九年级下数学月考试卷
浙江杭州萧山区2024年九年级10月月考数学试卷

2024年(下)九年级10月份数学“独立作业”考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷I (选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷I 的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹的钢笔或签字笔写在答题纸的相应位置上.3.请用黑色字迹的钢笔或签字笔在答题纸上先填写姓名和准考证号.4.本次考试不得使用计算器.卷Ⅰ一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线22y x =−−的顶点坐标是( ) A.()2,0−B.()2,0C.()0,2D.()0,2−2.要得到抛物线()2423y x =−−,可以将抛物线24y x =( ) A.向右平移2个单位,再向下平移3个单位 B.向左平移2个单位,再向下平移3个单位 C.向左平移2个单位,再向上平移3个单位 D.向右平移2个单位,再向上平移3个单位3.小明观察某个路口的红绿灯,发现该红绿灯的时间设置为:红灯20秒,黄灯5秒,绿灯15秒.当他下次到达该路口时,遇到绿灯的概率是( ) A.13B.12C.38D.234.已知抛物线2y x bx c =−+与x 轴交于点()1,0A −,()3,0B ,则关于x 的方程20x bx c −+=的解是( )A.11x =−,23x =−B.11x =−,23x =C.11x =,23x =−D.11x =,23x =5.如果二次函数24y x x c =−+的最小值为0,那么c 的值等于( ) A.2B.4C.-2D.06.在同一坐标系中,一次函数2y mx n =+与二次函数2y x m =−的图象可能是( )A. B. C.D.7.若()10,A y ,()23,B y ,()34,C y 为二次函数()23y x m =−+图象上的三点,则1y ,2y ,3y 的大小关系为( ) A.231y y y <<B.312y y y <<C.213y y y <<D.132y y y <<8.如图,抛物线()20y ax bx c a ++≠与x 轴的两个交点分别为()1,0A −和()2,0B ,当0y <时,x 的取值范围是( )A.1x <−或2x <B.1x <−或2x >C.12x −<<D.1x >−或2x >9.某数学兴趣小组借助数学软件探究函数()2yax x b −的图象,输入了一组a ,b 的值,得到了它的函数图象如图所示,借助学习函数的经验,可以推断输入的a ,b 的值满足( )A. 0a <,0b <B.0a >,0b <C.>0a ,<0bD.0a >,0b >10.如图,正方形OABC 的顶点B 在抛物线2y x =的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,点C 的横坐标为-1,则点A 的横坐标为( )A.3B.4C.3.5D.2卷Ⅱ二、填空题(本大题有6个小题,每小题3分,共18分)11.欢欢抛一枚质地均匀的硬币14次,有9次正面朝上,当他抛第15次时,正面朝上的概率为________. 12.抛物线2421y x x =−−+的对称轴为________.13.从-2,0,1三个数中随机抽取一个数记为a ,不放回,再抽取一个数记为b ,则抽出的数(),a b 是二次函数22y x =−图象上的点的概率为_______.14.将抛物线()221y x =−+绕原点O 旋转180,则得到的抛物线的函数表达式为______.15.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线,摇绳的两名同学拿绳的手的间距为6米,到地面的距离AO 与BD 均为1.1米,绳子甩到最高点C 处时,最高点距地面的垂直距离为2.0米.身高为1.6米的小吉站在距点O 水平距离为m 米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m 的取值范围是__________.16.已知抛物线241y x x =−−上有且只有三个点到x 轴的距离等于k ,点(),A a b 在抛物线上,且点A 到y 轴的距离小于3.(1)k =__________.(2)b 的取值范围是__________.三、解答题(本大题有8个小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本题8分)一个不透明的布袋里只有2个红球和2个白球(仅颜色不同). (1)若从中任意摸出一个球,是红球的概率为多少?(2)若从中任意摸出一个球,记下颜色后放回,再摸出一个球,两个都是红球的概率为多少?(请用列表或画树状图的方法来表示)18.(本题8分)已知二次函数的图象经过点()0,6−,且当2x =时,有最大值-2. (1)求该二次函数的表达式.(2)判断点()1,2P −是否在抛物线上,并说明理由.19.(本题8分)已知二次函数()226y x k x k +++−与x 轴只有一个交点. (1)求k 的值.(2)从3k +,3k −中任选一个数记做a ,求使二次函数2y ax =的图象开口方向向上的概率.20.(本题8分)如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光.(1)求任意闭合其中一个开关小灯泡发光的概率. (2)求任意闭合其中两个开关小灯泡发光的概率.21.(本题8分)第33届夏季奥运会在法国巴黎举行,北京时间8月3日中国女篮对阵波多黎各女篮,以80比58收获小组赛首胜.如图,一名中国运动员在距离篮球框中心A 点4m (水平距离)远处跳起投篮,篮球准确落入篮框,已知篮球运行的路线为抛物线,当篮球运行的水平距离为2.5m 时,篮球到达最大高度B 点处,且最大高度为3.5m .以地面水平线为x 轴,过最高点B 且垂直地面的直线为y 轴建立平面直角坐标系,如果篮框中心A 距离地面3.05m .(1)求该篮球运行路线(抛物线)的函数表达式. (2)求出篮球在该运动员出手时(点C )的高度.22.(本题10分)设二次函数22y ax bx ++(0a ≠,b 是实数),已知函数值y 和自变量x 的部分对应取值如表所示:x 1−0 2 4 5 ym2n2p(1)若4m =,求二次函数的表达式.(2)在(1)的条件下,写出一个符合条件的x 的取值范围,使得y 随x 的增大而增大. (3)若在m ,n ,p 这三个实数中,只有一个是负数,求a 的取值范围.23.(本题10分)某款网红产品很受消费者喜爱,每个产品的进价为40元,规定销售单价不低于44元,且不高于52元.某商户在销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天的销量减少10个.现商家决定提价销售,设每天销售量为y 个,销售单价为x 元. (1)直接写出y 与x 之间的函数关系式和自变量x 的取值范围.(2)将产品的销售单价定为多少元时,商家每天销售产品获得的利润w (元)最大?最大利润是多少元?(3)该商户从每天的利润中捐出200元做慈善,为了保证捐款后每天剩余利润等于2200元,求销售单价x 的值.24.(本题12分)如图,已知二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,其中()3,0A −,()0,3C −.(1)求二次函数的表达式.(2)若P 是二次函数图象上的一点,直线PC 交x 轴于点D ,PDB △的面积是CDB △面积的2倍,求点P 的坐标.(3)对于一个二次函数()()20y a x m k a =−+≠中存在一点(),Q x y ′′,使得0x m y k ′−=−≠′,则称2x m ′−为该抛物线的“开口大小”,求(1)中抛物线关于x 轴对称的抛物线的“开口大小”.2024年(下)九年级10月份数学“独立作业”参考答案一、选择题(本大题有10个小题,每小题3分,共30分) 1-5:DACBB 6-10:DABDA二、填空题(本大题有6个小题,每小题3分,共18分) 11.12 12.14x =− 13.1614.()221y x =−+− 15.15m <<. 16.(1)5 (2) 520b −≤< 三、解答题(本大题有8个小题,共72分) 17.解:(1)摸出红球的概率为12P =. (2)列表得:∴两个都是红球的概率为14P =. 18.解:(1)由题意得顶点为()2,2−,∴设()222y a x =−−,把()0,6−代入,得()26022a −=−−, 解得1a =−.∴该二次函数的表达式为()222y x =−−−. (2)不在,理由如下:把1x =−代入()222y x =−−−, 得()2122112y =−−−−=−≠,∴点()0,6P −不在该抛物线上.(3分)19.解:(1)由题意可知()2260x k x k +++−=有两个相等的实数根,()()2242460b ac k k ∴=−=+−−=△,10k ∴=−或2k =.(2)由(1)可知10k =−或2k =,3k ∴+,3k −对应的所有值为-7,-13,5,-1.∴二次函数2y ax =的图象开口方向向上的概率为14.20.解:(1)14P =. (2)12P =. 21.解:(1)根据题意,得()0,3.5B ,()1.5,3.05A ,点C 的横坐标为-2.5. 设该篮球运行路线的函数表达式为23.5y ax =+,把点()1.5,3.05A 代入,得23.051.5 3.5a =+, 解得0.2a =−.∴该篮球运行路线的函数表达式为20.2 3.5y x =−+. (2)由(1)知20.2 3.5y x =−+令 2.5x =−,则()20.2 2.5 3.5 2.25y =−×−+=.∴篮球在该运动员出手时(点C )的高度是2.25m .22.解:(1)由题意得42,21642,a b a b =−+=++解得2,58,5a b= =−∴二次函数的表达式是228255y x x −+. (2)()222822225555yx x x =−+=−+ ,∴抛物线开口向上,对称轴为直线2x =,∴当2x >时,y 随x 的增大而增大.(答案不唯一)(3)0x = 和4x =时的函数值都是2,∴抛物线的对称轴为直线22b x a=−=, ()2,n ∴是顶点,()1,m −和()5,p 关于对称轴对称,m p ∴=. 在m ,n ,p 这三个实数中,只有一个是负数,则抛物线必须开口向上,且<0n ,>2m p =.22ba−= , 4b a ∴=−,∴二次函数为242y ax ax =−+,482<0n a a ∴=−+,42>2m a a =++,12a ∴>. 23.解:(1)根据题意,得()300104410740y x x =−−=−+,y ∴与x 之间的函数关系式为()107404452y x x =−+≤≤.(2)根据题意,得()()()2104010572890w x x x =−+−=−−+. 100−< ,又对称轴57x =,且4452x ≤≤,∴当52x =时,w 有最大值,最大值为2640,∴将产品的销售单价定为52元时,商家每天销售产品获得的利润w (元)最大,最大利润是2640元.(3)依题意可得剩余利润为()200w −元.捐款后每天剩余利润等于2200元,2002200w ∴−=,即()2105728902002200x −−+−=,解得50x =或64x =(舍去),∴为了保证捐款后每天剩余利润等于2200元,销售单价为50元.24.解:(1)由题意,将()()3,0,0,3A C −−代入2y x bx c =++,得093,3,b c c =−+=−解得2,3,b c ==−∴二次函数的表达式为223y x x =+−.(2)由题意,设(),P m n .PDB △与CDB 同底,且PDB △的面积是CDB △面积的2倍,26n CO ∴==.当2236m m +−=时,11m =−,21m −此时点P 的坐标为)1,6−或()1,6−;当2236m m +−=−时,m 无解.综上所述,点P 的坐标为)1,6或()1,6−.(3) 抛物线()222314y x x x =+−=+−,∴抛物线()222314y x x x =+−=+−关于x 轴对称的抛物线为()214y x =−++. 0x m y k ′′−=−≠ ,()211440x x ∴+=−++−′≠′,解得11x ′+=−.∴抛物线223y x x =+−关于x 轴对称的抛物线的“开口大小”为21212x +′×−.。
安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形是中心对称图形的是()A .B .C .D .2.已知a b =25,则a b b +的值为().A .25B .35C .75D .233.函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,则k 可能为()A .﹣2B .﹣1C .0D .14.已知一个扇形的半径为6,弧长为2π,则这个扇形的圆心角为()A .60°B .30°C .90°D .120°5.如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(), 10B -两点,则下列说法正确的是()A .a<0B .点A 的坐标为()4,0-C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =-6.如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =,4DE =,则BC 的长是()A .1B C .2D .47.如图,四边形ABCD 内接于O ,连接BD .若 AC BC=,50BDC ∠=︒,则ADC ∠的度数是()A .125°B .130°C .135°D .140°8.如图,在Rt ABC 中,90C ∠=︒,BC =,点D 是AC 上一点,连接BD .若1tan2A ∠=,1tan 3ABD ∠=,则CD 的长为()A .B .3CD .29.如图,在矩形ABCD 中,6AB =,4=AD ,点E 、F 分别为BC 、CD 的中点,BF 、DE 相交于点G ,过点E 作EH CD ∥,交BF 于点H ,则线段GH 的长度是()A .56B .1C .54D .5310.如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为()A .2B .52C .3D二、填空题11.已知二次函数()211my m x -=+的图象开口向下,则m 的值是______.12.如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.13.如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ⊥x 轴于点C ,交OB 于点D .若D 为AC 的中点,△AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为_____.14.在平面直角坐标系xOy 中,已知点A (-1,1)在抛物线y =x 2+2bx +c 上(1)c =______(用含b 的式子表示);(2)若将该抛物线向右平移t 个单位(t ≥32),平移后的抛物线仍经过A (-1,1),则平移后抛物线的顶点纵坐标的最大值为_______.三、解答题15()113tan 3020222π-︒⎛⎫+-- ⎪⎝⎭.16.一个二次函数,当=1x -时,函数的最小值为2,它的图象经过点()16,,求这个二次函数的解析式.17.已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.18.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -.(1)将ABC 绕点O 顺时针旋转90︒得到111A B C △,请画出111A B C △,并求出点C 经过的路径长;(2)以A 为位似中心,将ABC 放大2倍得到222A B C △,请直接写出2B 的坐标.19.如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近? 1.4≈ 1.7≈)20.如图,四边形ABCD 内接于圆O ,AB 是直径,点C 是 BD的中点,延长AD 交BC 的延长线于点E .(1)求证:CE CD =;(2)若3AB =,BC =,求AD 的长.21.