高三总复习-指对数函数题型总结归纳

合集下载

高中数学,指数式与对数式的运算考点题型总结

高中数学,指数式与对数式的运算考点题型总结

第八节指数式、对数式的运算❖基础知识1.指数与指数运算(1)根式的性质①(na)n=a(a使na有意义).②当n是奇数时,na n=a;当n是偶数时,na n=|a|=⎩⎪⎨⎪⎧a,a≥0,-a,a<0.(2)分数指数幂的意义分数指数幂的意义是解决根式与分数指数幂互化问题的关键.①a mn=na m(a>0,m,n∈N*,且n>1).②a -mn=1amn=1na m(a>0,m,n∈N*,且n>1).③0的正分数指数幂等于0,0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①a r·a s=a r+s(a>0,r,s∈Q);②a ra s=ar-s(a>0,r,s∈Q);③(a r)s=a rs(a>0,r,s∈Q);④(ab)r=a r b r(a>0,b>0,r∈Q).(1)有理数指数幂的运算性质中,要求指数的底数都大于0,否则不能用性质来运算.(2)有理数指数幂的运算性质也适用于无理数指数幂.2.对数的概念及运算性质一般地,如果a(a>0,且a≠1)的b次幂等于N,就是a b=N,那么,数b就叫做以a 为底N的对数,记作:log a N=b.指数、对数之间的关系(1)对数的性质①负数和零没有对数; ②1的对数是零; ③底数的对数等于1. (2)对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a (N n )=n log a N (n ∈R).❖ 常用结论1.换底公式的变形(1)log a b ·log b a =1,即log a b =1log b a(a ,b 均大于0且不等于1); (2)log am b n =nm log a b (a ,b 均大于0且不等于1,m ≠0,n ∈R);(3)log N M =log a M log a N =log b Mlog b N (a ,b ,N 均大于0且不等于1,M >0).2.换底公式的推广log a b ·log b c ·log c d =log a d (a ,b ,c 均大于0且不等于1,d >0). 3.对数恒等式alog a N=N (a >0且a ≠1,N >0).考点一 指数幂的化简与求值[典例] 化简下列各式:(1)⎝⎛⎭⎫2 350+2-2·⎝⎛⎭⎫2 14-12-(0.01)0.5; (2)56a 13·b -2·⎝⎛⎭⎫-3a -12b -1÷(4a 23·b -3)12. [解] (1)原式=1+14×⎝⎛⎭⎫4912-⎝⎛⎭⎫110012=1+14×23-110=1+16-110=1615. (2)原式=-52a -16b -3÷(4a 23·b -3)12=-54a -16b -3÷(a 13b -32)=-54a -12·b -32=-54·1ab 3= -5ab 4ab 2.[解题技法] 指数幂运算的一般原则(1)有括号的先算括号里面的,没有括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. (5)运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数. [题组训练]1.若实数a >0,则下列等式成立的是( )A .(-2)-2=4 B .2a -3=12a 3C .(-2)0=-1D .(a-14)4=1a解析:选D 对于A ,(-2)-2=14,故A 错误;对于B ,2a -3=2a 3,故B 错误;对于C ,(-2)0=1,故C 错误;对于D ,(a -14)4=1a,故D 正确.2.化简4a 23·b-13÷⎝ ⎛⎭⎪⎫-23a -13b 23的结果为( ) A .-2a3bB .-8abC .-6a bD .-6ab解析:选C 原式=-6a⎛⎫-- ⎪⎝⎭2133b--1233=-6ab -1=-6a b.3.计算:-⎝⎛⎭⎫32-2+⎝⎛⎭⎫-278-23+(0.002)-12=________.解析:原式=-⎝⎛⎭⎫232+⎣⎡⎦⎤⎝⎛⎭⎫-323-23+⎝⎛⎭⎫1500-12=-49+49+105=10 5.答案:10 5考点二 对数式的化简与求值[典例] 计算下列各式:(1)lg 2+lg 5-lg 8lg 50-lg 40;(2)log 23·log 38+(3)log 34.[解] (1)原式=lg 2×58lg 5040=lg54lg 54=1.(2)原式=lg 3lg 2·3lg 2lg 3+3log 4312=3+3log 32=3+2=5.[题组训练]1.(log 29)·(log 34)=( )A .14B .12C .2D .4解析:选D 法一:原式=lg 9lg 2·lg 4lg 3=2lg 3·2lg 2lg 2·lg 3=4.法二:原式=2log 23·log 24log 23=2×2=4.2.计算:⎝⎛⎭⎫lg 14-lg 25÷100-12=________. 解析:原式=lg ⎝⎛⎭⎫14×125×10012=lg 10-2×10=-2×10=-20. 答案:-203.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. 解析:∵f (x )=log 2(x 2+a )且f (3)=1,∴1=log 2(9+a ), ∴9+a =2,∴a =-7. 答案:-7 4.