数列通项和求和
数列求和及求通项方法归纳

数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项 ①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。
例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法8、换元法9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。
二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列 求解过程:若)(1n f a a n n +=+ 则)1(12f a a =- )2(23f a a =-)1(1-=--n f a a n n 所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= ......累加3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列 求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ 则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31=4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。
数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型、S n 是数列{a n }的前n 项的和【注意】漏检验n 的值(如n 1的情况【例1】.(1)已知正数数列{a n }的前n 项的和为S n, 且对任意的正整数n 满足2足 a n1 ,求数列{%}的 通项公式。
(2)数列{引中,为1对所有的正整数n 都有 a 〔 a ? a 3L a 。
n 2 ,求数列{a n }的通项公式【作业一】1-1.数列 a n 满足 a1 3a2 32% L3n1an?(n N *),3求数列a n 的通项公式.a 一(二).累加、累乘型如a namf(n),或f(n)a n【方法】:S 1 (n 1) S n S ni (n 2)S n S ni”代入消兀消a n o型一:I a n a nif (n),用累加法求通项公式(推导等差数列通项公式的方法)【方法】a n a n 1 f(n),an 1 a n 2f(nD,a 2 a i f (2) n 2,从而 a n a i f (n) f(n 1) L f (2),检验 n 1 的情 况 型二:|勉f(n),用累乘法求通项公式(推导等比an 1数列通项公式的方法)【方法】n 2,鬼业L 色f(n) f(n 1) L f(2)a n 1 a n 2a即冬f(n) f(n 1) L f(2),检验n 1的情 q况【小结】一般情况下,“累加法”(“累乘法”)里只有 n 1个等式相加(相乘).11【例 2】.(1)已知 a12 , an an 1 n^W(n 2),求a n .n2 (2)已知数列a n 满足an1 =an,且a1 - ?n 23求an .【例3】.(2009广东高考文数)在数列{a n}中,, 一1、n 1 b冬…a 1,a ni (1n)a n "2厂.设b n n,求数列{b n}的通项公式n 1 n (c,p为非零常数,c 1,p 1)【方法】构造a n 1 x c(a n x),即a n 1 ca n (c 1)x ,故(c 1)x p,即{a n 卫}为 c 1等比数列【例4】.a1 1 , a n 1 2a n 3,求数列{a n}的通项公式。
数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、nS是数列{}n a的前n项的和11(1)(2)nn nS naS S n-=⎧=⎨-≥⎩【方法】:“1n nS S--”代入消元消n a。
【注意】漏检验n的值(如1n=的情况【例1】.(1)已知正数数列{}na的前n项的和为nS,且对任意的正整数n满足1na=+,求数列{}na的通项公式。
(2)数列{}na中,11a=对所有的正整数n都有2123na a a a n⋅⋅⋅⋅=L,求数列{}n a的通项公式【作业一】1-1.数列{}na满足21*123333()3nnna a a a n N-++++=∈L,求数列{}na的通项公式.(二).累加、累乘型如1()n na a f n--=,1()nnaf na-=导等差数列通项公式的方法)【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++L ,检验1n=的情况()f n =,用累乘法求通项公式(推导等比数列通项公式的方法)【方法】2n ≥,12121()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅=⋅-⋅⋅L L即1()(1)(2)n a f n f n f a =⋅-⋅⋅L ,检验1n =的情况【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘).【例2】. (1) 已知211=a ,)2(1121≥-+=-n n a a n n,求n a .(2)已知数列{}n a 满足12n n n aa n +=+,且321=a ,求n a .【例3】.(2009广东高考文数)在数列{}n a 中,11111,(1)2n n n n a a a n ++==++.设n na b n =,求数列{}n b 的通项公式(三).待定系数法1n n a ca p +=+ (,1,1c,p c p ≠≠为非零常数)【方法】构造1()n n a x c a x ++=+,即1(1)n n a ca c x +=+-,故(1)c x p -=, 即{}1n p a c +-为等比数列【例4】. 11a =,123n n a a +=+,求数列{}n a 的通项公式。