如图,一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数()0,0my m x x=≠>的图象相交于点A ,1OB =,tan 2OBC ∠=,:1:2BC CA =.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当BDE 面积最大时,求点D 的坐标.22.如图, ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值23.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x ≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.参考答案:1.B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.【详解】解:选项A 、C 、D 都不能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项B 能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:B .【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.2.C【分析】根据比例的性质计算即可;【详解】∵a b =25,∴52755++==a b b ;故答案选C .【点睛】本题主要考查了比例的性质应用,准确计算是解题的关键.3.A【分析】根据反比例函数的性质列出关于k 的不等式,求出k 的取值范围即可.【详解】解:∵反比例函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,∴k +1<0,解得k <﹣1.观察选项,只有选项A 符合题意.故选:A .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.A【分析】根据弧长公式即可求出扇形的圆心角度数.【详解】解:∵180n r l π=∴1801802606l n r πππ⋅===°故选:A【点睛】本题考查了弧长公式,利用弧长公式求该弧所对的圆心角,必须熟记公式,并能熟练运用.5.D【分析】根据二次函数的图象与性质即可依次判断.【详解】由图可得开口向上,故a >0,A 错误;∵解析式为2(2)y a x k =++,故对称轴为直线x =-2,D 正确∵(), 10B -∴A 点坐标为(-3,0),故B 错误;由图可知当<2x -时,y 随x 的增大而减小,故C 错误;故选D .【点睛】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数顶点式的特点.6.C【分析】由垂径定理可知,点D 是AC 的中点,则OD 是ABC 的中位线,所以12OD BC =,设OD x =,则2BC x =,则4OE x =-,82AB x =-,在Rt ABC △中,由勾股定理可得222AB AC BC =+,代入求出x 的值即可得出结论.【详解】解:AB 是O 的直径,∴90C ∠=︒,∵OD AC ⊥,∴点D 是AC 的中点,∴OD 是ABC 的中位线,∴∥OD BC ,且12OD BC =,设OD x =,则2BC x =,∵4DE =,∴4OE DE OD x =-=-,∴282AB OE x ==-,在Rt ABC △中,由勾股定理可得,222AB AC BC =+,∴()(()222822x x -=+,解得1x =.∴22BC x ==.故选:C .【点睛】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.7.B【分析】连接OA ,OB ,OC ,根据圆周角定理得出∠BOC=100°,再根据 AC BC=得到∠AOC ,从而得到∠ABC ,最后利用圆内接四边形的性质得到结果.【详解】解:连接OA ,OB ,OC ,∵50BDC ∠=︒,∴∠BOC=2∠BDC=100°,∵ AC BC=,∴∠BOC=∠AOC=100°,∴∠ABC=12∠AOC=50°,∴∠ADC=180°-∠ABC=130°.故选B.【点睛】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.8.C【分析】先根据锐角三角函数值求出AC =再由勾股定理求出5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得ADCD .【详解】解:在Rt ABC 中,90C ∠=︒,BC =,∴1tan 2BC A AC ∠==∴2AC BC ==由勾股定理得,5AB =过点D 作DE AB ⊥于点E ,如图,∵1tan 2A ∠=,1tan 3ABD ∠=,∴11,,23DE DE AE BE ==∴11,,23DE AE DE BE ==∴1123AE BE =∴32BE AE =∵5,AE BE +=∴352AE AE +=∴2,AE =∴1DE =,在R t A D E ∆中,222AD AE DE =+∴AD ==∵AD CD AC +==∴CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.9.A【分析】根据矩形的性质得出6490DC AB BC AD C ====∠=︒,,,求出132DF CF DC ===,122CE BE BC ===,求出FH BH =,根据勾股定理求出BF ,求出152FH BH ==,根据三角形的中位线求出EH ,根据相似三角形的判定得出EHG DFG ,根据相似三角形的性质得出EH GH DF FG =,再求出答案即可.【详解】解析: 四边形ABCD 是矩形,6AB =,4=AD ,6DC AB ∴==,4BC AD ==,90C ∠=︒,点E 、F 分别为BC 、CD 的中点,132DF CF DC ∴===,122CE BE BC ===,EH CD ∥ ,FH BH ∴=,BE CE = ,1322EH CF ∴==.由勾股定理得:5BF ==,1522BH FH BF ∴===,EH CD ∥ ,EHG DFG ∴ △△,EH GH DF FG∴=,32532GH GH ∴=-,解得:56GH =,故选:A .【点睛】本题考查了矩形的性质和相似三角形的性质和判定,能熟记矩形的性质是解此题的关键.10.A【分析】根据对称性得到动点M 的轨迹是在以A 圆心,3为半径的圆上,根据点圆模型,在矩形中利用勾股定理求出线段长即可.【详解】解:连接AM ,如图所示:∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵在矩形ABCD 中,AC 5=,AM =AB =3,∴CM =5﹣3=2,故选:A .【点睛】本题考查动点最值问题,解题过程涉及到对称性质、圆的性质、矩形性质、勾股定理等知识点,解决问题的关键是准确根据题意得出动点轨迹.11.【分析】根据二次函数的定义可得212m -=及开口向下时10+<m 即可解答.【详解】解:根据题意得:21012m m +<⎧⎨-=⎩解得:m =故答案为【点睛】本题考查的是二次函数的定义及性质,易错点是只考虑其次数是2,没有考虑开口向下时的性质.12【分析】先根据圆的半径相等及圆周角定理得出∠ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊥AB∵60A ∠=︒∴∠BOC =2∠A =120°∵OB =OC∴∠OBC =30°又75B ∠=︒∴∠ABO =45°在Rt △OBD 中,OB =1∴BD ==2∵OD ⊥AB∴BD =AD =2∴AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键13.6【分析】应用k 的几何意义及中线的性质求解.【详解】解: D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.【点睛】本题考查了反比例函数中k 的几何意义,关键是利用AOB ∆的面积转化为三角形AOC 的面积.14.2b 716##0.4375【分析】(1)将点代入函数解析式求解即可;(2)根据(1)所求,将点A 和t 代入表达式得到b 、t 的关系,根据t 的取值范围,求出b 的范围,进而即可求解.【详解】解:(1)将点A (-1,1)代入y =x 2+2bx +c 得()()21121b c=-+⋅-+化简得,2c b =,故答案是:2b ;(2)由(1)222y x bx b=++平移后得,()()222y x t b x t b=-+-+将点A (-1,1)代入()()222y x t b x t b=-+-+得,()()211212t b t b=--+--+化简得,()022t t b =+-记得12220t b t =-=,(舍去)将22t b =-代入()()222y x t b x t b=-+-+得()()2222222y x b b x b b=+-++-+化简得,()24242y x b x b =+-+-∵22t b =-,t ≥32∴74b ≥∴平移后抛物线的项点纵坐标为:()()()224142421141b b b ⨯⨯---=--+⨯当74b =时,平移后抛物线的项点纵坐标有最大值为:716,故答案是:716.【点睛】本题主要考查了二次函数的应用,掌握二次函数的相关知识结合不等式并灵活应用是解题的关键.151-【分析】原式利用二次根式性质,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【详解】解:原式3123=⨯-121=-=.【点睛】本题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.()212y x =++【分析】设抛物线顶点式,然后将()16,代入解析式求解.【详解】解:根据题意设()212y a x =++,把()16,代入()212y a x =++得642a =+,解得1a =,∴这个二次函数的解析式为()212y x =++.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法求函数解析式.17.(1)14m >-;(2)11x =,22x =-【分析】(1)根据△>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>,∴14m >-.(2)由图知20x x m +-=的一个根为1,∴2110m +-=,∴2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∴一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.18.(1)作图见解析;2;(2)(4,1).【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1的位置,即可得到111A B C △,然后求出OC ,再利用弧长公式即可求出点C 经过的路径长;(2)直接利用位似图形的性质作出222A B C △,即可得出2B 的坐标.【详解】解:(1)111A B C △如图所示:由勾股定理得:OC ==则点C 经过的路径长为:901802π⋅⋅=;(2)222A B C △如图所示,则2B 的坐标为:(4,1).【点睛】此题主要考查了旋转变换、位似变换、勾股定理以及弧长公式的应用,正确得出对应点位置是解题关键.19.(1)283DE =米;(2)经过点B 到达点D 较近.【分析】(1)过D 作DF AE ⊥于F ,由已知可得四边形ACDF 是矩形,则200DF AC ==米,根据点D 在点E 的北偏东45︒,即得DE 的长;(2)由30ABC ∠=︒,即得2400AB AC ==米,BC 的长,再分别求得AB BD +、AE DE +的长,即可得答案.【详解】(1)解:过D 作DF AE ⊥于F ,如图:由已知可得四边形ACDF 是矩形,∴200DF AC ==米,∵点D 在点E 的北偏东45︒,即45DEF ︒∠=,∴DEF 是等腰直角三角形,∴283DE ==≈(米);(2)解:由(1)知DEF 是等腰直角三角形,283DE =米,∴200EF DF ==米,∵点B 在点A 的北偏东30︒,即30EAB ∠=︒,∴30ABC ∠=︒,∵200AC =米,∴2400AB AC ==米,BC ==,∵100BD =米,∴经过点B 到达点D 路程为400100500AB BD +=+=(米),100)CD BC BD =+=(米),∴100)AF CD ==+(米),∴100)200100)AE AF EF =-=+-=-(米),∴经过点E 到达点D 路程为100529AE DE +=+≈(米),∵529500>,∴经过点B 到达点D 较近.【点睛】本题考查解直角三角形-方向角问题,解题的关键是掌握含30︒、45︒角的直角三角形三边的关系.20.(1)见解析(2)1【分析】(1)连接AC ,根据圆周角推论得90ACB ACE ∠=∠=︒,根据点C 是 BD的中点得CAE CAB ∠=∠,CD CB =,用ASA 证明ACE ACB ≌,即可得;(2)根据题意和全等三角形的性质得3AE AB ==,根据四边形ABCD 内接于圆O 和角之间的关系得CDE ABE ∠=∠,即可得ΔΔEDC EBA ∽,根据相似三角形的性质得DE CD BE AB=,即可得【详解】(1)证明:如图所示,连接AC,AB 为直径,90ACB ACE ∴∠=∠=︒,又 点C 是 BD的中点CAE CAB ∴∠=∠,CD CB =,在ACE △和ACB △中,ACE ACB AB AC CAE CAB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ΔΔACE ACB ASA ∴≅,CE CB ∴=,CE CD ∴=;(2)解:ΔΔACE ACB ≅ ,3AB =,3AE AB ∴==,又 四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=︒,又180ADC CDE ∠+∠=︒ ,CDE ABE ∴∠=∠,又E E ∠=∠ ,ΔΔEDC EBA ∴∽,∴DE CD BE AB=,=解得:2DE =,1AD AE DE ∴=-=.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.21.(1)()120y x x=>(2)11,2D ⎛⎫- ⎪⎝⎭【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF x ⊥轴于点F ,则ACF BCO V V ∽,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达BDE ∆的面积,根据二次函数的性质可得结论.【详解】(1)解:如图,过点A 作AF x ⊥轴于点F ,AF y ∴∥轴,ACF BCO ∴V V ∽,:::1:2BC AC OB AF OC CF ∴===.1OB = ,tan 2OBC ∠=,2OC ∴=,2AF ∴=,4CF =,6OF OC CF ∴=+=,(6,2)A ∴.点A 在反比例函数(0,0)m y m x x=≠>的图象上,2612m ∴=⨯=.∴反比例函数的表达式为:12(0)y x x =>.(2)由题意可知,(0,1)B -,∴直线AB 的解析式为:112y x =-.设点D 的横坐标为t ,则1(,1)2D t t -,12(,)E t t .12112ED t t ∴=-+.BDE ∴ 的面积为:1121(0)(1)22t t t --+211642t t =-++2125(1)44t =--+.104-< ,1t ∴=时,BDE 的面积的最大值为254,此时1(1,)2D -.【点睛】本题主要考查反比例函数与一次函数的交点,待定系数法求反比例函数解析式,三角形的面积,二次函数的性质,得出BDE 的面积与t 函数关系式是解题的关键.22.(1)证明见详解;(2)18.【分析】(1)连接OC ,根据FC 是⊙O 的切线,AE 是⊙O 的直径,可得ACF ECO Ð=Ð,利用OE OC =,得到OEC ECO Ð=Ð,根据圆周角定理可得OEC B Ð=Ð,则可证得ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,易得AFC CFB V :V ,则有28FC FB FA ==,则可得6AB BC ==,并可求得3FA BC CA FC ==g ,连接BE ,易证ACD AEB V :V ,则有AD AC AB AE =,可得18AD AE AB AC ==g g .