计算:log 5[421log 102-(33)23-77log 2]=________.解析:原式=log 5[22log 10-(332)23-2]=log 5(10-3-2)=log 55=1.答案:1[课时跟踪检测]1.设1x=log 23,则3x -3-x 的值为( )A.83 B.32C.52D.73解析:选B 由1x =log 23,得3x =2,∴3x -3-x =2-12=32.2.化简⎝⎛⎭⎫2a 23b 12(-6a 12b 13)÷⎝⎛⎭⎫-3a 16b 56的结果为( )A .-4aB .4aC .11aD .4ab解析:选B 原式=[2×(-6)÷(-3)]a+-211326b+-115236=4ab 0=4a .3.(log 29)(log 32)+log a 54+log a ⎝⎛⎭⎫45a (a >0,且a ≠1)的值为( ) A .2 B .3 C .4D .5解析:选B 原式=(2log 23)(log 32)+log a ⎝⎛⎭⎫54×45a =2×1+log a a =3. 4.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .a 12B .a 56C .a 76D .a 32解析:选Ca 2a ·3a 2=a 2a ·a23=a 2a53=a 2a56=a52-6=a 76.5.如果2log a (P -2Q )=log a P +log a Q (a >0,且a ≠1),那么PQ的值为( )A.14 B .4 C .1D .4或1解析:选B 由2log a (P -2Q )=log a P +log a Q ,得log a (P -2Q )2=log a (P Q ).由对数运算性质得(P -2Q )2=P Q ,即P 2-5P Q +4Q 2=0,所以P =Q (舍去)或P =4Q ,解得PQ=4.6.若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于( )A .1B .0或18C.18D .log 23解析:选D 由题意知lg2+lg(2x +5)=2lg(2x +1),由对数的运算性质得2(2x +5)=(2x +1)2,即(2x )2-9=0,2x =3,x =log 23.7.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝⎛⎭⎫log 3 12的值是( ) A .2 B .3 C .4D .5解析:选D ∵log 3 12<0,由题意得f (f (1))+f ⎝⎛⎭⎫log 3 12=f (log 21)+331-log 2+1=f (0)+33log 2+1=30+1+2+1=5.8.设2a =5b =m ,且1a +1b=2,则m 等于( )A.10 B .10 C .20D .100解析:选A 由2a =5b =m 得a =log 2m ,b =log 5m ,所以1a +1b =log m 2+log m 5=log m 10.因为1a +1b =2,所以log m 10=2.所以m 2=10,所以m =10. 9.已知4a =2,lg x =a ,则x =________. 解析:由4a =2,得a =12,又因为lg x =a =12,所以x =1012=10. 答案:10 10.计算:9591log 2-=________.解析:9591log 2-=912×959log -=3×15=35.答案:3511.化简:(a 23·b -1)-12·a-12·b136a ·b 5=________.解析:原式=a-13·b 12·a -12·b13a 16·b56=a---111326·b+-115236=1a. 答案:1a12.已知指数函数y =f (x ),对数函数y =g (x )和幂函数y =h (x )的图象都过点P ⎝⎛⎭⎫12,2,如果f (x 1)=g (x 2)=h (x 3)=4,那么x 1+x 2+x 3=________.解析:令f (x )=a x(a >0,且a ≠1),g (x )=log b x(b>0,且b ≠1),h (x )=x c,则f ⎝⎛⎭⎫12=a 12=2,g ⎝⎛⎭⎫12=log b 12=-log b 2=2,h ⎝⎛⎭⎫12=⎝⎛⎭⎫12c =2,∴a =4,b =22,c =-1,∴f (x 1)=4x 1=4⇒x 1=1,同理,x 2=14,x 3=14.∴x 1+x 2+x 3=32.答案:3213.化简下列各式:(1)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫210272-3-3π0+3748;(2)3a 72·a -3÷3a -3·a -1;(3)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27.解:(1)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫6427-23-3+3748=53+100+916-3+3748=100. (2)原式=3a 72·a3-2÷3a-32·a-12=3a 72÷3a-12=a 76÷a-16=a 86=a 43.(3)法一:原式=lg 3+45lg 3+910lg 3-12lg 34lg 3-3lg 3=⎝⎛⎭⎫1+45+910-12lg 3(4-3)lg 3=115.法二:原式=lg (3×925×27⨯1325×3-12)lg 8127=lg 3115lg 3=115.。