数列的求和与通项公式推导

数列的求和与通项公式推导在数学中,数列是一组按照一定规律排列的数的集合。
而数列的求和以及推导通项公式是数列研究中的重要内容。
本文将介绍数列的求和以及通项公式推导,并通过实例进行说明。
一、等差等差数列是指一个数列中每个数与它的前一个数之差是一个常数,这个常数被称为公差。
我们将针对等差数列的求和与通项公式进行讨论。
1. 求和公式:设等差数列的首项为a₁,公差为d,我们要求前n项的和Sn。
我们可以观察等差数列的前n项和与首项与末项的关系:Sn = (a₁ + a₂ + ... + aₙ) + (aₙ + aₙ₋₁ + ... + a₁)根据等差数列的性质,我们可以得到:Sn = (a₁ + aₙ)(n/2)这就是等差数列的求和公式。
2. 通项公式推导:为了推导等差数列的通项公式,我们假设等差数列的首项为a₁,公差为d,第n项为an。
通过观察等差数列的规律,我们可以发现:aₙ = a₁ + (n-1)d二、等比等比数列是指一个数列中每个数与它的前一个数之比是一个常数,这个常数被称为公比。
我们将针对等比数列的求和与通项公式进行讨论。
1. 求和公式:设等比数列的首项为a₁,公比为r,我们要求前n项的和Sn。
类似地,我们观察等比数列的前n项和与首项与末项之间的关系:Sn = (a₁ + a₂ + ... + aₙ)Sn * r = (a₁r + a₂r + ... + aₙr)通过两式相减,我们可以得到:Sn * (1 - r) = a₁(1 - rⁿ)化简后得到:Sn = a₁(1 - rⁿ) / (1 - r)这就是等比数列的求和公式。
2. 通项公式推导:为了推导等比数列的通项公式,我们假设等比数列的首项为a₁,公比为r,第n项为an。
通过观察等比数列的规律,我们可以发现:an = a₁ * r^(n-1)综上所述,我们介绍了等差数列和等比数列的求和以及通项公式推导。
这些公式在数列相关问题的求解中起到重要的作用。
数列的通项与求和重难点

数列的通项与求和数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和Sn可视为数列{Sn}的通项。
通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法.●难点磁场(★★★★★)设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.(1)写出数列{an}的前3项.(2)求数列{an}的通项公式(写出推证过程)(3)令bn=(n∈N*),求(b1+b2+b3+...+bn-n).●案例探究[例1]已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),(1)求数列{an}和{bn}的通项公式;(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有=an+1成立,求.命题意图:本题主要考查等差、等比数列的通项公式及前n项和公式、数列的极限,以及运算能力和综合分析问题的能力.属★★★★★级题目.知识依托:本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n项和,实质上是该数列前n项和与数列{an}的关系,借助通项与前n项和的关系求解cn是该条件转化的突破口.错解分析:本题两问环环相扣,(1)问是基础,但解方程求基本量a1、b1、d、q,计算不准易出错;(2)问中对条件的正确认识和转化是关键.技巧与方法:本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问"借鸡生蛋"构造新数列{dn},运用和与通项的关系求出dn,丝丝入扣.解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,∴a3-a1=d2-(d-2)2=2d,∵d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,∴=q2,由q∈R,且q≠1,得q=-2,∴bn=b·qn-1=4·(-2)n-1(2)令=dn,则d1+d2+...+dn=an+1,(n∈N*),∴dn=an+1-an=2,∴=2,即cn=2·bn=8·(-2)n-1;∴Sn=[1-(-2)n].∴[例2]设An为数列{an}的前n项和,An= (an-1),数列{bn}的通项公式为bn=4n+3;(1)求数列{an}的通项公式;(2)把数列{an}与{bn}的公共项按从小到大的顺序排成一个新的数列,证明:数列{dn}的通项公式为dn=32n+1;(3)设数列{dn}的第n项是数列{bn}中的第r项,Br为数列{bn}的前r项的和;Dn为数列{dn}的前n项和,Tn=Br-Dn,求.