【详解】解:(1)连接OC∵FC 是⊙O 的切线,AE 是⊙O 的直径,∴90OCF ACE Ð=Ð=o ,∴90ACF ACO ECO ACO Ð+Ð=Ð+Ð=o∴ACF ECOÐ=Ð又∵OE OC=∴OEC ECOÐ=Ð根据圆周角定理可得:OEC BÐ=Ð∴B ECO Ð=Ð,∴ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,∵AFC CFB∠=∠∴AFC CFBV :V ∴FC FA FB FC=∴2FC FB FA =,∵4FC =,2FA =,∴22482FC FB FA ===∴826AB FB AF =-=-=∴6AB BC ==又∵AFC CFB V :V 中,CA FA BC FC =∴2634FA BC CA FC ´===g ,如图示,连接BE∵ACD AEB ∠=∠,90ADC ABE Ð=Ð=o∴ACD AEBV :V ∴AD AC AB AE=∴6318AD AE AB AC ==´=g g .【点睛】本题考查了圆的性质,等腰三角形的判定与性质,圆周角定理,切线的性质,三角形相似的判定与性质等知识点,熟悉相关性质是解题的关键.23.(1)()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元;②3040x ≤≤或60360x ≤≤.【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.【详解】(1)由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2),所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x =40时,y =30,当x =100时,y =15,代入函数关系式得:304015100k b k b=+⎧⎨=+⎩,解得:1,404k b =-=,∴140(0)4y x x =-+40≤≤10∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m =30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m =90时,离对称轴m =50最远,w 最小,即当m =90时,w 有最小值21(9050)602556254--+=(元)∵5625<5850,∴当m =90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270,故甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元.②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+,令21(50)602560004x --+≤,解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在3040x ≤≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元,所以甲种花卉种植面积x 的取值范围为:3040x ≤≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.。
北京市第十四中学2021-2022学年九年级下学期月考数学试题

北京市第十四中学2021-2022学年九年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.大兴国际机场,成为北京建设国际化大都市的重要标志.全球唯一一座“双进双出”的航站楼,世界施工技术难度最高的航站楼,走进航站楼内部,室内色调主要以白色为主,为了让阳光洒满整个机场,航站楼一共使用了12800块玻璃,白天室内几乎不需要照明灯光.将12800用科学记数法表示为()A .1.28×102B .1.28×103C .1.28×104D .1.28×1052.在下面四个几何体中,左视图是三角形的是()A .B .C .D .3.如图,直线//AB CD ,AB 平分EAD ∠,1100∠=︒,则2∠的度数是()A .60︒B .50︒C .40︒D .30︒4.五边形的外角和等于()A .180°B .360°C .540°D .720°5.如图,数轴上两点A B ,所对应的实数分别为a b ,,则b a -的结果可能是()A .3B .2C .1D .1-6.疫情期间进入学校都要进入测温通道,体温正常才可进入学校,昌平某校有2个测温通道,分别记为A 、B 通道,学生可随机选取其中的一个通道测温进校园.某日早晨二、填空题14.如图,两条射线AM求作:ABC ,使得点B 在射线AM 上,90C ∠=︒,作法:①在射线AM 上任取一点O ;(1)求证:AB 是O 的切线;(2)若2t n 1a ACB ∠=,求线段25.第24届冬季奥林匹克运动会,20日,在北京市和张家口市同时举行,为了调查同学们对冬奥知识的了解情况,小冬从初中三个年级各随机抽取并对数据(成绩)进行了整理、描述和分析,下面给出了相关信息:.30a 名同学冬奥知识测试成绩的统计图如图:.c 测试成绩在7080x ≤<这一组的是:7073747475757778..d 小明的冬奥知识测试成绩为85分.根据以上信息,回答下列问题:(1)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第______;(2)抽取的30名同学的成绩的中位数为______;(3)序号为110-的学生是七年级的,他们的成绩的方差为记21s ;序号为1120-的学生是八年级的,他们的成绩的方差记为22s ,序号为2130-的学生是九年级的,他们的成绩的方差记为23s ,则21s ,22s ,23s 的大小关系是______;(4)成绩80分及以上记为优秀,若该校初中三个年级420名同学都参加测试,估计成绩优秀的同学约为______人.26.已知抛物线y =ax 2+bx (a ≠0)经过点A (3,3).点M (x 1,y 1),N (x 2,y 2)为抛物线上两个不同的点,且满足x 1<x 2,x 1+x 2=2.(1)用含a 的代数式表示b ;(2)当y 1=y 2时,求抛物线的对称轴及a 的值;(3)当y 1<y 2时,求a 的取值范围.27.如图,在Rt △ABC 中,∠ABC =90°,将CA 绕点C 顺时针旋转45°得到CP ,点A 关于直线CP 的对称点为D ,连接AD 交直线CP 于点E ,连接CD .(1)根据题意补全图形;(2)判断△ACD 的形状并证明;。
人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案九年级第二学期数学第一次月考试卷时间:120分钟。
总分:120分。
姓名:一、选择题(本大题共8小题,每小题3分,共24分)1.绝对值是6的有理数是()A。
±6.B。
6.C。
-6.D。
162.计算a^2a^4的结果是()A。
a^5.B。
a^6.C。
2a^6.D。
a^83.半径为6的圆的内接正六边形的边长是()A。
2.B。
4.C。
6.D。
84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A。
2π。
B。
3π。
C。
2/3π。
D。
1+2/3π5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种.如图是该校学生乘车、骑车、步行上学人数的扇形统计图。
乘车的人数是()A。
180.B。
270.C。
150.D。
2006.函数y=(x-2)/x的自变量X的取值范围是()A。
x>2.B。
x<2.C。
x≥2.D。
x≤27.如右图,是一个下底小而上口大的圆台形,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,内对应的水高度为h,则h与t的函数图象只可能是()A。
一次函数。
B。
二次函数。
C。
三次函数。
D。
反比例函数8.如图所示的正方体的展开图是()二、填空题(本大题共7小题,每小题3分,共21分.)9.若分式(2x)/(x+2)的值为零,则x=_____。
10.已知反比例函数y=k/x的图象经过点(3,-4),则这个函数的解析式为y=______。
11.已知两圆内切,圆心距d=2,一个圆的半径r=3,那么另一个圆的半径为______。
(用科学记数法表示20 的结果是______(保留两位有效数字))12.二次函数y=x^2的图象向右平移1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是:(______。
0)。
13.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是______。
苏科版九年级下册月考数学试卷(附答案)

九年级(下)第一次月考数学试卷一、选择题(本大题共 8 小题,共 24 分)1、(3分) 下列计算正确的是()A.a2+a3=a5B.a6÷a3=a3C.a2•a3=a6D.(a3)2=a92、(3分) 函数y=√x−2中,自变量x的取值范围是()A.x≠2B.x≥2C.x>2D.x≥-23、(3分) 如图,空心圆柱的主视图是()A. B. C.D.4、(3分) 有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学知道自己的成绩后,要判断能否进入决赛,还需知道这9名同学成绩的()A.众数B.中位数C.平均数D.方差5、(3分) 一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π6、(3分) 如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α-β=90°7、(3分) 关于x的一元二次方程(k+1)x2-2x+1=0有两个实数根,则k的取值范围是()A.k≥0B.k≤0C.k<0且k≠-1D.k≤0且k≠-18、(3分) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c-3=0有两个不相等的实数根二、填空题(本大题共 8 小题,共 24 分)9、(3分) 因式分解:2a2-2=______.10、(3分) 当分式x−1的值为0时,x的值是______.x+211、(3分) 两个相似三角形的面积比1:4,则它们的周长之比为______.12、(3分) 如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=______°.13、(3分) 如图所示,点A是反比例函数y=k图象上一点,作AB⊥x轴,垂足为点B,若△AOBx的面积为2,则k的值是______.14、(3分) 设a、b是一元二次方程x2+2x-7=0的两个根,则a2+3a+b=______.15、(3分) 如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D在BC上,已知∠CAD=32°,则∠B=______度.16、(3分) 如图,等边△ABC中,AB=10,D为BC的中点,E为△ABC内一动点,DE=3,连接AE,将线段AE绕点A逆时针旋转60°得AF,连接DF,则线段DF的最小值为______.三、计算题(本大题共 3 小题,共 24 分)17、(6分) 计算:(3.14-π)0+|1-√3|+(-1)-1-2sin60°.418、(8分) 先化简,再求值:(1-1a+1)÷2aa −1,其中a=-2.19、(10分) 在一条笔直的公路上依次有A ,C ,B 三地,甲、乙两人同时出发,甲从A 地骑自行车去B 地,途经C 地休息1分钟,继续按原速骑行至B 地,甲到达B 地后,立即按原路原速返回A 地;乙步行从B 地前往A 地.甲、乙两人距A 地的路程y (米)与时间x (分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为______米/分,点M 的坐标为______;(2)求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A 地之前,经过多长时间两人距C 地的路程相等.四、解答题(本大题共 8 小题,共 78 分)20、(6分) 解不等式组:{4x>2x−6x−1≤x+13,并写出它的所有整数解.21、(8分) 为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C 跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.22、(8分) 某数学小组在郊外水平空地上对无人机进行测高实验,以便与遥控器显示的高度数据进行对比.如图,在E处测得无人机C的仰角∠CAB=45°,在D处测得无人机C的仰角∠CBA=30°,已知测角仪的高AE=BD=1m,E,D两处相距50m,请根据数据计算无人机C的高(结果精确到0.1m,参考数据:√2≈1.41,√3≈1.73).23、(10分) 如图,在平行四边形ABCD中,过对角线BD中点的直线交AD、BC边于F、E.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,写出EF与BD的关系.(3)若∠A=60°,AB=4,BC=6,四边形BEDF是矩形,求该矩形的面积.24、(10分) 某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?产品的成本单价应不超过多少元?25、(10分) 如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.,求点B到AC的距离.(2)若BC=2√5,sin∠BCP=√55(3)在第(2)的条件下,求△ACP的周长.26、(12分) 定义:对角互补且有一组邻边相等的四边形称为奇异四边形.(1)概念理解:在平行四边形、菱形、矩形、正方形中,你认为属于奇异四边形的有______;(2)性质探究:①如图1,四边形ABCD是奇异四边形,AB=AD,求证:CA平分∠BCD;②如图2,四边形ABCD是奇异四边形,AB=AD,∠BCD=2α,试说明:cosα=BC+CD;2AC(3)性质应用:如图3,四边形ABCD是奇异四边形,四条边中仅有BC=CD,且四边形ABCD的周长为6+2√10,∠BAC=45°,AC=3√2,求奇异四边形ABCD的面积.27、(14分) 已知抛物线y=-x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.九年级(下)第一次月考数学试卷【第 1 题】【答案】B【解析】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、原式=a6-3=a3,故本选项正确;C、原式=a2+3=a5,故本选项错误;D、原式=a3×2=a6,故本选项错误;故选:B.根据合并同类项的法则,同底数幂的除法法则,同底数幂的乘法法则以及幂的乘方与积的乘方法则解答.本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.【第 2 题】【答案】B【解析】解:由题意得,x-2≥0,解得x≥2.故选:B.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的取值范围,解决本题的关键是二次根式的被开方数是非负数.【第 3 题】【答案】A【解析】解:如图所示,空心圆柱体的主视图是圆环.故选:A.找到从正面,看所得到的图形即可,注意所有的棱都应表现在主视图中.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.【答案】B【解析】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.【第 5 题】【答案】C【解析】解:S扇形=12lR=12×4π×4=8π.故选:C.根据扇形的面积公式S扇形=12lR即可得出答案.本题考查了扇形面积的计算,比较简单,解答本题的关键是熟练掌握扇形面积的计算公式.【第 6 题】【答案】D解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°-∠2,∴∠α-∠β=180°-∠2-∠1=180°-∠BCD=90°,故选:D.过C作CF∥AB,根据平行线的性质得到∠1=∠β,∠2=180°-∠α,于是得到结论.