【解析】 如图,由题意,知AC =BC ,∠ACB =80°,∴∠CBA =50°,α+∠CBA =60°.∴α=10°,即A 在B 的北偏西10°.【答案】 B3.△ABC 中,a =4,b =5,c =7,则cos C =( )A .-15 B.15C.79D.45【解析】 cos C =a 2+b 2-c 22ab =-840=-15. 【答案】 A4.一船向正北匀速行驶,看见正西方两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,求该船的速度.【解】 如图,B ,C 为两灯塔,行驶半小时后船从A 到达D ,由∠ADC =75°,∠ADB =60°,∴∠BCD =∠BDC =15°.∴BD =BC =10,∴AD =10×cos 60°=5.设船速为x ,则12x =5,即x =10(海里/小时).课堂小结:1.测量角度问题是指无法直接用量角器和测角仪测量角度的求解问题.在实际生活中,要测量角的大小,求三角形中角度的大小,求不能直接测得的角,求轮船航行时航速与航向等问题都可以结合正、余弦定理,通过解三角形解决.2.在解决与角度有关的题目时,要搞清仰角、俯角、坡角、方位角和方向角的含义,合理的构造三角形把实际问题转化为数学问题加以解决.布置作业:1.三角形中的几何计算高一年级数学备课组(总第课时)主备人:时间:年月日教学过程:步骤、内容、教学活动【问题导思】三角形的面积公式如图,在△ABC 中,边BC 、CA 、AB 上的高分别记为h a ,h b 和h c .1.你能用△ABC 的边角分别表示h a ,h b ,h c 吗?【提示】 h a =b sin C =c sin B . h b =c sin A =a sin C . h c =b sin A =a sin B .2.你能用边a 与高h a 表示△ABC 的面积吗?【提示】 S △ABC =12ah a =12ab sin C =12ac sin B . 已知△ABC 中,a ,b ,c 所对的角分别为A ,B ,C ,其面积为S ,则:S =12ab sin C =12bc sin A =12ca sin B例题讲解: 三角形中的面积计算△ABC 中,已知C =120°,AB =23,AC =2,求△ABC 的面积.【思路探究】 (1)AB 、AC 是不是C 的两夹边?(2)要使用三角形的面积公式应求哪个角?怎样求?【自主解答】 由正弦定理AB sin C =AC sin B , ∴sin B =AC sin C AB =2sin 120°23=12. 因为AB >AC ,所以C >B , ∴B =30°,∴A =30°.所以△ABC 的面积S =12AB ·AC ·sin A =12·23·2·sin 30°= 3.由于三角形的面积公式有三种形式,实际使用时要结合题目的条件灵活运用;如果已知两边及其夹角可以直接求面积,否则先用正、余弦定理求出需要的边或角,再套用公式计算.(2013·蒙阴高二检测)在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的长为________. 【解析】 由S △ABC =32,得12AB ·AC sin A =32,即12×2AC ×32=32, ∴AC =1.由余弦定理得 BC 2=AB 2+AC 2-2AB ·AC ·cos A=22+12-2×2×1×12=3. ∴BC = 3.【答案】 3三角形中的证明问题在△ABC 中,求证:a (sin B -sin C )+b (sin C -sin A )+c (sin A -sin B )=0.【思路探究】 去掉括号再考虑用正弦定理求解.【自主解答】 由正弦定理a sin A =b sin B =csin C , 则a sin B =b sin A ,a sin C =c sin A ,b sin C =c sin B ,所以左边=a sin B -a sin C +b sin C -b sin A +c sin A -c sin B =(a sin B -b sin A )+(b sin C -c sin B )+(c sin A -a sin C ) =0+0+0=0=右边,所以原式成立.1.证明本题的关键在于充分借助正、余弦定理实现边角互化.2.恒等式证明通常采用以下三种方法:(1)从等式的左边证到右边;(2)从等式的右边证到左边;(3)对等式的两边同时变形,化为同一个式子.方法的选择原则是从复杂的一边证明到简单的一边.3.证明过程中,要注意三角函数和、差、倍角公式的灵活运用.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b.求证sin C sin A=2. 【证明】 由正弦定理,设a sin A =b sin B =c sin C =k , 则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B, 所以cos A -2cos C cos B =2sin C -sin A sin B, 即(cos A -2cos C )sin B =(2sin C -sin A )cos B .