命题意图:本题考查数列的通项公式及前n项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力.知识依托:利用项与和的关系求an是本题的先决;(2)问中探寻{an}与{bn}的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点.错解分析:待证通项dn=32n+1与an的共同点易被忽视而寸步难行;注意不到r与n的关系,使Tn中既含有n,又含有r,会使所求的极限模糊不清.技巧与方法:(1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n与r的关系,正确表示Br,问题便可迎刃而解.解:(1)由An=(an-1),可知An+1=(an+1-1),∴an+1-an= (an+1-an),即=3,而a1=A1= (a1-1),得a1=3,所以数列是以3为首项,公比为3的等比数列,数列{an}的通项公式an=3n.(2)∵32n+1=3·32n=3·(4-1)2n=3·[42n+C·42n-1(-1)+...+C·4·(-1)+(-1)2n]=4n+3,∴32n+1∈{bn}.而数32n=(4-1)2n=42n+C·42n-1·(-1)+...+C·4·(-1)+(-1)2n=(4k+1),∴32n{bn},而数列{an}={a2n+1}∪{a2n},∴dn=32n+1.(3)由32n+1=4·r+3,可知r=,∴Br=,●锦囊妙计1.数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同.因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性.2.数列{an}前n 项和Sn与通项an的关系式:an=3.求通项常用方法①作新数列法.作等差数列与等比数列.②累差叠加法.最基本形式是:an=(an-an-1+(an-1+an-2)+...+(a2-a1)+a1.③归纳、猜想法.4.数列前n项和常用求法①重要公式1+2+...+n=n(n+1)12+22+...+n2=n(n+1)(2n+1)13+23+...+n3=(1+2+...+n)2=n2(n+1)2②等差数列中Sm+n=Sm+Sn+mnd,等比数列中Sm+n=Sn+qnSm=Sm+qmSn.③裂项求和:将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加时抵消中间的许多项.应掌握以下常见的裂项:④错项相消法⑤并项求和法数列通项与和的方法多种多样,要视具体情形选用合适方法.。
数列求通项与求和重难点梳理

数列求通项与求和重难点梳理山东省淄博市博山区实验中学 张健发表于《教学考试》一、求数列的通项1.已知数列是等差、等比数列,直接套用公式求通项【例1】已知各项为正数的等比数列{}n a 的前n 项和n S ,对任意n N +∈均有246n n S S +=+成立.求等比数列{}n a 的通项n a .【解析】(Ⅰ)由已知,得31424646S S S S =+⎧⎨=+⎩,,①②②-①,得424a a =,所以2424a q a ==, 又因为等比数列{}n a 各项为正数,所以2q =. 又由①,得311(12)4612a a -=+-,所以12a =. 所以=2n n a .2.已知数列的递推公式求通项(1)公式法:“从右向左”利用公式11 1 2n n n S n a S S n -=⎧=⎨-≥⎩,,. 【例2】已知n S 为数列{}n a 的前n 项和,3(1)n n S na n n =--,且211a =,求数列{}n a 的通项n a .【解析】因为2122232(21)S a a a =+=-⨯-,又因为211a =,所以15a =.当2n ≥时,由3(1)n n S na n n =--,①得11(1)3(1)(2)n n S n a n n --=----,②①-②,得13(1)(1)3(1)(2)n n n a na n n n a n n -=----+--,得1(1)(1)6(1)n n n a n a n ----=-,即16n n a a --=.所以数列{}n a 是以5首项,6为公差的等差数列.所以16(1)61n a a n n =+-=-.(2)衍生法:用递推公式与其衍生形式相减或相除.【例3】已知数列{}n a 满足:1n n a a n +-=,若数列{}n b 满足:14b =,3122331313131n n n b b b b a =++++++++ ,求数列{}n b 的通项公式. 【解析】由122313131n n n b b b a =++++++ ,① 得11212131313131n n n n n b b b b a +++=++++++++ ,② ②-①,得11131n n n n b a a n +++=-=+,即11(31)n n b n ++=+. 所以411( 31)2n n n b n n =⎧=⎨-+≥⎩,(),. 【评注】有的递推公式n 取不同的值,其长度不变,是“无弹性”的,如例2;有的递推公式n 取不同的值,其长度改变,是“有弹性”的,如例3.(3)累加法:若()11n n a a a a f n +=⎧⎪⎨=+⎪⎩, 则1211()+()n n n a a a a a a -=+-+-….