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结及类型题归纳专题:对数函数知识点总结专题应用练习一、求下列函数的定义域(1)0.2log (4);y x =-;(2)log 1ay x =- (0,1).a a >≠;(3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 11-x (6) y=x 3log 1.y=log(5x-1)(7x-2)的定义域是________________ 2.y=)8lg(2x - 的定义域是_______________3.求函数2log (21)y x =+的定义域___________4.函数y=13log (21)x -的定义域是5.函数y =log 2(32-4x )的定义域是,值域是 .6.函数5log (23)x y x -=-的定义域____________7.求函数2log ()(0,1)a y x x a a =->≠的定义域和值域。

8.求下列函数的定义域、值域:(1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).9.函数f (x )=x1ln (432322+--++-x x x x )定义域10.设f(x)=lgx x -+22,则f )2()2(xf x +的定义域为 11.函数f(x)=)1(log 1|2|2---x x 的定义域为 12.函数f(x)=229)2(1x x x g --的定义域为;13.函数f (x )=x1ln (432322+--++-x x x x )的定义域为14222loglog log y x =的定义域是1. 设f (x )=lg(ax 2-2x +a ),(1) 如果f (x )的定义域是(-∞, +∞),求a 的取值范围; (2) 如果f (x )的值域是(-∞, +∞),求 a 的取值范围.15.已知函数)32(log )(221+-=ax x x f(1)若函数的定义域为R ,求实数a 的取值范围(2)若函数的值域为R ,求实数a 的取值范围(3)若函数的定义域为),3()1,(+∞-∞Y ,求实数a 的值;(4)若函数的值域为]1,(--∞,求实数a 的值.16.若函数()2x y f =的定义域为[]1,0-,则函数()2log y f x =的定义域为 17.已知函数f(2x)的定义域是[-1,1],求f(log 2x)的定义域.18若函数y=lg(4-a ·2x)的定义域为R ,则实数a 的取值范围为19已知x 满足不等式06log 7)(log 222≤++x x ,函数=)(x f )2(log )4(log 42x x ?的值域是 20求函数1log )(log 21221+-=x x y (14)x ≤≤的值域。

对数函数考点与题型归纳

对数函数考点与题型归纳

对数函数考点与题型归纳一、基础知识1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).y=log a x的3个特征(1)底数a>0,且a≠1;(2)自变量x>0;(3)函数值域为R.2.对数函数y=log a x(a>0,且a≠1)的图象与性质底数a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即恒有log a1=0当x>1时,恒有y>0;当0<x<1时,恒有y<0当x>1时,恒有y<0;当0<x<1时,恒有y>0在(0,+∞)上是增函数在(0,+∞)上是减函数注意当对数函数的底数a的大小不确定时,需分a>1和0<a,<1两种情况进行讨论.3.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.二、常用结论对数函数图象的特点(1)对数函数的图象恒过点(1,0),(a,1),⎝⎛⎭⎫1a ,-1,依据这三点的坐标可得到对数函数的大致图象.(2)函数y =log a x 与y =log 1ax (a >0,且a ≠1)的图象关于x 轴对称.(3)当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势.考点一 对数函数的图象及应用[典例] (1)函数y =lg|x -1|的图象是( )(2)已知当0<x ≤14时,有x <log a x ,则实数a 的取值范围为________.[解析] (1)因为y =lg|x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意.(2)若x <log a x 在x ∈⎝⎛⎦⎤0,14时成立,则0<a <1,且y =x 的图象在y =log a x 图象的下方,作出图象如图所示.由图象知14<log a 14, 所以⎩⎨⎧0<a <1,a 12>14,解得116<a <1.即实数a 的取值范围是⎝⎛⎭⎫116,1. [答案] (1)A (2)⎝⎛⎭⎫116,1 [变透练清]1.[变条件]若本例(1)函数变为f (x )=2log 4(1-x ),则函数f (x )的大致图象是( )解析:选C 函数f (x )=2log 4(1-x )的定义域为(-∞,1),排除A 、B ;函数f (x )=2log 4(1-x )在定义域上单调递减,排除D.故选C.2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)3.[变条件]若本例(2)变为不等式x 2<log a x (a >0,且a ≠1)对x ∈⎝⎛⎭⎫0,12恒成立,求实数a 的取值范围.解:设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝⎛⎭⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x ) =x 2在⎝⎛⎭⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝⎛⎭⎫0,12上恒成立,需f 1⎝⎛⎭⎫12≤f 2⎝⎛⎭⎫12, 所以有⎝⎛⎭⎫122≤log a 12,解得a ≥116,所以116≤a <1. 即实数a 的取值范围是⎣⎡⎭⎫116,1.考点二 对数函数的性质及应用考法(一) 比较对数值的大小[典例] (2018·天津高考)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析] 因为c =log 1213=log 23>log 2e =a ,所以c >a .因为b =ln 2=1log 2e <1<log 2e =a ,所以a >b .所以c >a >b . [答案] D考法(二) 解简单对数不等式[典例] 已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.[解析] 原不等式⇔⎩⎪⎨⎪⎧ 0<x <1,2x 2+1>3x >1①或⎩⎪⎨⎪⎧x >1,2x 2+1<3x <1②,解不等式组①得13<x <12,不等式组②无解,所以实数x 的取值范围是⎝⎛⎭⎫13,12.[答案] ⎝⎛⎭⎫13,12考法(三) 对数型函数性质的综合问题[典例] 已知函数f (x )=log 4(ax 2+2x +3),若f (1)=1,求f (x )的单调区间. [解] 因为f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0,得-1<x <3, 函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3).[题组训练]1.已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a解析:选C 0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213=log 23>1,∴c >a >b .2.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫12,+∞ D .(0,+∞)解析:选A ∵-1<x <0,∴0<x +1<1.又∵f (x )>0,∴0<2a <1,∴0<a <12.3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________. 解析:要使f (x )=log 3(ax 2-x )在[3,4]上单调递增,则y =ax 2-x 在[3,4]上单调递增,且y =ax 2-x >0恒成立,即⎩⎪⎨⎪⎧12a ≤3,9a -3>0,解得a >13.答案:⎝⎛⎭⎫13,+∞[课时跟踪检测]A 级1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2) C.⎣⎡⎭⎫23,+∞D.⎝⎛⎭⎫23,+∞解析:选C 由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎨⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log2x B.12xC .log 12xD .2x -2解析:选A 由题意知f (x )=log a x (a >0,且a ≠1). ∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x . 3.如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析:选D ∵log 12x <log 12y <log 121,∴x >y >1.4.(2019·海南三市联考)函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )解析:选C 函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图象可知选C.5.(2018·惠州调研)若a =20.5,b =log π3,c =log 2sin 2π5,则a ,b ,c 的大小关系为( ) A .b >c >a B .b >a >c C .c >a >bD .a >b >c解析:选D 依题意,得a >1,0<b =log π3<log ππ=1,而由0<sin 2π5<1,2>1,得c <0,故a >b >c .6.设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定解析:选A 由已知得0<a <1,所以1<a +1<2,又易知函数f (x )为偶函数,故可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).7.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.解析:设幂函数为f (x )=x α,因为函数y =log a (2x -3)+2的图象恒过点P (2,2),则2α=2,所以α=12,故幂函数为f (x )=x 12.答案:x 128.已知函数f (x )=log a (x +b )(a >0,且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________.解析:f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0, 且f (0)=log a (0+b )=1,所以⎩⎪⎨⎪⎧ b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以log b a =1.答案:19.(2019·武汉调研)函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是________. 解析:由函数f (x )=log a (x 2-4x -5),得x 2-4x -5>0,得x <-1或x >5.令m (x )=x 2-4x -5,则m (x )=(x -2)2-9,m (x )在[2,+∞)上单调递增,又由a >1及复合函数的单调性可知函数f (x )的单调递增区间为(5,+∞).答案:(5,+∞)10.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________________.解析:由f (a )>f (-a )得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),即⎩⎪⎨⎪⎧ a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ).解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)11.求函数f (x )=log 2x ·log2(2x )的最小值.解:显然x >0,∴f (x )=log 2x ·log2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎫log 2x +122-14≥-14,当且仅当x =22时,有f (x )min =-14. 12.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. B 级1.已知函数f (x )=log a x (a >0,且a ≠1)满足f ⎝⎛⎭⎫2a >f ⎝⎛⎭⎫3a ,则f ⎝⎛⎭⎫1-1x >0的解集为( ) A .(0,1) B .(-∞,1) C .(1,+∞)D .(0,+∞)解析:选C 因为函数f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为单调函数,而2a <3a 且f ⎝⎛⎭⎫2a >f ⎝⎛⎭⎫3a ,所以f (x )=log a x 在(0,+∞)上单调递减,即0<a <1,结合对数函数的图象与性质可由f ⎝⎛⎭⎫1-1x >0,得0<1-1x<1,所以x >1,故选C. 2.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析:令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916, 因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞. 又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞). 答案:(0,+∞)3.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数, 所以f (x )=f (-x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).。