化简可得s in(A +B )=2sin(B +C ),又A +B +C =π,所以sin C =2sin A ,因此sin C sin A=2. 三角形中的综合问题(2013·黄冈高二检测)△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,若a 、b 、c 成等比数列且cos B =35.(1)求cos A sin A +cos C sin C的值;(2)设BA →·BC →=3,求a +c 的值. 【思路探究】 (1)结合已知条件,用正弦定理与三角恒等公式求值.(2)用余弦定理解决.【自主解答】 (1)由已知b 2=ac ,及正弦定理得sin 2B =sin A sin C ,由cos B =35,则sin B =45. cos A sin A +cos C sin C =sin C cos A +cos C sin A sin A sin C =sin A +C sin A sin C =sin B sin A sin C =1sin B =54. (2)由BA →·BC →=3,得ac cos B =3,ac =3cos B=5, 由余弦定理:b 2=a 2+c 2-2ac ×35,得ac =a 2+c 2-65ac , a 2+c 2+2ac =215ac =21,∴(a +c )2=21.∴a +c =21.1.本题体现了正、余弦定理在三角形中的综合应用.解答本类综合问题时,还常常用到同角三角函数的基本关系和三角恒等变换公式.2.以下结论也常常用到: (1)A +B =π-C ,A +B 2=π2-C2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边. (4)三角形内的诱导公式sin(A +B )=sin C ,cos(A +B )=-cos C , tan(A +B )=-tan C (C ≠π2),sinA +B2=cos C 2,cos A +B 2=sin C 2.△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且2b ·cos A =c ·cos A +a ·cosC ,(1)求A 的大小;(2)若a =7,b +c =4,求△ABC 的面积. 【解】 (1)由已知条件得2cos A sin B =sin A cos C +cos A sin C =sin(A +C )=sin B . 又∵sin B ≠0,∴cos A =12.又∵0°<A <180°,∴A =60°. (2)由余弦定理得 7=b 2+c 2-2bc ·cos 60° =b 2+c 2-bc =(b +c )2-3bc , 将b +c =4代入,得bc =3故△ABC 面积为S =12bc sin A =334.解三角形中的函数思想(12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,设S为△ABC 的面积,满足S =34(a 2+b 2-c 2). (1)求角C 的大小; (2)求sin A +sin B 的最大值.【解析】 由12bc sin A =2203,∴c =55.又a 2=b 2+c 2-2bc cos A =2 401.∴a =49. 【答案】 D3.边长为a 的等边三角形的高为________. 【解析】 高h =a sin 60°=32a . 【答案】32a 4.已知△ABC 中,AB =3,BC =13,AC =4,求AC 边上的高. 【解】 设AC 边上的高为h ,由余弦定理知 cos B =32+132-162×3×13=1313,∴sin B =23913,∴S =12×3×13×23913=332×2=3 3.又S =12×4×h ,∴2h =33,∴h =332,∴AC 边上的高为332.课堂小结:1.对于三角形中的几何计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理和余弦定理算出需要的元素,就可以求出三角形的面积.证明三角恒等式的关键是用正、余弦定理实现边角转化.2.许多问题既可用正弦定理也可用余弦定理解决,甚至可以两者兼用,当一个公式求解受阻时要及时考虑其他公式列式.3.解三角形问题除了应用正、余弦定理外,也经常用到内角和定理以及1.正弦定理和余弦定理-章末归纳提升高一年级数学备课组(总第课时)主备人:时间:年月日.利用正、余弦定理解三角形在△ABC 中,a =4,A =60°,当b 满足下列条件时,解三角形: (1)b =433;(2)b =22+263;(3)b =833;(4)b =8.【思路点拨】 已知两边和其中一边的对角解三角形,可以用正弦定理,也可以用余弦定理解决,解题时一定要准确判断解的情况.