(4)累乘法:若()11n na a a f n a +=⎧⎪⎨=⎪⎩, 则2111n n n a a a a a a -=⨯⨯⨯…. (5)化归法:若数列{}n a 既不是等差数列也不是等比数列,求其通项n a 时一般要采取“迂回战术”, 即构造(题目中常常已构造好)一个与数列{}n a 有关的等差数或等比数列{}n b ,使()n n b f a =,先求n b ,再解出n a .【例4】已知数列{}n a 中,111 1,33?n n na n n a a a n n +⎧+⎪==⎨⎪-⎩,为奇数,为偶数,证明数列232n a ⎧⎫-⎨⎬⎩⎭是等比数列,并求2n a . 【解析】设232n nb a =-,则1213131(1)2326b a a =-=+-=-. 因为2(1)(21)112233223322n n n n n n a a b b a a ++++--==-- 21213(21)3232n n a n a +⎡⎤++-⎢⎥⎣⎦=- []22133(2)(21)3232n n a n n a -⋅++-=- 2211132332n n a a -==-. 所以数列23{}2n a -是以16-为首项,13为公比的等比数列. 所以123111126323n n n n b a -⎛⎫⎛⎫=-=-⋅=⋅ ⎪ ⎪⎝⎭⎝⎭,解得2113232nn a ⎛⎫=-⋅+ ⎪⎝⎭. 二、求数列的前n 项和 1. “从左向右”利用公式11 1 2-=⎧=⎨-≥⎩,,n nn S n a S S n . 【例5】已知n S 为数列{}n a 的前n 项和,3(1)n n S na n n =--,且211a =,数列{}n a 的前n 项和n S .【解析】当2n ≥时,由13(1)()3(1)n n n n S na n n n S S n n -=--=---,得1(1)3(1)n n n S nS n n ---=-,即131n n S S n n --=-.所以数列{}n S n是以3为公差的等差数列. 又因为2226822S a -==, 所以83(2)32n S n n n =+-=+,即232n S n n =+. 【评注】例2和例5的已知条件一样,求解时用的都是公式11 1 2n n n S n a S S n -=⎧=⎨-≥⎩,,,值得注意的是,前者是“逆用”公式,后者是“正用”公式.2.倒序相加法:如果数列{}n a 首末两端等“距离”的两项的和相等时常可用此法.比如,等差数列的前n 项公式就是用此法推导的. 121 n n n S a a a a -=++++…,①121 n n n S a a a a -=+++…,②①+②,得12112()()()n n n n S a a a a a a -=+++++…1()n n a a =+,所以12()n n S n a a =+,即1()2n n n a a S +=. 3.错位相减法:数列{}n a 的各项是由一个等差数列和一个等比数列的对应项之积构成的常可用此法.4.裂项相消法:如果将数列{}n a 的每一项分解后求和就可以消去诸多项而剩余有限项时常可用此法.【例6】(1)数列{}n a 满足:1(1)n a n n =+,则数列{}n a 的10项和9S =___________. (2)数列{}n a 满足:21(1)(1)n n n a n n +=-+,则数列{}n a 的10项和9S =___________. 【解析】(1) 因为111(1)1n a n n n n ==-++, 所以10S =11111(1)()()223910-+-+⋅⋅⋅+-1911010=-=. (2) 因为2111(1)(1)()(1)1n n n n a n n n n +=-=-+++, 所以10S =11111(1)()()223910--+++⋅⋅⋅++1911010=-+=-. 【评注】“裂项”只是一种手段,“相消”才是的目,因此,“裂项”时思路要开阔,不拘一格.5.分组转化法:若数列{}n a 是由若干个等差数列、等比数列或可求和的数列组成时可用此法.【例7】设(35)2n n c n =+-,求数列{}nc 的前n 项和nT . 【解析】因为132n n n c c +-=-,所以1n =时,2110c c -=>,即12c c <; 2n ≥时,10n n c c +-<,即1n n c c +>.所以1234n c c c c c <>>>>>…….又因为16c =,27c =,36c =,41c =,512c =-,…,所以数列{}n c 的前4项为正,从第5项开始往后各项都为负.①当4n ≤时,211212313||||||222n n n n n n T c c c c c c ++=+++=+++=-+……; ②当5n ≥时,12||||||n n T c c c =+++…12345n c c c c c c =+++--…121234()2()n c c c c c c c =-+++++++…2131340(22)2n n n ++=--+ 213132382n n n ++=-++. 所以2121313224231323852n n n n n n S n n n ++⎧+-+≤⎪⎪=⎨+⎪-++≥⎪⎩,,. 【例8】设11()? 21 (2)n n n n a n n n -⎧⋅⎪⎪=⎨⎪+⎪⎩,奇,偶为数为数,求数列{}n a 的n 项和n S . 【解析】(1)当n 为偶数时,022111[1()3()(1)()]222n n S n -=⋅+⋅+⋅⋅⋅+-⋅ 1111111[()()()]224462n n +-+-+⋅⋅⋅+-+. 