高中数学函数题型全归纳

高中数学函数题型全归纳

高中数学函数题型全归纳
一、函数定义与性质
函数的基本定义:函数的定义域、值域、对应法则。

函数的性质:奇偶性、对称性、周期性、连续性等。

二、一次函数与反比例函数
一次函数的表达式及性质。

反比例函数的表达式及性质。

一次函数与反比例函数的图像及性质。

三、二次函数
二次函数的表达式及性质。

二次函数的图像及性质。

二次函数的极值问题。

四、分式函数与根式函数
分式函数的表达式及性质。

根式函数的表达式及性质。

分式函数与根式函数的图像及性质。

五、三角函数
正弦、余弦、正切的定义及性质。

三角函数的图像及性质。

三角函数的变换公式。

三角函数的值域及最值问题。

六、指数函数与对数函数
指数函数的表达式及性质。

对数函数的表达式及性质。

指数函数与对数函数的图像及性质。

指数函数与对数函数的运算性质。

七、幂函数与反函数
幂函数的表达式及性质。

反函数的定义及性质。

幂函数与反函数的图像及性质。

八、复合函数
复合函数的定义及性质。

复合函数的分解与化简。

复合函数的值域及最值问题。

复合函数的单调性及极值问题。

九、函数的单调性与极值
函数的单调性的判断方法。

函数的极值的定义及求法。

高中数学对数函数题型归纳

高中数学对数函数题型归纳

高中数学对数函数题型归纳一、引言高中数学中的对数函数是数学学习中的一个重要内容,它不仅在解决实际问题中有着广泛的应用,也是高考中的重要考点。

本文将针对对数函数的定义、性质、图像以及常见题型进行归纳总结,以期帮助同学们更好地理解和掌握这一知识点。

二、对数函数的定义与性质对数函数是以幂的形式进行运算的函数,其定义域为(0,正无穷),值域为(负无穷,正无穷)。

对数函数具有以下性质:1.对数函数恒过定点(1,0),即f(x)=logax,(a>0且a≠1)时,x=1。

2.对数的单调性:当a>1时,函数在定义域上为增函数;当0<a<1时,函数在定义域上为减函数。

3.对数函数的底数与真数之间具有换底公式:log·(x)=logac+logc(x)lg。

三、对数函数的图像与运用在掌握对数函数性质的基础上,通过图像能够更好地理解和掌握这一知识点。

常用的对数函数图像包括f(x)=logax,f(x)=2logax等。

图像的应用包括但不限于:通过图像观察函数的单调性、极值、最值;分析图像与坐标轴的交点;以及通过图像理解函数与其他函数的关系等。

四、题型归纳与解析1.直接求对数函数解析式:此类题型主要考察同学们对方程思想的理解和应用。

对于形如f(x)=logax(或其变形形式)的方程,可利用换元法求出对数函数的解析式。

2.对数函数的性质应用:根据对数函数的性质,可以解决一些求最值的问题。

例如,当a>1时,利用函数的单调性可以求出函数在定义域内的最大值或最小值;当0<a<1时,则需考虑在何处取值最合适。

3.对数函数的图像应用:通过对数函数的图像与坐标轴的交点,可以解决一些涉及方程的题目。

例如,已知对数函数的图像与坐标轴交于两点,求这两点的坐标。

4.对数式与代数式的转换:对数式的运算是基于底数的运算进行的,因此,熟练掌握底数的运算规则是解决此类题目的关键。

常见的题型包括:已知部分对数值求整体对数值;将部分对数式转换为代数式;以及对数的加减乘除运算等。

第20讲 指对数比较大小8种常考题型总结

第20讲 指对数比较大小8种常考题型总结

第20讲指对数比较大小8种常考题型总结【知识点梳理】指数和对数的比大小问题成为了高考和模拟题的一些拉档题,这里我们重点介绍几种比大小方法,让大家充分了解掌握一些指数对数大小比较的常用方法.(1)利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可(2)利用指数对数函数图象关系比较大小(2)比较与0,1的大小关系,此类题目一般会放在单选第5题左右位置,比如12.02.0003.0=<<,12.0log3.0log 1log 02.02.02.0=<<=(3)取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与21的大小等(4)去常数再比大小当底数和真数出现了倍数关系时候,需要将对数进行分离常数再比较.例如:log log 1log log n a a a a ma m ma m n =+=+;.(5)当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如2ln =a 和2log 3=b ,ea 2log 12ln ==,3log 12log 23==b ,因为e 22log 3log >,所以b a >(6)乘倍数比较数的范围比较大小,比如3log 2=a 和4log 3=b ,则()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以ba >(7【题型目录】题型一:直接利用单调性比较大小题型二:比较与1,0的大小关系题型三:取中间值比较大小题型四:利用换底公式比较大小题型五:分离常数再比较大小题型六:利用均值不等式比较大小题型七:乘倍数比较数的范围比较大小题型八:构造函数比大小【典型例题】题型一:直接利用单调性比较大小【例1】已知222log 0.6,log 0.8,log 1.2a b c ===,则()A .c b a>>B .c a b>>C .b c a >>D .a b c>>【例2】已知2log 3a =,4log 6b =,8log 9c =,则a 、b 、c 的大小顺序为()A .a b c <<B .a c b<<C .c b a<<D .b c a<<【题型专练】1.下列选项正确的是()A .22log 5.3log 4.7<B .0.20.2log 7log 9<C .3πlog πlog 3>D .log 3.1log 5.2(0a a a <>且1)a ≠2.已知2log 3a =,ln 2b =,2log πc =,则a ,b ,c 的大小关系为()A .a b c >>B .c a b>>C .a c b>>D .c b a>>3.已知1ln 3a=,33log 5log 2b =-,c =a ,b ,c 的大小关系为()A .a c b >>B .b c a >>C .c a b>>D .c b a>>4.