【规范解答】 (1)∵a >b ,∴B 为锐角,由正弦定理,sin B =b a sin A =12,∴B =30°,C =90°,由正弦定理c =a sin A ·sin C =833.(2)由正弦定理sin B =b a ·sin A =22+2634×32=6+24,当B 为锐角时B =75°,C =45°.由正弦定理c =a sin A ·sin C =463,当B 为钝角时B =105°,C =15°,由正弦定理c =a sin A ·sin C =22-263.(3)法一 由正弦定理sin B =ba·sin A =1, ∴B =90°,C =30°,由正弦定理c =a sin A ·sin C =433.法二 设第三边长为c ,由余弦定理a 2=b 2+c 2-2bc cos A , ∴16=643+c 2-833c ,即c 2-833c +163=0.∴(c -433)2=0, ∴c =433,由正弦定理sin C =c a ·sin A =12.∵a >c ,∴C 为锐角,∴C =30°,B =90°. (4)由正弦定理sin B =b a·sin A =3>1,无解.已知a =5,b =53,A =30°,解三角形. 【解】 由题可知,a <b ,A =30°<90°,∵b sin A =53×12=532,∴a >b sin A ,∴本题有两解.由正弦定理,得sin B =b sin A a =53×125=32,∴B =60°或B =120°. 当B =60°时,C =90°,c =a sin C sin A =512=10. 当B =120°时,C =30°,c =a =5.综上,B =60°,C =90°,c =10或B =120°,C =30°,c =5. 正、余弦定理在三角形中的综合应用正弦定理、余弦定理是平面几何中的重要定理,应用极为广泛,它将三角形的边和角有机地联系了起来.正弦定理、余弦定理不但为求与三角形有关的量,如面积、内切圆半径、外接圆半径等提供了理论基础,而且是判断三角形的形状、证明三角形中有关等式的重要依据.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A=(2b +c )sin B +(2c +b )sin C .求角A 的大小.【思路点拨】 根据正弦定理,把已知中的角转化成边再求解. 【规范解答】 ∵2a sin A =(2b +c )sin B +(2c +b )·si n C , 由正弦定理,得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .又由余弦定理,得a 2=b 2+c 2-2bc cos A ,∴cos A =b 2+c 2-a 22bc =-12.∵0<A <π, ∴A =2π3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab .(1)求sin C sin A 的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.【解】 (1)由正弦定理,设a sin A =b sin B =csin C =k (k >0),则2c -a b =2k sin C -k sin A k sin B =2sin C -sin Asin B. 所以cos A -2cos C cos B =2sin C -sin A sin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B . 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A . 因此sin Csin A=2.(2)由sin C sin A=2,得c =2a .由余弦定理及cos B =14,得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2.所以b =2a .又a +b +c =5,从而a =1,因此b =2.正弦定理和余弦定理的实际应用正弦定理、余弦定理在实际生活中有着非常广泛的应用.常见的有测量距离问题,测量高度问题,测量角度问题等.解决的基本思路是画出正确的示意图,把已知量和未知量标在示意图中(目的是发现已知量与未知量之间的关系),最后确定用哪个定理转化,用哪个定理求解,并进行作答,解题时还要注意近似计算的要求.已知海岛A 四周8海里内有暗礁,有一货轮由西向东航行,望见岛A 在北偏东75°,航行202海里后,见此岛在北偏东30°,若货轮不改变航向继续前进,有无触礁危险?【思路点拨】 由题意图出图形,把实际问题转化为数学问题,用解三角形的方法解决.【规范解答】 如图所示,在△ABC 中,依题意得BC =202(海里),∠ABC =90°-75°=15°, ∠BAC =60°-∠ABC =45°.由正弦定理,得AC sin 15°=BCsin 45°,所以AC =202sin 15°sin 45°=10(6-2)(海里).