本题考查了平行线的性质,熟记平行线的性质是解题的关键.【第 7 题】【答案】D【解析】解:根据题意得k+1≠0且△=(-2)2-4(k+1)≥0,解得k≤0且k≠-1.故选:D.根据一元二次方程的定义和判别式的意义得到k+1≠0且△=(-2)2-4(k+1)≥0,然后求出两个不等式的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.【第 8 题】【答案】C【解析】,得到b>0,由抛物线与y轴的交解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=-b2a点位置得到c>0,A、abc<0,错误;B、2a+b=0,错误;C、把x=1时代入y=ax2+bx+c=a+b+c,结合图象可以得出y=3,即a+b+c=3,a+c=3-b,∵2a+b=0,b>0,∴3a+c=2a+a+c=-b+3-b=3-2b<0,3a+c=2a+a+c=a-b+c,应当x=-1时,y=a-b+c<0,所以c正确;D、由图可知,抛物线y=ax2+bx+c与直线y=3有一个交点,而ax2+bx+c-3=0有一个的实数根,错误;故选:C.根据抛物线开口方向得a<0,由抛物线对称轴为直线x=-b,得到b>0,由抛物线与y轴的交2a点位置得到c>0,进而解答即可.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.【第 9 题】【答案】2(a+1)(a-1)【解析】解:原式=2(a2-1)=2(a+1)(a-1).故答案为:2(a+1)(a-1).原式提取2,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.【第 10 题】【答案】1【解析】的值为0;解:∵分式x−1x+2∴x-1=0,∴x=1,故答案为1.根据分式值为0的条件:分子为0且分母不为0进行计算即可.本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.【第 11 题】【答案】1:2【解析】解:∵两个相似三角形的面积比1:4,∴它们的相似比为:1:2,∴它们的周长之比为:1:2.故答案为:1:2.由两个相似三角形的面积比1:4,根据相似三角形的面积比等于相似比的平方,相似三角形的周长比等于相似比,即可求得答案.此题考查了相似三角形的性质.此题比较简单,注意熟记定理是解此题的关键.【第 12 题】【答案】40【解析】解:连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-50°=40°,∴∠ACB=∠D=40°.故答案为40.连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=40°,然后再利用圆周角定理得到∠ACB的度数.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.【第 13 题】【答案】4【解析】解:∵点A是反比例函数y=k图象上一点,作AB⊥x轴,垂足为点B,x|k|=2;∴S△AOB=12又∵函数图象位于一、三象限,∴k=4,故答案为4.过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S |k|.是个定值,即S=12本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解面积为12k的几何意义.【第 14 题】【答案】5【解析】解:∵设a、b是一元二次方程x2+2x-7=0的两个根,∴a+b=-2,∵a是原方程的根,∴a2+2a-7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7-2=5,故答案为:5.根据根与系数的关系可知a+b=-2,又知a是方程的根,所以可得a2+2a-7=0,最后可将a2+3a+b变成a2+2a+a+b,最终可得答案.本题主要考查了根与系数的关系,解题的关键是把a2+3a+b转化为a2+2a+a+b的形式,结合根与系数的关系以及一元二次方程的解即可解答.【第 15 题】【答案】29【解析】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°利用中垂线和三角形外角性质计算.本题涉及中垂线和三角形外角性质,难度中等.【第 16 题】【答案】5√3-3【解析】解:如图,以ED为边作等边△DEG,连接AD,EF,AG,∵△ABC是等边三角形,点D是BC中点,∴BD=CD=5,AD⊥BC∴AD=√AB2−BD2=5√3,∵将线段AE绕点A逆时针旋转60°得AF,∴AE=AF,∠EAF=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵△DEG是等边三角形∴DE=EG=3,∠GED=60°=∠AEF∴∠AEG=∠FED,且AE=EF,EG=DE,∴△AEG≌△FED(SAS)∴DF=AG,∵在△ADG中,AG≥AD-DG∴当点A,点G,点D三点共线时,AG值最小,即DF值最小,∴DF最小值=AD-DG=5√3-3故答案为:5√3-3以ED为边作等边△DEG,连接AD,EF,AG,由等边三角形的性质和勾股定理可求AD=5√3,由等边三角形的性质可证△AEG≌△FED,可得DF=AG,根据三角形的三边关系,可得当点A,点G,点D三点共线时,AG值最小,即DF值最小,则可求线段DF的最小值.本题考查了旋转的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.【 第 17 题 】【 答 案 】解:原式=1+√3-1-4-√3=-4.【 解析 】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.【 第 18 题 】【 答 案 】解:原式=a+1−1a+1÷2a a −1 =a a+1•(a+1)(a−1)2a =a−12,当a=-2时,原式=−2−12=-32. 【 解析 】 先将括号中两项通分,利用同分母分式减法法则计算,再将除法转化为乘法,将式子化为最简,然后将a 的值代入计算即可.本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.【 第 19 题 】【 答 案 】解:(1)由题意得:甲的骑行速度为:1020(214−1)=240(米/分),240×(11-1)÷2=1200(米),则点M 的坐标为(6,1200),故答案为:240,(6,1200);(2)设MN 的解析式为:y=kx+b (k≠0),∵y=kx+b (k≠0)的图象过点M (6,1200)、N (11,0),∴{6k +b =120011k +b =0, 解得{k =−240b =2640, ∴直线MN 的解析式为:y=-240x+2640;即甲返回时距A 地的路程y 与时间x 之间的函数关系式:y=-240x+2640;(3)设甲返回A 地之前,经过x 分两人距C 地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200-1020=180,分5种情况:①当0<x≤3时,1020-240x=180-60x ,x=143>3,此种情况不符合题意;②当3<x <214-1时,即3<x <174,甲、乙都在A 、C 之间,∴1020-240x=60x-180,x=4,③当214<x <6时,甲在B 、C 之间,乙在A 、C 之间,∴240x -1020=60x-180,x=143<214, 此种情况不符合题意;④当x=6时,甲到B 地,距离C 地180米,乙距C 地的距离:6×60-180=180(米),即x=6时两人距C 地的路程相等,⑤当x >6时,甲在返回途中,当甲在B 、C 之间时,180-[240(x-1)-1200]=60x-180,x=6,此种情况不符合题意,当甲在A 、C 之间时,240(x-1)-1200-180=60x-180,x=8,综上所述,在甲返回A 地之前,经过4分钟或6分钟或8分钟时两人距C 地的路程相等.【 解析 】(1)根据路程和时间可得甲的速度,根据甲去和返回时的时间共计11分,休息了一分,所以一共用了10分钟,可得M 的坐标;(2)利用待定系数法求MN 的解析式;(3)先根据总路程1200米,时间为20分,计算乙的速度,根据A ,C ,B 三地在同一直线上,计算B 、C 之间的路程,分情况讨论:设甲返回A 地之前,经过x 分两人距C 地的路程相等, ①因为乙从B 地到C 地一共需要3小时,所以第一个时间为0<x≤3,即乙在B 、C 之间时,列方程可知不符合题意;②3<x <6,根据两人距C 地的路程相等列方程可得结论;③计算甲到B 地时,符合条件;④计算乙走过C 地,即乙在A 、C 之间时,列方程,注意此时甲用了(x-1)分.本题考查一次函数的应用,解题的关键是明确题意设未知数,学会结合方程解决问题,此类题有难度,注意利用数形结合的思想解答问题.【 第 20 题 】【答案】解:{4x>2x−6①x−1≤x+13②,解不等式①,得x>-3,解不等式②,得x≤2,所以不等式组的解集:-3<x≤2,它的整数解为-2,-1,0,1,2.【解析】先求出两个不等式的解集,再求其公共解,然后写出整数解即可.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).【第 21 题】【答案】解:(1)根据题意得:15÷10%=150(名).本项调查中喜欢“跑步”的学生人数是;150-15-45-30=60(人),所占百分比是:60150×100%=40%,画图如下:(2)用A 表示女生,B 表示男生,画图如下:共有20种情况,同性别学生的情况是8种, 则刚好抽到同性别学生的概率是820=25.【 解析 】(1)用A 的人数除以所占的百分比,即可求出调查的学生数;用抽查的总人数减去A 、B 、D的人数,求出喜欢“跑步”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(2)用A 表示女生,B 表示男生,画出树形图,再根据概率公式进行计算即可.本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【 第 22 题 】【 答 案 】解:如图,过点C 作点CH⊥AB 于H .∵∠CAB=45°,∴AH=CH ,设CH=x ,则AH=x ,∵∠CBA=30°,∴BH =√3CH =√3x ,由题意知:AB=ED=50,∴x +√3x =50,解得:x =502.73≈18.3.18.3+1=19.3,答:计算得到的无人机的高约为19.3m .【 解析 】如图,过点C 作点CH⊥AB 于H .设AH=CH=x ,根据AB=50,构建方程即可解决问题.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.【 第 23 题 】【 答 案 】 解:(1)∵四边形ABCD 是平行四边形,O 是BD 中点,∴BC∥AD ,OB=OD ,∴∠OBE=∠ODF ,又∵∠BOE=∠DOF ,∴△BOE≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,根据菱形的性质可得:EF 与BD 互相垂直平分;(3)∵四边形BEDF 是矩形∴∠AFB=90°又∵∠A=60°,∴∠ABF=30°, ∴AF=12AB=12×4=2,∴Rt△ABF中,BF=2√3,又∵AD=BC=6,∴DF=6-2=4,∴矩形BEDF的面积=BF×DF=2√3×4=8√3.【解析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)根据根据菱形的性质作出判断:EF与BD互相垂直平分;(3)根据Rt△ABF的边角关系,求得BF和AF,再根据矩形的性质,求得DF的长,最后计算矩形的面积.本题主要考查了平行四边形的判定与性质,菱形、矩形的性质以及全等三角形的判定与性质,解题时注意:矩形的对边平行且相等,菱形的对角线互相垂直平分,对角线互相平分的四边形是平行四边形.【第 24 题】【答案】解:(1)根据题意得y=(70-x-50)(300+20x)=-20x2+100x+6000,∵70-x-50>0,且x≥0,∴0≤x<20;(2)∵y=-20x2+100x+6000=-20(x-2.5)2+6125,∴当x=2.5时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【解析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.【第 25 题】【答案】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,又C点在直径上,∴直线CP是⊙O的切线.(2)如右图,作BD⊥AC于点D,∵PC⊥AC∴BD∥PC∴∠PCB=∠DBC∵BC=2√5,sin∠BCP=√55,∴sin∠BCP=sin∠DBC=DCBC =2√5=√55,解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4.(3)如右图,连接AN ,∵AC 为直径,∴∠ANC=90°,∴Rt△ACN 中,AC=CN cos∠ACN =CN sin∠BCP =√5√55=5, 又CD=2,∴AD=AC -CD=5-2=3.∵BD∥CP ,∴BD CP =ADAC ,∴CP=203.在Rt△ACP 中,AP=√AC 2+CP 2=253,AC+CP+AP=5+203+253=20,∴△ACP 的周长为20.【 解析 】(1)根据∠ABC=∠ACB 且∠CAB=2∠BCP ,在△ABC 中∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,从而得到∠BCP+∠BCA=90°,证得直线CP 是⊙O 的切线.(2)作BD⊥AC 于点D ,得到BD∥PC ,从而利用sin∠BCP=sin∠DBC=DC BC =2√5=√55,求得DC=2,再根据勾股定理求得点B 到AC 的距离为4.(3)先求出AC 的长度,然后利用BD∥PC 的比例线段关系求得CP 的长度,再由勾股定理求出AP 的长度,从而求得△ACP 的周长.本题考查了切线的判定与性质等知识,考查的知识点比较多,难度较大.【 第 26 题 】【 答 案 】解:(1)根据奇异四边形的定义可知:正方形是奇异四边形,故答案为正方形.(2)①过点A作AM⊥CB于M,AN⊥CD于N.∵∠ABC+∠D=180°,∠ABM+∠ABC=180°,∴∠ABM=∠D,∵∠AMB=∠AND=90°,AB=AD,∴△AMB≌△AND,∴AM=AN,∵AM⊥CB于M,AN⊥CD于N,∴CA平分∠BCD.②由①可知:∠ACD=12∠BCD=α,∵CN=CD-DN=CD-BM=CD-(CM-BC)=CD-(CN-BC),∴CN=CD+BC2,在Rt△ACN中,cosα=CNAC =BC+CD2AC.(3)如图3中,由(2)可知:cos45°=AD+AB2AC,∴AD+AB=2AC×√22=6,∵四边形ABCD 的周长为6+2√10,∴BC=CD=√10,∵∠BAC=∠DAC=45°,∴∠DAB=90°,∵四边形是奇异四边形,∴∠BCD=90°,∵AD+AB=6,∴(AD+AB )2=AD 2+2AD•AB+AB 2=36,∵AD 2+AB 2=BD 2=BC 2+CD 2=20,∴AD•AB=8,∴S 四边形ABCD =S △ADB +S △BDC =12•AD•AB+12•CD•BC=9. 【 解析 】(1)根据奇异四边形的定义即可判断;(2)①过点A 作AM⊥CB 于M ,AN⊥CD 于N .只要证明△AMB≌△AND ,推出AM=AN ,再根据角平分线的判定定理即可解决问题;②利用①中结论,解直角三角形即可解决问题;(3)根据S 四边形ABCD =S △ADB +S △BDC =12•AD•AB+12•CD•BC ,求出AD•AB ,CD•BC 即可解决问题; 本题考查四边形综合题、全等三角形的判定和性质、锐角三角函数、角平分线的判定定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.