已知0.919x =,2log 0.1y =,2log 0.2z =,则()A .x y z>>B .x z y>>C .z x y >>D .z y x>>题型二:比较与1,0的大小关系【例1】若1223a ⎛⎫= ⎪⎝⎭,1ln 2b =,0.20.6c -=,则a ,b ,c 的大小关系为()A .c b a>>B .c a b >>C .b a c >>D .a c b>>【例2】已知0.3123log 2,log 3,2a b c -===,则a ,b ,c 的大小关系是()A .a b c>>B .b a c>>C .c a b>>D .b c a>>【例3】已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则()A .a c b >>B .b c a >>C .a b c >>D .c a b>>【题型专练】1.若0.110a =,lg 0.8b =,5log 3.5c =,则()A .a b c>>B .b a c>>C .c a b>>D .a c b >>2.已知5lg 0.2,log 6,ln 2a b c ===,则a ,b ,c 的大小关系为()A .a b c<<B .c a b<<C .a c b<<D .c b a <<3.已知0.60.622e log 0.6a b c -===,,,则a ,b ,c 的大小关系为()A .b a c >>B .b c a >>C .a b c>>D .a c b>>题型三:取中间值比较大小【例1】已知32log 3a =,2log 3b =,139c =,则()A .c a b>>B .b a c >>C .b c a>>D .c b a >>【例2】已知5log 2a =,8log 3b =,12c =,则下列判断正确的是()A .c b a<<B .b a c<<C .a c b<<D .a b c<<【例3】已知6log 2a =,0.5log 0.2b =,0.30.6c =,则a ,b ,c 的大小关系为()A .a c b <<B .a b c <<C .b c a <<D .c a b<<【题型专练】1.已知3log 4a =,4log 5b =,32c =,则有()A .a b c>>B .c b a>>C .a c b >>D .c a b>>2.设0.61a =,0.6lg9b =,32log 8c =,则()A .b a c<<B .c b a<<C .a c b<<D .b c a<<3.已知52log 4a =,31log 72b =,4log 52c =,则a ,b ,c 的大小关系是()A .b c a<<B .b a c <<C .c a b<<D .a b c<<题型四:利用换底公式比较大小【例1】设x ,y ,z 为正数,且345x y z ==,则()A .x y z<<B .y x z<<C .y z x<<D .z y x<<【例2】设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .c >b >a【例3】设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .c >b >a【题型专练】1.设0.1log 4a =,50log 4b =,则()A .()22ab a b ab<+<B .24ab a b ab<+<C .2ab a b ab <+<D .2ab a b ab<+<2.设2log a π=,6log b π=,则()A .0a b ab-<<B .0ab a b<<-C .0ab a b <<-D .0a b ab<-<3.设0.20.3a =,20.3b =,则()A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+4.已知正数x ,y ,z 满足346x y z ==,则下列说法中正确的是()A .1112x y z+=B .346x y z >>C .22xy z>D .2x y z⎛+> ⎝题型五:分离常数再比较大小【例1】已知6log 3a =,8log 4b =,10log 5c =,则().A .b a c <<B .c b a<<C .a c b<<D .a b c<<【题型专练】1.设6log 3=a ,10log 5=b ,14log 7=c ,则()A.ab c >> B.b c a>> C.a c b>> D.a b c>>题型六:利用均值不等式比较大小【例1】73a =,4log 20b =,33log 2log 6c =+,则a ,b ,c 的大小关系是()A .a b c>>B .a c b >>C .c b a >>D .c a b>>【例2】若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为()A .a b c <<B .b c a <<C .b a c <<D .a c b<<【题型专练】1.已知910,1011,89m m m a b ==-=-,则()A .0a b>>B .0a b >>C .0b a >>D .0b a>>2.已知2log a =0.62b =,0.2log 6c =-,则实数a ,b ,c 的大小关系为()A .a c b>>B .a b c>>C .b a c>>D .b c a>>题型七:乘倍数比较小【例1】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A .a <b <c B .b <a <cC .b <c <aD .c <a <b【题型专练】1.已知3log 2=a ,4log 3=b ,5log 4=c ,则实数a ,b ,c 的大小关系为()A .a <b <cB .a b c>>C .b a c>>D .b c a>>题型八:构造函数比大小【例1】设0a >,0b >,则下列叙述正确的是()A .若ln 2ln 2a b b a ->-,则a b >B .若ln 2ln 2a b b a ->-,则a b <C .若ln 2ln 2a a b b ->-,则a b >D .若ln 2ln 2a a b b ->-,则a b<【例2】若2e 2e x x y y ---<-,则()A .()ln 10y x -+<B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【题型专练】1.若1a b >>,且x y x y a a b b --->-,则()A .()ln 10x y -+>B .()ln 10x y -+<C .ln 0x y ->D .ln 0x y -<2.已知正实数x ,y 满足21211log log 22xyx y ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,则()A .11x y<B .33x y <C .()ln 10y x -+>D .122x y-<。