故A 到航线的距离为AD =AC sin 60°=10(6-2)×32=(152-56)(海里).因为152-56>8,所以货轮无触礁危险.如图1-1是曲柄连杆机结构的示意图,当曲柄CB 绕C 点旋转时,通过连杆AB 的传递,活塞作往复运动,当曲柄在CB 0位置时,曲柄和连杆成一条直线,连杆的端点A 在A 0处.设连杆AB 长为340 mm ,曲柄CB 长为85 mm ,曲柄自CB 0按顺时针方向旋转80°,求活塞移动的距离(连杆的端点A 移动的距离A 0A ).(精确到1 mm)图1-1【解】 在△ABC 中,由正弦定理,得sin A =BC sin C AB =85×sin 80°340≈0.246 2.∵BC <AB ,∴A 为锐角,得A ≈14°15′.∴B =180°-(A +C )≈180°-(14°15′+80°)=85°45′. 由正弦定理,得AC =AB sin B sin C ≈340×sin 85°45′0.984 8≈344.3(mm). ∴AA 0=A 0C -AC =(AB +BC )-AC ≈(340+85)-344.3=80.7≈81(mm), 即活塞移动的距离约为81 mm.转化与化归思想转化与化归思想用于研究、解决数学问题时思维受阻或寻求简单方法的情况下,把一种状况转化为另一种状况,也就是转化为另一种情境,使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.本章主要是综合运用正、余弦定理解决较为复杂的与解三角形有关的问题,在判断三角形的形状的问题中,利用边、角之间的转化与化归的方法是解决这类问题的基本思路.已知△ABC 中,a 3+b 3-c 3a +b -c=c 2,且a cos B =b cos A ,试判断△ABC 的形状.【思路点拨】 转化第一个已知条件,应用余弦定理求C .转化第二个已知条件,应用正弦定理判断△ABC 的形状.【规范解答】 由a 3+b 3-c 3a +b -c=c 2,得a 3+b 3-c 3=c 2(a +b )-c 3, ∴a 2+b 2-ab =c 2,∴cos C =12,∴C =60°. 由a cos B =b cos A ,得2R sin A cos B =2R sin B cos A (R 为△ABC 外接圆的半径),∴sin(A -B )=0,∴A -B =0,∴A =B =C =60°,∴△ABC 为等边三角形.在△ABC 中,已知3b =23a sin B ,且cos B =cos C ,角A 是锐角,则△ABC的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形【解】 由3b =23a sin B ,得bsin B =23a 3, 根据正弦定理,得b sin B =asin A,1.2应用举例距离和高度问题高一年级数学备课组(总第课时)主备人:时间:年月日1.定义:在测量上,根据测量需要适当确定的线段叫做基线. 2.性质:在测量过程中,要根据实际需要选取合适的基线长度,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高测量中的有关概念1.坡角坡面与水平面的夹角,如图1-2-1所示,α为坡角.图1-2-12.坡比坡面的铅直高度与水平宽度之比,即i =h l=tan α,如图1-2-1所示.3.仰角和俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1-2-2所示).图1-2-24.铅直平面:铅直平面是指水平面垂直的平面.【例题讲解】 求两点间可视但不可到达的距离问题图1-2-3如图1-2-3,在河岸边有一点A ,河对岸有一点B ,要测量A ,B 两点的距离,先在岸边取基线AC ,测得AC =120 m ,∠BAC =45°,∠BCA =75°,求A ,B 两点间的距离.【思路探究】(1)AC 的对角∠ABC 是多少度?(2)能用正弦定理求出AB 的长度吗?【自主解答】在△ABC 中,AC =120,A =45°,C =75°则B =180°-(A +C )=60°,由正弦定理,得AB =AC sin C sin B =120sin 75°sin 60°=20(32+6). 即A ,B 两点间的距离为20(32+6)m.如图所示,设A (可到达),B (不可到达)是地面上两点,要测量A ,B 两点之间的距离,步骤是:(1)取基线AC (尽量长),且使AB ,AC 不共线;(2)测量AC ,∠BAC ,∠BCA ;(3)用正弦定理解△ABC ,得AB =AC sin C sin B =AC sin C sin 180°-A -C.图1-2-4如图1-2-4,为了开凿隧道,要测量隧道上D ,E 间的距离,为此在山的一侧选取适当点C ,测得CA =400 m ,CB =600 m ,∠ACB =60°,又测得A ,B 两点到隧道口的距离AD =80 m ,BE =40 m(A ,D ,E ,B 在一条直线上),计算隧道DE 的长.(精确到1 m)。