设0221111()3()(1)()222n T n -=⋅+⋅+⋅⋅⋅+-⋅,① 则2241111()1()3()(1)()2222n T n =⋅+⋅+⋅⋅⋅+-⋅,② ①-②,得:024********()2[()()()](1)()422222n n T n -=⋅+++⋅⋅⋅+--⋅, 11()314212(1)()14214n n n T n -=+⋅--⋅-, 得:2012201()992n n n T +=-⋅. 所以,2012201()9924(2)n n n n S n +=-⋅++. (2)当n 为奇数时, 1n +为偶数11n n n S S a ++=-1201232111[()]9924(3)(1)(3)n n n n n n +++=-⋅+-+++ 120123211()9924(1)n n n n ++-=-⋅++. 综上,12012201()? 9924(2)20123211()? 9924(1)n n n n n n n S n n n n ++⎧-⋅+⎪+⎪=⎨+-⎪-⋅+⎪+⎩,是偶,是奇数数. 【评注】例7和例8主体上采用的都是“分组转化法”,具体环节上,例7采用的是直接套用等差、等比数列前n 项和公式的方法,例8采用的是“错位相减法”、“裂项相消法”.。
数列求通项、求和的几种方法

求数列通项公式的几种方法数列知识是高考中的重要考察内容,而数列的通项公式又是数列的核心内容之一,它如同函数中的解析式一样,有了解析式便可研究起性质等;而有了数列的通项公式便可求出任一项以及前N项和等.因此,求数列的通项公式往往是解题的突破口,关键点.故将求数列通项公式的方法做一总结,希望能对广大考生的复习有所帮助.下面我就谈谈求数列通项公式的几种方法:一、累差法递推式为:a n+1=a n+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……a n-a n-1=f(n-1)将这个式子累加起来可得a n-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴a n=a1+f(1)+f(2)+…+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,a n+1=a n+2,求a n解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……a n-a n-1=2n-1将这个式子累加起来可得a n-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴a n=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故a n=2n-1二、累商法递推式为:a n+1=f(n)a n(f(n)要可求积)思路:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……a n/a n-1=f(n-1)将这个式子相乘可得a n/a1=f(1)f(2)…f(n-1)∵f(n)可求积∴a n=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{a n}中,a1=2,a n+1=(n+1)a n/n,求a n解:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……a n/a n-1=f(n-1)将这个式子相乘后可得a n/a1=2/1×3/24×/3×…×n/(n-1)即a n=2n当n=1时,a n也适合上式∴a n=2n三,构造法1、递推关系式为a n+1=pa n+q (p,q为常数)思路:设递推式可化为a n+1+x=p(a n+x),得a n+1=pa n+(p-1)x,解得x=q/(p-1) 故可将递推式化为a n+1+x=p(a n+x)构造数列{b n},b n=a n+q/(p-1)b n+1=pb n即b n+1/b n=p,{b n}为等比数列.故可求出b n=f(n)再将b n=a n+q/(p-1)代入即可得a n例3、(06重庆)数列{a n}中,对于n>1(n€N)有a n=2a n-1+3,求a n解:设递推式可化为a n+x=2(a n-1+x),得a n=2a n-1+x,解得x=3故可将递推式化为a n+3=2(a n-1+3)构造数列{b n},b n=a n+3b n=2b n-1即b n/b n-1=2,{b n}为等比数列且公比为3b n=b n-1·3,b n=a n+3b n=4×3n-1a n+3=4×3n-1,a n=4×3n-1-12、递推式为a n+1=pa n+q n(p,q为常数)思路:在a n+1=pa n+q n两边同时除以q n+1得a n+1/q n+1=p/qa n/q n+i/q构造数列{b n},b n=a n/q n可得b n+1=p/qb n+1/q故可利用上类型的解法得到b n=f(n)再将代入上式即可得a n例4、数列{a n}中,a1+5/6,a n+1=(1/3)a n+(1/2)n,求a n解:在a n+1=(1/3)a n+(1/2)n两边同时除以(1/2)n+1得2n+1a n+1=(2/3)×2n a n+1构造数列{b n},b n=2n a n可得b n+1=(2/3)b n+1故可利用上类型解法解得b n=3-2×(2/3)n2n a n=3-2×(2/3)na n=3×(1/2)n-2×(1/3)n3、递推式为:a n+2=pa n+1+qa n(p,q为常数)思路:设a n+2=pa n+1+qa n变形为a n+2-xa n+1=y(a n+1-xa n)也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=p,xy= -q解得x,y,于是{b n}就是公比为y的等比数列(其中b n=a n+1-xa n)这样就转化为前面讲过的类型了.