【 第 27 题 】【 答 案 】解:(1)①当m=2时,抛物线解析式为y=-x 2+2x+3,当y=0时,-x 2+2x+3=0,解得x 1=-1,x 2=3,∴A (-1,0),B (3,0),当y=0时,y=-x 2+2x+3=3,则C (0,3); ②OD 交y 轴于E ,如图2,∵∠OBE=∠ACO ,∴Rt△OBE∽Rt△OCA , ∴OE OA =OB OC =33,∴OE=OA=1,∴E (0,1),设直线BE 的解析式为y=kx+b ,把B (3,0),E (0,1)代入得{3k +b =0b =1,解得{k =−13b =1, ∴直线BE 的解析式为y=-13x+1, 解方程组{y =−x 2+2x +3y =−13x +1得{x =3y =0或{x =−23y =119, ∴D 点坐标为(-23,119);③作PK⊥x 轴于K ,交BC 于F ,如图2,易得直线BC 的解析式为y=-x+3, 设P (x ,-x 2+2x+3)(0<x <3),则F (x ,-x+3), ∴PF=-x 2+2x+3-(-x+3)=-x 2+3x , ∵OB=OC=3,∴△OCB 为等腰直角三角形,∴∠KBF=45°,∴∠BFK=∠PFQ=45°,∴PQ=√22PF=-√22x 2+3√22x=-√22(x-32)2+9√28, 当x=32时,PQ 有最大值,最大值为9√28; (2)HN 的长度不变,它的长度为1.解方程-x 2+mt+m+1=0得x 1=-1,x 2=m+1,则A (-1,0),B (m+1,0),延长BH 交AM 于G ,如图3,∵∠HBA 与∠MAB 互余,∴∠BGA=90°,∵∠AMN=∠HBN ,∴Rt△BNH∽△MNA ,∴HN AN =BN MN ,设M (t ,-t 2+mt+m+1),则N (t ,0),∴HN t+1=m+1−t −t 2+mt+m+1,∴HN=−(t+1)(t−m−1)−(t+1)(t−m−1)=1,即HN 的长不发生变化.【 解析 】(1)①先解方程-x 2+2x+3=0得A 点和B 点坐标;然后计算自变量为0时的函数值得到C 点坐标;②OD 交y 轴于E ,如图2,通过证明Rt△OBE∽Rt△OCA ,利用相似比得到OE=OA=1,则E (0,1),再利用待定系数法求出直线BE 的解析式为y=-13x+1,然后解方程{y =−x 2+2x +3y =−13x +1得D 点坐标;③作PK⊥x 轴于K ,交BC 于F ,如图2,易得直线BC 的解析式为y=-x+3,设P (x ,-x 2+2x+3)(0<x <3),则F (x ,-x+3),所以PF=-x 2+3x ,再证明∠BFK=∠PFQ=45°,所以PQ=√22PF=-√22x 2+3√22x ,然后根据二次函数的性质解决问题; (2)先解方程-x 2+mt+m+1=0得A (-1,0),B (m+1,0),延长BH 交AM 于G ,如图3,证明Rt△BNH∽△MNA ,则HN AN =BN MN ,设M (t ,-t 2+mt+m+1),则N (t ,0), 所以HN t+1=m+1−t −t 2+mt+m+1,然后根据分式的运算可得到HN=1.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式,通过解方程组求两函数的交点坐标;会运用相似比表示线段之间的关系;理解坐标与图形性质.。
九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。
2023年湖南省永州市冷水滩区李达中学九年级下学期第一次月考数学试卷
2023年湖南省永州市冷水滩区李达中学九年级下学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.抛物线264y x x =-+-的对称轴是( )A .2x =-B .2x =C .3x =D .3x =- 2.如图所示几何体的左视图是( )A .B .C .D . 3.关于函数()2312y x =-+-,下列描述错误的是( )A .开口向下B .对称轴是直线=1x -C .函数最大值是2-D .当1x >-时,y 随x 的增大而增大 4.在平面直角坐标系中,二次函数2()y a x h =-(0a ≠)的图象可能是( ) A . B . C . D . 5.把抛物线24y x =-向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式为( )A .24(2)3=-+-y xB .24(2)3=---y xC .24(3)2=--+y xD .24(3)2=---y x6.如图,△ABC 中,内切圆I 和边BC ,AC ,AB 分别相切于点D ,E ,F ,若65,75B C ∠=︒∠=︒,则∠EDF 的度数是( )A .65︒B .140︒C .55︒D .70︒ 7.如图,有一圆心角为120°、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( )A .BC .D . 8.如图,正六边形ABCDEF 内接于O e ,过点O 作OM ⊥弦BC 于点M ,若O e 的半径为4,则弦心距OM 的长为( )A .B C .2 D .9.如图,AD 是半圆O 的直径,四边形ABCD 内接于半圆O ,20ADB ∠=︒,则C ∠=( )A .100°B .110°C .120°D .130° 10.如图,抛物线2(0)y ax bx c a =++≠的对称轴是直线2x =-,并与x 轴交于AB 两点,若5OA OB =,则下列结论中;①0abc >;②22()0a c b +-=;③90a c +<;④若m 为任意实数,则224am bm b a ++≥,正确的个数是( )A .1B .2C .3D .4二、填空题11.二次函数()235y x =-+的顶点坐标是______.12.抛物线221y ax x =--与x 轴有唯一一个交点,则a 的值为________.13.在O e 中,弦AB =8,则弦AB 所对的圆周角是_____________. 14.二次函数243y x x =-+,当14x -≤<时,y 的取值范围为____________. 15.如图,PA 、PB 是O e 的切线,切点分别为A 、B .若30OBA ∠=︒,3PA =,则AB 的长为___________.16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.17.二次函数()20y ax bx c a =++≠的部分图象如图,图象过点()1,0-,对称轴为直线2x =,当函数值0y <时,自变量x 的取值范围是__________.18.如图,点A 的坐标是()(),00a a <,点C 是以OA 为直径的B 上一动点,点A 关于点C 的对称点为P 当点C 在OB 上运动时,所有这样的点P 组成的图形与直线=1y x --有且只有一个公共点,则a 的值等于_____________.三、解答题19.某几何体从三个方向看到的图形分别如图;(1)该几何体是.(2)求该几何体的表面积?(结果保留π)20.如图,若对于函数245y x x =--,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点.请回答下列问题;(1)图象的对称轴,顶点坐标各是什么?(2)若P 为二次函数图象上一点,且6ABP S ∆=,求点P 的坐标.21.在Rt ABC △中,90ACB ∠=︒,D 是边AB 上一点,以BD 为直径作O e 交BC 于点F ,并且O e 与AC 相切于点E ,连接OE .(1)求证;BC OE ∥;(2)若O e 的半径为5,30A ∠=︒,求BC 的长.22.一座桥如图,桥下水面宽度AB 是10米,高CD 是4米.如图,若把桥看做是抛物线的一部分,建立如图坐标系.(1)求抛物线的解析式;(2)要使高为3米的船通过,则其宽度须不超过多少米?23.如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的长方形花圃设花圃的面积为S m 2,请问能围成面积比63平方米更大的花圃吗?如果能,请求出最大的面积.如果不能,请说明理由.24..如图,AB 是O e 直径,弦CD 垂直于AB ,交AB 于点E ,连接AC ,30CDB ∠=︒,CD =(1)求半径OC ;(2)»BC的弧长;(3)求阴影面积.25.如图,在ABC V 中,90ABC ∠=︒,以AB 的中点O 为圆心、OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .(1)判断DE 与O e 的位置关系,并说明理由;(2)求证;2BC CD AC =⋅(3)若3cos 5BAD ∠=,6BE =,求OE 的长. 26.如图,已知抛物线:22y x bx c =-++与x 轴交于点A ,(2,0)B (A 在B 的左侧),与y 轴交于点C ,对称轴是直线12x =,P 是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D 为线段OC 的中点,则POD V 能否是等边三角形?请说明理由;(3)过点P 作x 轴的垂线与线段BC 交于点M ,垂足为点H ,若以P ,M ,C 为顶点的三角形与BMH V 相似,求点P 的坐标.。
江苏省南京市树人学校2022-2023学年 九年级下学期第一次月考数学卷 (含答案)
数学注意事项:1.本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5 毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6 小题,每小题2 分,共12 分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.没有稳定的国防,就没有人民的安宁.2023 年,中国国防预算约为15537 亿元,将15537 亿用科学计数法表示为()A.1.5537×10122.下列计算结果是a5 的是(A.a2+a3B.15.537×1011)C.1.5537×1013D.0.15537×1013B.a10÷a2C.(a2)3D.a2•a33.若有理数a,b,c 在数轴上的位置如图所示,则化简|a+c|+|b﹣a|﹣|b﹣c|的结果是()A.﹣2b4.以O 为中心点的量角器与直角三角板ABC 按如图方式摆放,量角器的0 刻度线与斜边AB 重合.点D 为斜边AB 上一点,作射线CD 交弧AB 于点E,如果点E 所对应的读数为 52°,那么∠BCD 的大小为(B.﹣2a﹣2c C.﹣2b+2c D.2a﹣2b)A.52°5.在△ABC 中,∠ACB=90°,AC=4,BC=8,以点A 为顶点作三角形(阴影部分),使这个三角形与△ABC 相似,且相似比为 1:2,根据下列选项图中标注的条件,不符合要求的作图是(B.60°C.64°D.69°)A.B.C.D.6.如图,△APB 中,AB =2 2,∠APB =90°,在 AB 的同侧作正△ABD 、正△APE 和正△BPC ,则四边形 PCDE 面√积的最大值是()322 22A .1B .2C .D .二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)7.一个数的相反数是-0.7 ,则这个数的倒数是▲.x +1x − 28.若代数式有意义,则 x 的取值范围是▲.2 2 2▲9.因式分解:16a −a b =.8 + 1810 .- 16 =▲.22▲11.设 x 、x 是一元二次方程 x −2x −m =0 的两个根,且 x x =1,则 m =.12 1 212.一个圆锥的侧面展开图是半圆,则圆锥母线长与底面半径的比值为▲.13.如图,在正五边形 ABCDE 中,连接 AC 、BD 交于点 O ,则∠AOD 的度数为▲.푘푥14.已知点 A (4,2)为函数 y = 图象上一点,点 P 为该函数图象上不与 A 点重合的另一个点,且满足 OA =OP ,则所有可能的点 P 的坐标为▲.15.DF 为菱形 ABCD 边 AB 上的高,将△AFD 沿 DF 翻折得到△EFD ,DE 与直线 BC 相交于点 G .若∠EGC =70°,则∠A =▲.16.已知二次函数 y =x 2−2(k +1)x +k 2 2k 3 与 x 轴有两个交点,当 k 取最小整数时的二次函数的图象在 x 轴下方− −的部分沿 x 轴翻折到 x 轴上方,图象的其余部分不变,得到一个新图象,则新图象与直线 y =x +m 有三个不同公共点时 m 的值是▲.三、解答题(本大题共 11 小题,共 88 分,解答时应写出文字说明、证明过程或演算步骤)푎2−41217.(2×5分=10分 )(1)计算:2 3 cos30°+(− )1−1−327; ( )化简:(2−)÷.푎2−4푎+4푎2−2푎2−푎132푥<6 −푥18.(6分)解不等式组:{2,并写出该不等式组所有的整数解.푥−2 푥−33≥419.(6 分)甲,乙两地相距 360km ,两人分别从甲地乘早 7 时出发的普通客车和早 8 时 15 分出发的豪华客车去乙地,两车恰好同时到达.已知豪华客车与普通客车的平均速度的比是 4:3,两车的平均速度分别是多少?20.(7 分)某学校开展了该校八年级部分学生的综合素质测评活动,随机选取了该校八年级的 50 名学生进行测评,统计数据如下表:测评成绩80859095100(单位:分)人数51010205(1)这 50 名学生的测评成绩的平均数是▲分,众数是▲分,中位数是 ▲ 分,方差是 ▲ 分 2 ;(2)若该校八年级共有学生 300 名,测评成绩在 90 分以上(包含 90 分)为优秀,试估计该校八年级优秀学生共有多少名?21.(6分)把算珠放在计数器的 3 根插棒上可以构成一个数,例如:如图摆放的算珠表示数 210.(1)若将一颗算珠任意摆放在这 3 根插棒上,则构成的数是三位数的概率是▲;(2)若一个数正读与反读都一样,我们就把这个数叫做回文数.现将两颗算珠任意摆放在这 3 根插棒上,先放一颗算珠,再放另一颗,请用列表或画树状图的方法,求构成的数是三位数且是回文数的概率.퐴퐷퐶퐷퐶퐷퐵퐷22.(6分)如图,△ABC 中,CD 是边AB 上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB 的大小.23.(7 分)如图,在一座建筑物CM 上,挂着“美丽南京”的宣传条幅AC,在建筑物的A 处测得地面上B 处的俯角为 30°,测得D 处的俯角为 45°,其中点A、B、C、D、E 在同一平面内,B、C、D 在同一条直线上,求宣传条幅AC 长.▲,给出下列条件:①BD=50 米;②D 到AB 的距离为 25 米;③AM=20 米;请在 3 个条件中选择一个能解决上述问题的条件填到上面的横线上(填序号),并解决该问题(结果保留根号).24.(8分)如图,在 Rt△ABC 中,∠C=90°,点D 为边AC 上一点.(1)尺规作图:在边AB 上找一点E,使得∠DEA=2∠BDE.(2)在(1)的条件下以点E 为圆心,EB 为半径的圆分别与AB,BC 交于M,N 点,且∠DEM=∠DEN.求证:AC 与⊙E 相切.25.(10 分)某单位准备利用现成的一堵“L”字形的墙面(粗线ABC 表示墙面,已知AB⊥BC,AB=3 米,BC=1米)和总长为14 米的篱笆围建一个“日”字形的小型农场DBEF(细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图 1),也可能在线段BA 的延长线上(如图 2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,①设DF 的长为x 米,请用含x 的代数式表示EF 的长并写出x 的取值范围;②若所围成的小型农场DBEF 的面积为 12 平方米,求DF 的长;(2)当点D 在线段BA 延长线上,DF 为多少时,小型农场DBEF 的面积最大?最大面积为多少平方米?26.(10 分)将一张矩形纸片OABC 放置在平面直角坐标系中,点A 的坐标为(3,0),点C 的坐标为(0,4).D 是BC 边上的一个动点(点D 不与点B,C 重合),将△ODC 沿OD 翻折得到△ODC′,设CD=x.(1)如图 1,若∠COD=18°,则∠BDC′=▲°;(2)如图 2,连接AC′,当x=2 时,求△OAC′的面积;(3)连接BC′,当△BDC′为直角三角形时,求x 的值.27.(12分)【阅读理解】三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“高光点”.如图 1,△ABC 中,点D 是AB 边上一点,连接CD,若CD2=AD•BD,则称点D 是△ABC 中AB 边上的“高光点”.【探究应用】(1)如图 2,△ABC 的顶点是 4×4 网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“高光点”;....√2234(2)如图 3,△ABC 中,AB=14,cos A=,tan B=,若点D 是AB 边上的“高光点”,求线段AD 的长;(3)如图 4,△ABC 是⊙O 的内接三角形,点H 在AB 上,连接CH 并延长交⊙O 于点D,若点H 是△ACD 中CD 边上的“高光点”.①求证:AH=BH;퐷퐻32퐶퐻②若BC⊥CH,⊙O 的半径为r,且r=AD,求的值.图1图2图3图4参考答案与试题解析一.选择题(共6 小题)1.没有稳定的国防,就没有人民的安宁。