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题10对数与对数函数对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,y≥当01x <<时,0y >,当1x ≥时,0y≤【方法技巧与总结】1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)a 增大a 增大【题型归纳目录】题型一:对数运算及对数方程、对数不等式题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域))题型四:对数函数中的恒成立问题题型五:对数函数的综合问题【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值;(3)若185a =,18log 9b =,用a ,b ,表示36log 45.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值.(2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c +=;(2)若60a =3,60b =5,求12(1)12a b b ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则()A .a +b =100B .b -a =eC .28ln 2ab <D .ln 6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=()A .2B .4C .6D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是()A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是()A .0a b +<B .1ab <-C .01b a <<D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为()A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则()A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2 ⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为()A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()Ab a<<B.b a<<Ca b<<D.a b <例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是()A .0B .1C .2D .a例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是()A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是()A .1116a ≤<B .1116a <<C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是()A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围.例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +.(1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0, +的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为()A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是().A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则()A .sin sin a b>B .11a b>C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则ab的取值可以是()A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2xf x x x -=+-的零点,则020e ln x x -+=_______.【过关测试】一、单选题1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)()A .1393.1610s ⨯B .1391.5810s ⨯C .1401.5810s⨯D .1403.1610s⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为()A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则()A .111x y z+=B .111y z x+=C .112x y z +=D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ()A .是奇函数,且在()0,1上单调递增B .是奇函数,且在()0,1上单调递减C .是偶函数,且在()0,1上单调递增D .是偶函数,且在()0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =,()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为()A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是()A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()A b a<<B .b a<<C a b<<D .a b <二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是()A .11a b+的最小值是4B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是()A .2ab bc ac+=B .ab bc ac+=C .4949b b a c⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是()A .()(lg f x x =B .()2f x x ax=+C .()21xaf x e =--D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为()ABCD三、填空题13.(2022·天津·二模)已知()42log 41log x y +=+,则2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论:①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--;④函数()y f x =在()(),1k k k +∈Z 上单调递减.其中所有正确结论的序号为______.四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ](m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1ax f x x -=-在其定义域上是奇函数,a 为常数.(1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M .(1)当t e =时,求切线l 的方程;(2)O 为坐标原点,记AMO 的面积为S ,求面积S 以t 为自变量的函数解析式,写出其定义域,并求单调增区间.。