例5、已知数列{a n}中,a1=1,a2=2,a n+2=(2/3)·a n+1+(1/3)·a n,求a n解:设a n+2=(2/3)a n+1+(1/3)a n可以变形为a n+2-xa n+1=y(a n+1-xa n)也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=2/3,xy= -1/3可取x=1,y= -1/3构造数列{b n},b n=a n+1-a n故数列{b n}是公比为-1/3的等比数列即b n=b1(-1/3)n-1b1=a2-a1=2-1=1b n=(-1/3)n-1a n+1-a n=(-1/3)n-1故我们可以利用上一类型的解法求得a n=1+3/4×[1-(-1/3)n-1](n€N*)四、利用s n和n、a n的关系求a n1、利用s n和n的关系求a n思路:当n=1 时,a n=s n当n≥2 时, a n=s n-s n-1例6、已知数列前项和s=n2+1,求{a n}的通项公式.解:当n=1 时,a n=s n=2当n≥2 时, a n=s n-s n-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1 时,a n=2当n≥2 时, a n=2n-12、利用s n和a n的关系求a n思路:利用a n=s n-s n-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{a n}中,已知s n=3+2a n,求a n解:即a n=s n-s n-1=3+2a n-(3+2a n-1)a n=2a n-1∴{a n}是以2为公比的等比数列∴a n=a1·2n-1= -3×2n-1五、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出a n,再用数学归纳法证明例8、(2002全国高考)已知数列{a n}中,a n+1=a2n-na n+1,a1=2,求a n解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想a n=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即a k=k+1则 a k+1=a2k-ka k+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有a n=n+1成立即a n=n+1。
数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲(数列三)
本讲主要内容:数列通项和前n 项和
第一部分:旧知识复习
①((
2.右的第三个数位________________
【知识笔记】:
② 叠加法3.已知数列{}n
a
满足*
132()
n n a a n n N +=++∈,且12a =,求n a _____
【知识笔记】:
4.已知数列{}n a 中,*112,2()n n n a a a n N +==+∈,求n a ______________
5.在数列{}n a 中,121,2,a a ==且11(1)(2,0)n n n a q a qa n q +-=+-≥≠ (1)设
*
1()n n n b a a n N +=-∈,证明:{}n b 是等比数列;
(2)求数列{}n a 的通项公式。
【知识笔记】:
③
____
7.
④*)N ,
9.
⑤ 倒数法
10.数列{}n a 中,1121,2n n n
a a a a +==
+,求n a _________
【知识笔记】:
11.已知数列{}n a 中,1111,21
n n n S a S S --==
+,求通项公式______________
⑥ 构造辅助数列
12.已知数列{}n a 满足1111,12
n n
a a a +==+
,求其通项公式
【知识笔记】:
13.在数列{}n a 中,*112,431,n n a a a n n N +==-+∈,求n a ______________
14.
(①的n S
② 2x 图
③ 令
(n n n
【知识笔记】:
④ 倒序相加法
18.已知数列{}n a 是首项为1,公差为2的等差数列,求
1
2
1231
...n
n n n n n n S C a C a C a C a +=++++
【知识笔记】:
⑤分组求和法
19.已知数列{}n a 中的相邻两项212,k k a a -是关于x 的方程
2(32)320
k k
x k x k -++⋅=的两个根,且212(1,2,3,...)k k a a k -≤= (1)求1357,,,a a a a ;(2)求数列{}n a 的前2n 项和2n S
【知识笔记】:
⑥差分求和法
20.已知(1)(2)n a n n n =++,求数列{}n a 前n 项的和n S
【知识笔记】:。