2023年湖南省岳阳市弘毅新华中学九年级下学期月考数学试卷
2023年湖南省岳阳市弘毅新华中学九年级下学期月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数﹣2023的绝对值是( )A .2023B .﹣2023C .D .1202312023-2.“思明拾光”系列短视频以中国“二十四节气”为主线,在自然与人文之间开启全新的阅读视角.请你用数学的眼光观察下列四副代表“立春”、 “立夏”、 “芒种”、 “白露”的作品,其中是轴对称图形的是( )A .B .C .D .3.上海世博会“中国馆”的展馆面积为,这个数据用科学记数法可表示为215800m ( ).A .B .C .D .50.15810⨯41.5810⨯315810⨯51.5810⨯4.下列各运算中,计算正确的是( ).A .B .C .224a a a +=()326b b =23222⋅=x x x D .()222m n m n -=-5.某校6名学生参加课外实践活动的时间分别为:3,3,6,4,3,7(单位:小时),这组数据的众数和中位数分别为( )A .6和7B .3和3.5C .3和3D .3和56.如图,在中,,,垂足为D ,,交于点E ,ABC C B ∠=∠AD BC ⊥DE AB ∥AC 若,则的长度为( )4.5DE DC +=AC BC +A .7.5B .8C .9D .9.57.下列命题中是假命题的是( )A .三角形的中位线平行于三角形的第三边,并且等于第三边的一半B .如果两个角互为邻补角,那么这两个角一定相等C .从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D .直角三角形斜边上的中线等于斜边的一半8.已知二次函数,当时,y 随x 的增大()()()211610,02y m x n x m n =-+-+≥≥12x ≤≤而减小,则的最大值为( )mn A .4B .6C .8D .494二、填空题9.分解因式:________.3269a a a -+=10x 的取值范围为______.11.不透明袋子中装有2个黑球,3个白球,这些球除了颜色外无其他差别,从袋子中随机摸出1个球,“摸出黑球”的概率是_______.12.分式方程的解为________.123x x =+13.关于x 的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,则实数k 的取值范围是_______.14.已知,则代数式的值为_________.2272a a -=2211a a a a a--⎛⎫-÷ ⎪⎝⎭15.《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金 _____两.16.如图,在锐角△ABC 中,AC =12,以AC 为直径作⊙O ,交BC 边于点M ,M 是BC 的中点,过点M 作⊙O 的切线交AB 于点N .①若∠A =50°,则=__________; CM②若MN =4,则tan ∠BMN =__________.三、解答题17.计算:()﹣()﹣1+|1﹣2sin60°.1418.如图,在平行四边形中,对角线、相交于点,在对角线ABCD AC BD O E F 、AC 上,且,,求证:四边形是矩形.AE CF =OE OD EBFD19.如图,在直角坐标系中,直线与反比例函数的图象交于A 、B 两点,13y x =-k y x=已知A 点的纵坐标是2.(1)求反比例函数的表达式;(2)根据图象求的解集;13k x x-<(3)将直线向上平移6个单位后与y 轴交于点C ,与双曲线在第二象限内的部分13y x =-交于点D ,求的面积.ABD △20.自我省深化课程改革以来,铁岭市某校开设了:A .利用影长求物体高度,B .制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共调查 名学生,扇形统计图中B所对应的扇形的圆心角为 度;(2)补全条形统计图;(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.21.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低1元,日销售量增加2件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?62.5(2)小明的线下实体商店也销售同款小商品,标价为每件元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?22.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:).,,︒≈︒≈︒≈≈sin700.94cos700.34tan70 2.75 1.7323.如图,和是有公共顶点的直角三角形,,点为ABC ∆ADE ∆90BAC DAE ∠=∠=︒P 射线,的交点.BD CE(1)如图1,若和是等腰三角形,求证:;ABC ∆ADE ∆ABD ACE ∠=∠(2)如图2,若,问:(1)中的结论是否成立?请说明理.30ADE ABC ∠=∠=︒(3)在(1)的条件下,,,若把绕点旋转,当时,6AB =4=AD ADE ∆A 90EAC ∠=︒请直接写出的长度.PB 24.如图1,在平面直角坐标系中,抛物线与直线交于点,212y x bx c =++AB ()0,4A -.()4,0B(1)求该抛物线的函数表达式;(2)点为直线下方抛物线上的一动点,过点作交于点,过点作P AB P PM AB ⊥AB M P y轴的平行线交轴于点的最大值及此时点的坐标;x N PN +P (3)如图2,将该抛物线先向左平移4个单位,再向上移3个单位,得到新抛物线,新y '抛物线与轴交于点,点为轴左侧新抛物线上一点,过作轴交y 'y F M y y 'M MN y ∥射线于点,连接,当为等腰三角形时,直接写出所有符合条件的点BF N MF FMN M 的横坐标.参考答案:1.A【分析】根据绝对值的代数意义即可得出答案.【详解】解:因为负数的绝对值等于它的相反数,所以,﹣2023的绝对值等于2023.故选:A .【点睛】本题考查了绝对值的代数意义,熟练掌握知识点是本题的关键.2.B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A ,C ,D 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.10n a ⨯1||10a ≤<n 【详解】解:.415800 1.5810=⨯故选:B .【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,10n a ⨯1||10a ≤<为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值n n a n 与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是10≥n 1<n 负数,确定与的值是解题的关键.a n 4.B【分析】根据合并同类项法则,幂的乘方法则,单项式乘以单项式法则及完全平方公式分别计算并判断.【详解】解:A 、,故原计算错误;2222a a a +=B 、,故原计算正确;()326b b =C 、,故原计算错误;23224x x x ⋅=D 、,故原计算错误;()2222m n m mn n -=-+故选:B .【点睛】此题考查了正式的计算,正确掌握合并同类项法则,幂的乘方法则,单项式乘以单项式法则及完全平方公式是解题的关键.5.B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【详解】解:将数据从小到大排列:3、3、3、4、6、7,出现次数最多的是3,因此众数为3,3处在第3位,4处在第4位,该数据的平均数为,34 3.52+=因此中位数为:3.5,故选:B .【点睛】本题考查了中位数和众数,熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,是解题的关键.6.C【分析】由得到是等腰三角形,由得到,,再进一ABC AD BC ⊥CAD BAD ∠=∠CD BD =步得到,由即可得到答案.AE ED CE == 4.5DE DC +=【详解】解:∵C B ∠=∠,∴是等腰三角形,ABC ∵,AD BC ⊥∴,,CAD BAD ∠=∠CD BD =∵,DE AB ∥∴,,EDA BAD ∠=∠CDE B C ∠=∠=∠∴,,ADE DAE ∠=∠CE ED =∴,AE ED CE ==∵,4.5DE DC +=∴,229AC BC AE EC CD BD DE CD +=+++=+=故选:C .【点睛】此题考查了等腰三角形的判定和性质,熟练掌握等腰三角形的性质是解题的关键.7.B【分析】利用三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质分别判断后即可确定正确的选项.【详解】解:A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半,是真命题,故此选项不符合题意;B. 如果两个角互为邻补角,那么这两个角不一定相等,故此选项是假命题,符合题意;C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,是真命题,故此选项不符合题意;D. 直角三角形斜边上的中线等于斜边的一半,是真命题,故此选项不符合题意;故选:B【点睛】考查了命题与定理的知识,解题的关键是了解三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质.8.C【分析】由二次函数解析式求出对称轴,分类讨论抛物线开口向下及开口向上的的取值,m n 范围,将转化为二次函数求最值即可.mn 【详解】解:抛物线的对称轴为直线:,()()()211610,02y m x n x m n =-+-+≥≥61n x m -=-①当时,抛物线开口向上,1m >∵时,y 随x 的增大而减小,12x ≤≤∴,即.621n m -≥-28m n +≤解得,82n m ≤-∴,()82mn m m ≤-∵,()()282228m m m -=--+∴.8mn ≤②当时,抛物线开口向下,01m ≤<∵时,y 随x 的增大而减小,12x ≤≤∴,即,611n m -≤-7m n +≤解得,7m n ≤-∴,()7mn n n ≤-∵,()2749724n n n ⎛⎫-=--+ ⎪⎝⎭当时,有最大值,72m n ==mn 494∵,01m ≤<∴此情况不存在.综上所述,最大值为8.mn 故选C .【点睛】本题考查二次函数的性质.解题的关键是将的最大值转化为二次函数求最值.mn 9.()23a a -【分析】先提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:3269a a a-+()269a a a =-+,()23a a =-故答案为:.()23a a -【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.10.>4x 【分析】根据分式的分母不为0,二次根式的被开方数大于等于0,列式求解即可.【详解】解:由题意,得:,解得:;40x ->>4x 故答案为:.>4x 【点睛】本题考查代数式有意义的条件.熟练掌握分式的分母不为0,二次根式的被开方数大于等于0,是解题的关键.11.##0.425【分析】根据概率的定义,抽到黑球的概率 ,代入数值计算即可.=黑球个数总个数【详解】抽到黑球的概率:,22235P ==+故答案为:.25【点睛】本题考查概率,注意利用概率的定义求解.12.3x =【分析】先去分母化为整式方程,解整式方程,检验即可.【详解】解:,123x x =+方程两边都乘以约去分母得:,()3x x +32x x +=解这个整式方程得,3x =检验:当时,,3x =()30x x +≠∴是原分式方程的解.3x =故答案为:.3x =【点睛】本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键.13.k <2且k ≠1【分析】根据一元二次方程的定义和判别式的意义得到k ﹣1≠0且=(﹣2)2﹣4(k ﹣1)>0,然∆后求出两个不等式的公共部分即可.【详解】解:∵关于x 的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,∴k -1≠0且∆=(-2)2-4(k -1)>0,解得:k <2且k ≠1.故答案为:k <2且k ≠1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式=b 2﹣4ac :当>0,∆∆方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当<0,方程没有实数∆∆根.14.##3.5##37212【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a--⎛⎫-÷ ⎪⎝⎭=22211a a a a a a⎛⎫---÷ ⎪⎝⎭=22211a a a a a-+-÷=22(1)1a a a a -⨯-=(1)a a -=.2-a a ,2272a a -=移项得,2227a a -=左边提取公因式得,22()7a a -=两边同除以2得,272a a -=∴原式=.72故答案为:.72【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.187【分析】根据已知条件,设每头牛x 两,每只羊y 两,建立二元一次方程组求解可得.【详解】解:设每头牛x 两,每只羊y 两,根据题意,可得5210,258,x y x y +=⎧⎨+=⎩,7718x y ∴+=,187x y ∴+=1头牛和1只羊共值金两,∴187故答案为:.187【点睛】本题考查二元一次方程组的实际应用.恰当利用已知条件找出等式关系,列出二元一次方程组是解本题的关键.16. 53π【分析】(1)如图,连接OM ,易得OM 是△ABC 的中位线,继而可得OM ∥AB ,,由平行线的性质可得,继而根据弧长公式即可求得,12OM AB =50COM A ∠=∠=︒ CM (2)连接AM ,根据圆周角定理可得,继而易得△ABC 是等腰三角形,根据切90AMC ∠=︒线的性质可得OM ⊥MN ,继而易得,由相似三角形的性质可得,BMN MAN ~ BN MN MN AN =设,,可得关于x 的方程,解方程即可得BN x =12AN x =-6BN =-tan ∠BMN .【详解】如图,连接OM ,∵AC 为⊙O 的直径,∴点O 是AC 的中点,又 M 是BC 的中点,∴OM 是△ABC 的中位线,∴OM ∥AB ,,12OM AB =∵∠A =50°,∴,50COM A ∠=∠=︒又⊙O 的直径AC =12,即半径,6R =∴, 50651801803n R CM πππ⨯⨯===连接AM ,∵AC 为⊙O 的直径,∴,即AM ⊥BC ,90AMC ∠=︒又 M 是BC 的中点,∴△ABC 是等腰三角形,∴,12AB AC ==∵MN 是⊙O 的切线交AB 于点N ,∴OM ⊥MN ,∵OM ∥AB ,∴AB ⊥MN ,∴,,90BMN MBN ∠+∠=︒90MAN MBN ∠+∠=︒∴,BMN MAN ∠=∠∵,90MAN AMN ∠+∠=︒∴,MBN AMN ∠=∠∴,BMN MAN ~ ∴,BN MN MN AN=设,,BN x =12AN x =-又,4MN =∴,4412x x=-解得:或6x =-6x =+∵BN <AN ,∴,6BN =-∴tan BN BMN MN ∠===故答案为:53π【点睛】本题考查圆的综合题,涉及到相似三角形的判定及其性质、切线的性质、等腰三角形的判定及其性质、三角形中位线的判定及其性质,正切,弧长公式,解题的关键是熟练掌握所学知识,学会作辅助线.17.-【分析】根据实数的性质化简即可求解.【详解】原式=-=-=-.【点睛】此题主要考查实数的混合运算,解题的关键是熟知特殊角的三角函数值.18.