指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结一、指数函数的定义与性质指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。

其中,底数$a$决定了函数的性质。

当$a > 1$时,函数单调递增;当$0 < a < 1$时,函数单调递减。

指数函数的定义域为$R$,值域为$(0, +\infty)$。

例如,函数$y = 2^x$是一个底数为$2$(大于$1$)的指数函数,它在$R$上单调递增。

二、对数函数的定义与性质对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。

其中,对数的底数$a$同样决定了函数的性质。

当$a > 1$时,函数在$(0, +\infty)$上单调递增;当$0 < a <1$时,函数在$(0, +\infty)$上单调递减。

对数函数的定义域为$(0, +\infty)$,值域为$R$。

例如,函数$y =\log_2 x$是一个底数为$2$(大于$1$)的对数函数,它在$(0, +\infty)$上单调递增。

三、指数函数与对数函数的图象指数函数$y = a^x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(0, 1)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(0, 1)$,从左到右逐渐下降。

对数函数$y =\log_a x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(1, 0)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(1, 0)$,从左到右逐渐下降。

四、指数运算与对数运算的性质指数运算性质:1、$a^m \times a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)对数运算性质:1、$\log_a (MN) =\log_a M +\log_a N$2、$\log_a \frac{M}{N} =\log_a M \log_a N$3、$\log_a M^n = n \log_a M$4、$\log_a a = 1$5、$\log_a 1 = 0$五、例题分析例 1:比较大小比较$2^{03}$和$03^2$的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三总复习-指对数函数题型总结归纳指对函数1比较大小,是指对函数这里很爱考的一类题型,主要依靠指对函数本身的图像性质来做题,此外,对于公式的理解也很重要。

常用方法有建立中间量;估算;作差法;作商法等。

1、若π2log =a ,6log 7=b ,8.0log 2=c ,则( )A.c b a >>B.c a b >>C.b a c >>D.a c b >>2、三个数6log ,7.0,67.067.0的大小顺序是( )A.60.70.70.7log 66<<B.60.70.70.76log 6<<C.0.760.7log 660.7<< D.60.70.7log 60.76<<3、设1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则( )A.312y y y >> B.213yy y >> C.132yy y >>D.123yy y >>4、当10<<a 时,aaaa a a ,,的大小关系是( )A.aa aaaa >> B.aaaaa a>> C.aa aa aa>> D.aa aaa a>>5、设1)31()31(31<<<a b,则( )A .ab ab a a<< B .ba aa b a<< C .aa bb a a<<D .aa ba b a<<6、若0<x 且1>>x xb a,则下列不等式成立的是( )A .10<<<a bB .10<<<b aC .a b <<1D .b a <<12恒过定点,利用指数函数里1=a,对数函数里01log =a的性质1、若函数(2)()3x f x a -=+(0>a 且1≠a ),则()f x 一定过点( ) A.无法确定 B.)3,0( C.)3,1( D.)4,2(2、当10≠>a a 且时,函数()32-=-x a x f 必过定点( ) 3、函数0.(12>+=-a a y x 且)1≠a 的图像必经过点( ) 4、函数1)5.2(log )(-+=x x f a恒过定点( )5、指数函数()xa x f =的图象经过点⎪⎭⎫⎝⎛161,2,则a =( ) 6、若函数log ()ay x b =+ (0>a 且1≠a )的图象过)0,1(-和)1,0(两点,则b a ,分别为( )A.2,2==b aB.2,2==b aC.1,2==b aD.2,2==b a3针对指对函数图像性质的题1、已知集合}3{<=x x M ,}1log {2>x x N =,则N M I 为( ) A. φ B.{30<<x x } C.{31<<x x } D.{32<<x x }2、函数432)51()(+--=x x x f 的递减区间是( )3、已知 21()21x x f x -=+(1)判断()f x 的奇偶性; (2)证明()f x 在定义域内是增函数。

4、关于x 的方程1()323xa=-有负根,求a 的取值范围。

5、已知函数)1(log )(-=xaax f (0>a 且1≠a )(1)求函数()f x 的定义域; (2)讨论函数()f x 的单调性。

6、若25525x x y⋅=,则y 的最小值为( )7、若2log13a<,则a 的取值范围是( )8、21()log(21)af x x -=+在1(,0)2-上恒有()0f x >,则a 的取值范围( ) 9、已知)(x f 是指数函数,且255)23(=-f ,则=)3(f ( ) 10、函数0()(>=a a x f x且)1≠a 在区间]2,1[上的最大值比最小值大2a ,求a 的值。

11、设R a ∈,22(),()21x x a a f x x R ⋅+-=∈+试确定a 的值,使)(x f 为奇函数。

12、已知函数3)21121()(x x f x+-=, (1)求函数的定义域; (2)讨论函数的奇偶性; (3)证明:0)(>x f 13、已知函数1762)21(+-=x x y ,(1)求函数的定义域及值域; (2)确定函数的单调区间。