证明见解析【分析】根据平行四边形的性质,得到对角线相互平分,则,再结合,OB OD OA OC ==,,得到,结合矩形的判定定理即可得证.AE CF =OE OD =OE OD OF OB ===【详解】证明:在平行四边形中,对角线、相交于点,ABCD AC BD O ,∴,OB OD OA OC ==,AE CF =,OE OF ∴=四边形是平行四边形,∴EBFD ,OE OD =,即,∴OE OD OF OB ===EF BD =四边形是矩形.∴EBFD 【点睛】本题考查矩形的判定,涉及平行四边形的性质,熟练掌握平行四边形的性质及矩形的判定是解决问题的关键.19.(1)12y x=-(2)或60x -<<6x >(3)36【分析】(1)利用求出点A 的坐标,将点A 的坐标代入反比例函数中求出k 13y x =-k y x=即可;(2)联立两个函数解析式,求出点坐标,再结合图象即可得到解集;B (3)根据平移规则,求出平移后的解析式,连接,得到的面积等于,AC BC ABC ABD△的面积,利用,进行计算即可得出结果.12ABC A B S CO x x =⋅- 【详解】(1)解:令一次函数中,则,13y x =-2y =123x =-解得:,即点A 的坐标为,6x =-()6,2-∵点A 在反比例函数的图象上,()6,2-k y x =∴,6212k =-⨯=-∴反比例函数的表达式为;12y x=-(2)解:联立,解得:或312x y y x ⎧=-⎪⎪⎨⎪=-⎪⎩62x y =-⎧⎨=⎩62x y =⎧⎨=-⎩∴,()6,2B -由图象可知,的解集为或;13k x x-<60x -<<6x >(3)解:由题意,得:平移后的解析式为 16,3y x =-+当时,,0x =6y =∴,()0,6C ∴,6OC =连接、如图所示.ACBC ∵,CD AB ∥∴.116663622ABC B ABD A S CO x S x =⋅-=⨯⨯--== 【点睛】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征,三角形面积,数形结合是解题的关键.20.(1)60,144°;(2)见解析;(3)23【分析】(1)用C 类别人数除以其所占百分比可得总人数,用360°乘以B 类别人数占总人数的比例即可得;(2)总人数乘以A 类别的百分比求得其人数,用总人数减去A ,B ,C 的人数求得D 类别的人数,据此补全图形即可;(3)画树状图展示12种等可能的结果数,再找出所抽取的两人恰好是1名女生和1名男生的结果数,然后根据概率公式求解.【详解】(1)解:本次调查的学生人数为12÷20%=60(名),则扇形统计图中B 所对应的扇形的圆心角为=144°.2436060︒⨯故答案为:60,144°;(2)解:A 类别人数为60×15%=9(人),则D 类别人数为60−(9+24+12)=15(人),补全条形图如下:(3)解:画树状图为:共有12种等可能的结果数,其中所抽取的两人恰好是1名女生和1名男生的结果数为8,所以所抽取的两人恰好是1名女生和1名男生的概率为.82123=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.21.(1)每件售价为50元(2)至少打八折销售价格不超过50元【分析】(1)设每件的售价定为x 元,根据利润不变,列出关于x 的一元二次方程,求解即可;(2)设该商品打m 折,根据销售价格不超过(1)中的售价列出一元一次不等式,解不等式即可.【详解】(1)解:设每件的售价定为x 元,则有:,()60220(40)(6040)20x x -⨯+⨯-=-⨯⎡⎤⎣⎦解得:(舍去),1250,60x x ==答:每件售价为50元;(2)解:设该商品打m 折,根据题意得:,62.55010m ⨯≤解得:,8m ≤答:至少打八折销售价格不超过50元.【点睛】本题主要考查一元二次方程的实际应用以及一元一次不等式的应用,找准等量关系列出方程是解决问题的关键.22.58m【分析】延长AB 和CD 分别与直线OF 交于点G 和点H ,则,再根据90AGO EHO ∠=∠=︒图形应用三角函数即可求解.【详解】解:延长AB 和CD 分别与直线OF 交于点G 和点H ,则.90AGO EHO ∠=∠=︒又∵,=90GAC ∠︒∴四边形ACHG 是矩形.∴.GH AC =由题意,得.60,24,70,30,60AG OF AOG EOF EFH ==∠=︒∠=︒∠=︒在中,,Rt AGO △90,tan AG AGO AOG OG ∠=︒∠=∴(m )﹒606021.822tan tan 70 2.75AG OG AOG ==≈≈≈∠︒∵是的外角,EFH ∠EOF ∴.603030FEO EFH EOF ∠=∠-∠=︒-︒=︒∴.EOF FEO ∠=∠∴m .24EF OF ==在中,Rt EHF 90,cos FHEHF EFH EF∠=︒∠=∴(m).cos 24cos 6012FH EF EFH =⋅∠=⨯︒=∴.()22241258m AC GH GO OF FH ==++=++≈答:楼AB 与CD 之间的距离AC 的长约为58m .【点睛】本题主要考查三角函数的综合应用,正确构造直角三角形并应用三角函数进行求解是解题的关键.23.(1)详见解析;(2)(1)中结论成立,详见解析;(3【分析】(1)利用SAS 证,可得出;ADB AEC ∆≅∆ABD ACE ∠=∠(2)根据直角三角形边的关系,可得,从而证,最终得出角度关AD AE AB AC=ADB AEC ∆∆ 系;(3)存在2种情况,一种是点E 在线段AB 上,另一种是点E 在AB 的反向延长线上,分别利用相似的关系推导可得.【详解】(1)和是等腰直角三角形,,ABC ∆ ADE ∆90BAC DAE ∠=∠=︒,,.3AB AC ∴==2AD AE ==DAB CAE ∠=∠.ADB AEC ∴∆≅∆.ABD ACE ∴∠=∠(2)(1)中结论成立,理由:在中,,Rt ABC ∆30ABC ∠=︒,AB ∴=在中,,Rt ADE ∆30ADE ∠=︒,AD ∴=.AD AE AB AC∴=,90BAC DAE ∠=∠=︒ ,BAD CAE ∴∠=∠.ADB AEC ∴∆∆ .ABD ACE ∴∠=∠(3)情况一:如下图,点E 在线段AB 上由第(1)问可得:△BAD ≌△CAE ∴∠ABD=∠ACE∵∠ADB=∠PDC∴△ABD ∽△PCD ∴AD BD DP DC=∵AB=AC=6,AD=AE=4,∴DC=10∴在Rt △BAD 中,=∴∴情况二:如下图,点E 在BA 的延长线上同理可证:△AEC ∽△PEB ∴AC EC PB BE=∵AB=AC=6,AD=AE=4,∴EB=10∴在Rt △AEC 中,=∴∴综上得:PB 【点睛】本题考查三角形的全等和相似的证明,并考查了勾股定理的计算,解题关键是找出图形中的全等三角形和相似三角形.24.(1)2142y x x =--(2),254335,28P ⎛⎫- ⎪⎝⎭(3)符合条件点的横坐标分别为、、、.M 5-10-92-6512-【分析】(1)用待定系数法把,代入可得.()0,4A -()4,0B 212y x bx c =++(2)设直线的解析式为,把,代入可得,求出直线的解析AB y kx b =+()0,4A -()4,0B AB式为,求出,当最大值为.4y x =-PC =32m =PN +254(3)求出左平移4个单位,再向上移3个单位的函数表达式,把,21332y x x '=++NF,表示出来,分情况讨论即可.MN MF 【详解】(1)解:把,代入可得,()0,4A -()4,0B 212y x bx c =++,4084c b c -=⎧⎨=++⎩解得,,4c =-1b =-∴,2142y x x =--(2)解:设直线的解析式为,AB y kx b =+把,代入可得,()0,4A -()4,0B ,,1k =4b =-∴直线的解析式为,AB 4y x =-设,则21,42⎛⎫-- ⎪⎝⎭P m m m ,2142m m PN =-++∵,OA OB =∴,45OBA ∠=︒∴,45NCB ∠=︒∴,45MCP ∠=︒又∵,PM AB ⊥∴,PC =把P 点的横坐标代入可得,4y x =-,4y m =-(),4C m m -∴,2122PC m m =-+223253424PN m m m ⎛⎫ ⎪+=-++=--+ ⎪⎝⎭当最大值为.此时,32m =PN +254335,28P ⎛⎫- ⎪⎝⎭(3)把变成顶点式为,2142y x x =--()219122y x =--∵左平移4个单位,再向上移3个单位,∴即,()213232y x '-=+1332y x x '=++∴,()0,3F 设过的直线解析式为,BF y kx b =+把,代入得,解得,,()0,3F ()4,0B 403a b b +=⎧⎨=⎩3b =34k =-∴的直线解析式,BF 334y x =-+设,M 和N 的横坐标相同,把M 的横坐标代入,21,332M a a a ⎛⎫ ⎪++ ⎪⎝⎭334y x =-+∴,3,34N a a ⎛⎫ ⎪-+ ⎪⎝⎭∴,54NF a =-,215142MN a a =--MF ==-I 、当时,,NF MN =25151442a a a -=--解得:,(舍去),,15a =-20a =310a =-∴,115,2M ⎛⎫ ⎪- ⎪⎝⎭()210,23M -II 、当时,NF MF =54a -=-整理得:,24481350a a ++=∵,192a =-2152a =-当时,.92a =-93,28M ⎛⎫ ⎪-- ⎪⎝⎭189,25N ⎛-⎫ ⎪ ⎪⎝⎭当时,.,此时M 、N 重合,不合题意,舍去,152a =-1569,28M ⎛⎫ ⎪-- ⎪⎝⎭9815,26N ⎛⎫ ⎪ ⎪⎝⎭-III 、当时,MN MF =215142a a --=-整理得:36544a =-解得,6512a =-当时,,6512a =-65409,12288M ⎛⎫ ⎪- ⎪⎝⎭综上所述:符合条件的点M 有四个,其横坐标分别为、、、.5-10-92-6512-【点睛】此题考查了二次函数的综合问题,解题关键是熟悉二次函数的基本性质、待定系数法、线段表示方法.。
福建省泉州第一中学2024届九年级下学期第一次月考数学试卷(含详解)
福建省泉州第一中学2024届九年级下学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.-6的相反数是( )A.-6B.2.第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,下列巴黎奥运会项目图标中,轴对称图形是( )A. B. C. D.3.中国立足本国国情、粮情,实施新时期国家粮食安全战略,走出了一条中国特色粮食安全之路.2022年我国全年粮食产量68653万吨,比上年增加368万吨,增产.将686530000用科学记数法表示应为( )A. B. C. D.4.如图是一个由5个小正方体和1个圆锥组成的立体图形,这个立体图形的主视图是( )A. B. C. D.5.下列运算正确的是( )A. B. C. D.6.若点,,在反比例函数,,的大小关系是( )0.5%46865310⨯90.6865310⨯86.865310⨯86.910⨯63922a a a +=248a a a ⋅=()2326ab a b =()222a b a b +=+()11,A y -()22,B y ()33,C y y =1y 2y 3yA. B. C. D.7.如图,点A ,C 是上两点,连接并延长交切线于点D ,连接、、、,若,则( )A. B. C. D.8.随着城际交通的快速发展,某次动车平均提速,动车提速后行驶与提速前行驶所用的时间相同.设动车提速后的平均速度为,则下列方程正确的是( )9.某路灯示意图如图所示,它是轴对称图形.若,,与地面垂直且,则灯顶A 到地面的高度为( )mA.B. C.10.如图,在矩形中,O 为的中点,过点O 作的垂线,分别交于点F ,交于点E ,G 是的中点,且,有下列结论:①;②;③连结,,四边形为菱形;④其中正确的是( )A.②③ B.③④ C.①②④ D.①③④123y y y >>231y y y >>132y y y >>321y y y >>O AC BD OB OC BC AB 40CBD ∠=︒BOC ∠=40︒55︒70︒80︒60km /h 480km 360km km /h x ==48060x =-480x=130ACB ∠=︒ 1.2m AC BC ==CD 3m CD =3 1.2cos 25+︒3 1.2sin 25+︒3+ 1.2sin 25+︒ABCD AC AC DC AB AE 30AOG ∠=︒3DC OG =12OG BC =AF CE AECF 16AOE ABCD S S =矩形△______.15.马面裙(图1),又名“马面褶裙”,是我国古代女子穿着的主要裙式之一,如图2,马面裙可以近似地看作扇环(和的圆心为点O ),A 为的中点,,则该马面裙裙面(阴影部分)的面积为______.16.已知关于x 的二次函数,当时,函数有最小值,则k 的值为_____.三、解答题17.计算:18.已知:如图,四边形是平行四边形,P ,Q 是对角线上的两个点,且.求证:.α︒ABCD AD BC OB 8dm BC OB ==2dm ()211y x k -+=-14x ≤≤2k ()04cos302024π︒-+ABCD BD BP DQ =PA QC =重用,求仕无望后满怀愤慨所作的名篇.王铭和李虹将这首诗中的四句分别写在编号为A ,B ,C ,D ,如图所示,卡片除编号和内容外,将这4张卡片背面朝上,洗匀放好(1)王铭从中抽取一张卡片,恰好抽到“长风破浪会有时”的概率为;(2)李虹先抽一张卡片,接着王铭从剩下的卡片中抽一张,用画树状图或列表的方法求两人所抽卡片上的诗句恰好成联的概率.(注:A 与B 为一联,C 与D 为一联)22.如图,是的直径,与相交于点.过点的圆O 的切线,交的延长线于点F ,.(1)求的度数;(2)若,求的半径.23.综合与实践AB O CD AB E D //DF AB CA CF CD =F ∠8DE DC ⋅=O,将绕点D 逆时针旋转,得到.(1)如图1,若B ,E ,C 三点共线时,求的长;(2)如图2,若,(3)如图3,连接,请直接写出的最小值.25.如图,抛物线经过点、两点,与y 轴负半轴交于点C ,且.(1)求抛物线的解析式;(2)如图1,连接,R 为上一点,连,求点T 的坐标;(3)如图2,点C 关于抛物线对称轴的对称点为D ,过点D 的直线(直线不与x 轴垂直)与抛物线只有一个公共点,平移直线交抛物线于E 、F 两点,点E 在第二象限,点F 在第DA DA 90︒DE CE 45ADB ∠=︒DE CE CE 2y ax bx c =++()1,0A ()3,0B -OB OC =BC BC AR 2=MN MN MN三象限,连交y轴于点P,连交y轴于点Q,求的值.EA FA OQ OP参考答案1.答案:C 解析:的相反数是6,故选:C.2.答案:B解析:A 、不是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:B.3.答案:C解析:686530000用科学记数法表示应为.故选:C.4.答案:C 解析:从正面看到的图形为,故选:C5.答案:C解析:A 、与不是同类项,不能合并,故选项A 不符合题意;B 、,故选项B不符合题意;C 、,故选项C 符合题意;D 、,故选项D 不符合题意;故选:C.6.答案:C 解析:∵反比例函数解析式为,∴反比例函数图象经过第二、四象限,在每个象限内,y 随x 增大而增大,6-86.865310⨯62a 3a 246a a a ⋅=()2326ab a b =()2222a b a ab b +=++y =60<∵点,,在反比例函数,∴,故选:C.7.答案:D解析:切于D ,,,,,,,故选:D.8.答案:B故选:B.9.答案:B解析:如图,过点E 作于点E ,过点C 作于点M ,所以,四边形是矩形,∴,∵路灯图是轴对称图形,且,∵在中,,又()11,A y -()22,B y ()33,C y y =1023<<<1320y y y >>> BD O 90OBD ∴∠=︒ 40CBD ∠=︒904050OBC OBD CBD ∴∠=∠-∠=︒-︒=︒OC OB = 50OBC OCB ∴∠=∠=︒18080BCO OBC OCB ∴∠=︒-∠-∠=︒=AE DE ⊥CM AE ⊥CDEM 3m ME CD ==130ACB ∠=︒()()1118018013025,22ACM ACB ∠=︒-∠=︒-︒=︒Rt ACM △ 1.2m AC =25ACM ∠=︒sin ,AM ACM AC∠=∴,∴即灯顶A 到地面的高度为故选:B.10.答案:D 解析:连接,如图,∵G 是的中点,O 为的中点,∴,故②错误,∵,∴,∵,∴,设,则,,在中,,∴,,∵矩形,∴,,∴,在中,,,∴,故①正确,∵,,,sin 1.2sin 25AM AC ACM =⋅∠=︒3 1.2sin 25AE AM ME =+=+︒()3 1.2sin 25m +︒AF CE ,AE AC 12OG EC =EF AC ⊥12OG AG GE AE ===30AOG ∠=︒30OAG AOG ∠=∠=︒OE a =2AE a =12OG AE a ==Rt AOE△AO ===CO AO==2AC AO ==ABCD 90ADC ∠=︒//AB DC 30ACD CAB ∠=∠=︒Rt ACD△1122AD AC ==⨯=3DC a ===3DC OG =OAE OCF ∠=∠AOE COF ∠=∠OA OC =∴,∴,∵O 为的中点,,∴,,即:,∴四边形为菱形,故③正确,,,,故④正确,综上所述:①③④正确,故选:D.11.答案:,解得:.故答案为:.12.答案:解析:,故答案为:.13.答案:24解析:∵一组数据28,29,22,x ,18,它的中位数是23,且这组数据只有5个数,那么把这组数据从小到大排列,最中间的数为23,∴,,故答案为:24.14.答案:81解析:∵,,∴,根据作图痕迹可得AD 是的平分线,∴,()OAE OCF ASA ≌△△AE FC =AC EF AC ⊥AF CF =AE CE =AF CF AE CE ===AECF 212AOE S OA OE a =⋅=⋅=△23ABCD S AD DC a =⋅=⋅=矩形2216AOE ABCD S S =⨯==矩形△1x ≥10x -≥1x ≥1x ≥()()33x x +-()()2933x x x -=+-()()33x x +-23x =24=32B =︒∠78BCA ∠=︒70BAC ∠=︒BAC ∠35CAD ∠=︒根据作图痕迹可得EF 是线段BC 的垂直平分线,∴,∴,∴.故答案为:81.15.答案:解析:∵,,A 为的中点,∴为等边三角形,,∴,∴;故答案为:.解析:∵二次函数解析式为,∴二次函数开口向下,对称轴为直线,∴在对称轴右侧,y 随x 增大而减小,在对称轴左侧,y 随x 增大而增大,当时,则当时,y 有最小值,∴,∴,解得或,都不符合题意;当时,则当时,y 有最小值,∴,∴,解得当时,则函数在或处取得最小值,当时,在处取得最小值,此时或(舍去);当时,在处取得最小值,此时综上所述,或32BCF B ∠=∠=︒783246ACF ACB BCF ∠=∠-∠=︒-︒=︒354681CAD ACF α∠=∠+∠=︒+︒=︒8π8dm BC OB ==OB OC =OB BOC △4dm OA =60BOC ∠=︒22260π860π48πdm 3603()60S ⨯⨯=-=阴影8π()211y x k -+=-x k =1k <4x =()24112k k --+=2650k k -+=1k =5k =4k >1x =()21112k k --+=210k =k =14k ≤≤1x =4x =1 2.5k ≤≤4x =1k =5k =2.54k <≤1x =k ==1k =k =17.答案:解析:原式.18.答案:证明见解析解析:证明:∵四边形是平行四边形,∴,,∴,在和中,,∴,∴.19.答案:当时,原式20.答案:学生人数为7人,该书的单价为53元.解析:设学生人数为x 人,由题意得:,解得:,1-41=-1=--1=-ABCD AB CD =//AB CD ABP CDQ ∠=∠ABP △CDQ △AB CD ABP CDQ BP DQ =⎧⎪∠=∠⎨⎪=⎩()ABP CDQ SAS ≌△△PA QC =211x ⎛⎫- ⎪+⎝⎭()2121111x x x x x -+⎛⎫=÷- ⎪++⎝⎭+()21111x x x x -+=⨯-+11x =-+1x =-===8374x x -=+7x =∴该书的单价为(元),答:学生人数为7人,该书的单价为53元..(2)列表如下:,,,,共4种,22.答案:(1)(2)2解析:(1)如图,连接.为的切线,77453⨯+=),B A (),A B (),D C (),C D =67.5︒OD FD O.,.,.,.(2)如图,连接,,,.,,且,,,,即半径为2.23.答案:任务1:图见解析,,任务2:解析:任务1:描点并作图如图所示:根据图象可知,变量x 、y 满足一次函数关系.设、b 为常数,且,将,和,代入,∴90ODF ∠=︒ //DF AB ∴90AOD ∠=︒ AD AD =∴1452ACD AOD ∠=∠=︒ CF CD =∴1(180)67.52F ACD ∠=⨯-∠=︒AD AO OD =90AOD ∠=︒∴45EAD ∠=︒ 45ACD ∠=︒∴ACD EAD ∠=∠ADE CDA ∠=∠∴DAE DCA ∽△△∴DE DA =28DE DC =⋅=∴DA =∴2OA OD AD ===()2120060y x x =-+≤≤25a =()31800602h x x =-+≤≤(y kx b k =+0)k ≠2x =116y =10x =100y =y kx b =+得,解得,.将和代入,得,解得;当背带都为单层部分时,;当背带都为双层部分时,,即,解得,的取值范围是;任务2:∵背带的总长度为单层部分与双层部分的长度和,总长度为,;任务3:由素材可知,当背包的背带调节到最短时都为双层部分,即,.背包提在手上,且背包的悬挂点防地面高度为,手到地面的距离为,即.设小明爸爸的身高为.臂展和身高一样,且肩宽为,,,解得,根据任务2,得,解得.24.答案:(1)211610100k b k b +=+=⎧⎨⎩2120k b =-⎧⎨=⎩2120y x ∴=-+x a =70y =2120y x =-+212070a -+=25a =0x =0y =21200x -+=60x =x ∴060x ≤≤∴2120120x x x -++=-+=()31800602h x x ∴=-+≤≤60x =0y = 53.5cm ∴6053.5cm 2⎛⎫+ ⎪⎝⎭83.5cm cm h 38cm ∴13883.582h h h -++=172h =31721802x =-+x =3CE =解析:(1)由旋转的性质可知,,,∵B ,E ,C 三点共线,∴,∵,,,∴,,∴,∴∴∴的长为(2)同理(1)可得:∵,,∴为等腰直角三角形,,∵,,∴,∴,又∵,∴,(3)如图3,作于,在上取点使,连接,过C 作于M ,=90ADE ∠=︒DE DA =90ADC ADB ∠=∠=︒90BAC ∠=︒30C ∠=︒2AB =24BC AB ==60B ∠=︒sin 620AD AB =⋅︒==1cos 60212BD AB =⋅︒=⨯=DE =AE ==413CE BC DE BD =--=--=CE 33CD =-AD =90ADE ∠=︒DE DA =ADE 45E ∠=︒AE ==90ADE ∠=︒45ADB ∠=︒45CDF ∠=︒CDF E ∠=∠CFD AFE ∠=∠CFD AFE ∽△△CD AE ===1212DF AD DF EF EF AD ⋅⋅===⋅⋅=AD BC '⊥D 'BC E 'D E AD ''='EE 'CM EE ⊥'由(1)可知,由题意知,,均为等腰直角三角形,∴,,,∴,,∴,∴,∴,∴点E 在过点与夹角为的直线上运动,∴的最小值为,,∴∴25.答案:(1)(2)或(3)2解析:(1)∵,,∴,∴,∴,解得:,3CE '=ADE △AD E ''△45EAD E AD AE D ∠=∠=''∠=''︒AE =AE '='EAE DAD ∠=∠''==EAE DAD =∠''EAE DAD ''∽△△90AE E AD D '∠=∠='︒45EE B AE E AE D ∠=∠-''∠=''︒E 'BC 45︒CE CM 45CE M ∠='︒sin CM CE CE M =⋅∠=''223y x x =+-()2,3T --()1,4--(3,0)B -OB OC =3OB OC ==()0,3C -09303a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩123a b c =⎧⎪=⎨⎪=-⎩∴抛物线解析式为;(2)设直线的解析式为,则有:,解得:,∴直线的解析式为,分别过点R 、T 作x 轴的垂线,垂足分别为E 、F ,如图所示:∴,∴,,设,则有,,∴,,∴,∴,∴,223y x x =+-BC y kx h =+303k h h -+=⎧⎨=-⎩113k h =-⎧⎨=-⎩BC 3y x =--//RE TF AER AFT ∽△△2=ER AR FT AT ===(),3R m m --3ER m =+OE m =-()332FT m =+1AE m =-()3331222AF m m =-=-331312222OF AF OA m m =-=--=-3139,2222T m m ⎛⎫--- ⎪⎝⎭代入抛物线解析式得:解得:,∴或;(3)由点C 关于抛物线对称轴的对称点为D ,及二次函数的对称轴为直线可知点,设直线的解析式为,则有:,∴,∴直线的解析式为,联立得:,∵直线与抛物线只有一个交点,∴,解得:,∴直线的解析式为,设直线的解析式为,设点,,联立得:,∴根据一元二次方程根与系数的关系可得:,,设直线的解析式为,则有:,解得:∴直线的解析式为2313132322222m m m ⎛⎫⎛⎫-+--=- ⎪ ⎪⎝⎭⎝⎭11m =-2m =()2,3T --()1,4--1x =-()2,3D --MN y kx b =+23k b -+=-23b k =-MN 23y kx k =+-22323y x x y kx k ⎧=+-⎨=+-⎩()2220x k x k +--=MN ()22Δ4280b ac k k =-=-+=2k =-MN 27y x =--EF 2y x n =-+()11,2E x x n -+()22,2F x x n -+2232y x x y x n⎧=+-⎨=-+⎩2430x x n +--=124b x x a +=-=-123c x x n a==--AE 11y k x b =+11111102k b k x b x n+=⎧⎨+=-+⎩11k b ⎧=⎪⎪⎨⎪⎪⎩AE 1121x n y x x -+=+-∴令,则有,同理可得:,∴∴.0x =y =1120,1x n x ⎛⎫- ⎪-⎝⎭2220,1x n Q x ⎛⎫- ⎪-⎝⎭OQ ==21212211x n x n OQ OP x x -+--=---()()()()()()211221212111x n x x n x x x -+----=--()()()121212124221x x n x x n x x x x -+++-=-++()()43422341n n n n ----+-=--++()2222n n -==-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下数学月考试卷
一、 精心选一选(共40分)
1、已知二次函数213x y -=、 2231x y -=、 232
3
x y =, 它们的图象开口由
小到大的顺序是( )
A 、321y y y <<
B 、123y y y <<
C 、231y y y <<
D 、132y y y << 2、已知二次函数y=-x 2+bx+c 的图象的最高点(-1,-3),则b 与c 的值是( ) A. b=2, c=4 B. b=2, c =-4 C. b=-2, c=4 D. b=-2, c =-4 3、 二次方程ax 2+bx +c=0的两根为5和-1 ,则对应的二次函数y=ax 2+bx+c 的对称轴是直线( )
A.x=-2
B. x=2
C. x= 3
D.x=-3
4、直角坐标平面上将二次函数y =-2(x -1)2
-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )
A.(0,0)
B.(1,-2)
C.(0,-1)
D.(-2,1) 5、如图1,AB ∥CD ∥EF ,则图中相似三角形的对数为( ) A 、 1对 B 、 2对 C 、 3对 D 、 4对
6、抛物线()2212m x m x y +-+=与x 轴无交点,则m的取值范围是()
A 、m>
41 B 、m>41- C 、m<41 D 、m<4
1
- 7、如图2,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O , 下列条件中不能使ΔABE 和ΔACD 相似的是 ( ) A. ∠B=∠C B. ∠ADC=∠AEB C. BE=CD ,AB=AC D. AD ∶AC=AE ∶AB
8、小颖在二次函数y=2x 2+4x+5的图象上,依横坐标找到三点(-1,y 1), (2
1
,y 2), (-72 ,y 3),则你认为y 1,y 2,y 3的大小关系应为( )
A.y 1>y 2>y 3
B.y 2>y 3>y 1
C.y 3>y 1>y 2
D.y 3>y 2>y 1
9、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )
10、已知二次函数c bx ax y ++=2的图象如图3,下列结论(1)2a+b >0; (2)a-b+c >0;(3)4a+2b+c <0;(4)(a+c )2<b 2,其中正确的是:( ) A .1个 B .2个 C .3个 D .4个
二、 细心填一填(共25)
11、若二次函数y=(m+1)x 2+m 2-9有最大值,且图象经过原点,则m= 。
12、已知抛物线c x ax y ++=2与x 轴交点的横坐标为 –1,则c a += 。
13、请写一个开口向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的
抛物线的解析式: 。
14、如图4,DE 与BC 不平行,当
AC
AB
= 时,ΔABC 与ΔADE 相似。
15、如图5,Rt ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。
三、 认真答一答(共85分)
16、(12分)如图,二次函数y=ax 2+bx+c 的图象经过A 、B 、C 三点, (1)观察图象,写出A 、B 、C 三点的坐标,并求出抛物线解析式, (2)求此抛物线的顶点坐标和对称轴。
17、(12分)已知二次函数图象顶点坐标A (2,-1)且图象过点M (5,8), (1)求二次函数解析式.
(2)设该函数与x 轴交与B,C 两点,与y 轴交于D,求△BCD 的面积。
18、(12分)如图,在△ABC 中,∠C =900,CD ⊥AB 于D 。
(1)、写出图中所有与△ABC 相似的三角形。
(2)、试证明:AB AD AC ∙=2
19、(10分)某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB= 4米,顶部C 离地面高为4.4米,现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8米,装货宽度为2.4
20、(12分)如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F. (1)ΔABE 与ΔADF 相似吗?请说明理由.
(2)若AB=6,AD=12,BE=8,求DF 的长.
A B C D E
F
B
21、(13分)某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x(元),日销售量为y(件).
(1)写出日销售量y(件)与销售单价x(元)之间的函数关系式;
(2)设日销售的毛利润(毛利润=销售总额-总进价)为P(元),求出毛利润P (元)与销售单价x(元)之间的函数关系式;
(3)在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;(4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少? 22、(14分)已知:m、n是方程x2-6x+5=0的两个实数根,且m< n,抛物线y=-x2
+bx+c的图象经过点A(m, O), B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为 C,抛物线的顶点为D,试求出点C
、 D的坐标和△BCD的面积
(注:抛物线y=ax2+bx+c2(a≠0)的顶点坐标(
2
4
,
24
b a
c b
a a
-
-)(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P的坐标.
1 2 3 4 5 6。