14、若()(21)xf x a =-是增函数,则a 的取值范围为( )15、设10<<a ,使不等式531222+-+->x x x x aa成立的x 的集合是( )16、函数xx y -=22的单调递增区间为( ) 17、定义在R 上的函数()f x 对任意的R a x ∈,,都有()()()f x a f x f a +=+, (1)求证(0)0f =; (2)证明()f x 为奇函数;(3)若当),0(+∞∈x 时,()xf x y =,试写出()f x 在R 上的解析式。

4有关指数和对数的计算题1、函数()2x f x e =+)0(>x 的图象关于原点对称,则0<x 时的表达式为( )A.()2xf x e =-- B. ()2xf x e =-+ C. ()2xf x e -=-- D. ()2xf x e -=-+2、设函数()log af x x =( 0>a 且1≠a )且(9)2f =,则f -1(2log 9)等于( )A. 24 B.2C.22D. 9log 23、若函数),(2log log)(32R b a x b x a x f ∈++=,f (20091)=4,则=)2009(f ( )A.-4B.2C.0D.-24、下列函数中,在其定义域内既是奇函数,又是增函数的是( )A.)0(log 2>-=x x y B.)(3R x x x y ∈+= C.)(3R x y x∈= D.)(2R x x y ∈=5、()f x 定义域}30{≤≤∈x Z x D ,且2()26f x x x =-+的值域为( ) A.]29,0[ B. ),29[+∞ C. ]29,(+-∞ D.[0,4]6743-7114423+-8、若函数()f x 的定义域为]1,12[+-a a ,且()f x 为偶函数,则a =( ) 9、设关于x 的方程1420()xx b b R +--=∈,若方程有两个不同实数解,求实数b 的取值范围。

10、若方程0)21()41(=++a x x有正数解,则实数a 的取值范围是( ) 11、已知1,2222>=+-x x x,求22x x--的值。

12、已知13a a-+=,求113322aa a a --++及的值。

13、若2<x 244|3|x x x -+-的值是( )14、满足等式()lg 1lg(2)lg2x x -+-=的x 集合为( ) 15、求函数|1|21-⎪⎭⎫ ⎝⎛=x y 的定义域、值域。

16、已知函数2222(log)3log 3y x x =-⋅+,[1,2]x ∈,求函数的值域。

17、设20≤≤x ,求函数124325x x y -=-⋅+的最大值和最小值。

18、=+5log 21122( )19、方程()0lg lg 2=-x x 的解是( ),方程0lg lg 2=-x x的解是( )20、()=+⋅++22lg 20lg 5lg 8lg 3225lg ( ) 21、计算:(1)5log 177- (2)()5log 9log 21224-22、求值:16log 5log 3log532⋅⋅。

23、计算:(1)40lg 50lg 8lg 5lg 2lg --+ (2)()⎥⎦⎤⎢⎣⎡--⋅2log 3210log 21543727334log 327log(3)()()12lg 2lg 5lg 2lg 2lg 222+-++24、124+=x x的解集是( )25、已知===5log ,3lg ,2lg 12则b a ( )26、ba m mm b a +==2,3log ,2log 则=( ),若()==x x 则,1lg log2( )27、16log 7log 4log 3log7432=( )28、(1)已知36log ,518,9log 3018求==b a ; (2)已知5.1log ,24log ,18log a a a n m 求==。

29、已知()====abc x x x x c b alog ,4log ,1log ,2log则( )30、=-2log 12log 2166( ), 若()=-=-x x则,112log ( )31、()()=-++++321log 321log 22( )32、方程()3lg 2lg 24lg +=+x x的解是( )33、方程08241=--+x x的解是( ),已知===6log,3lg ,2lg 3则b a ( ) 34、()[]=81log loglog 346( )35、已知()[]()[]y x 243432log log log log loglog ==0,求y x +的值。

36、求值:(1)42log 2112log 487log222-+; (2)9lg 243lg37、设255lg =x,则x 的值等于( ),1921log3=-x,则=x ( )38、1632≠==z y x,求证:zy x 111=+。

39、解x :(1)lg(10)13lg x x += (2)3ln 3ln 2x x -=(3)3log (123)21xx -⋅=+ (4)lg 22lg 10xx =-- (5)1log )2xx =(6)13313xx-+=+ (7)444log (31)log (1)log (3)x x x -=-++ 40、计算 :(1)23log 32+ (2)2lg 5lg 20(lg 2)⋅+4125()5a -)0(≠a 化简得结果是( )A .a -B .2a C .a D .a 42、若0)](log [log log 237=x ,则12x =( )A. 3B. 3C. 22D. 3243、已知35a bm ==,且112a b+=,则m 之值为( ) A .15 B .15C .±15D .225 44、若32a=,则33log82log 6-用a 表示为( )45、已知lg 20.3010=,lg1.07180.0301=,则lg 2.5=( );1102=( ) 46、化简:()()24525log 5+log 0.2log 2+log0.547、若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值。

相关文档
最新文档