常见非线性回归模型

合集下载

课件:第4章 非线性回归模型

课件:第4章 非线性回归模型
计量经济学
第四章 非线性回归模型
1
§4.1 非线性回归模型的类 型
一、非线性回归模型的特点
非线性回归模型的特点, 是与线性回归模型相比得到的特点
考虑标准线性回归模型: Y 0 1X1 2 X 2 k X k u
特点: (1)被解释变量是解释变量的线性函数 (2)被解释变量是回归系数的线性函数 非线性回归模型,则不满足以上两条之一, 或全部 或者说被解释变量是解释变量和回归系数的非线性函数 其一般形式为
根据最小二乘准则,使残差平方和e’e最小
寻找ˆ1
,
ˆ2
,,
ˆ
,使
p
minQ [Yi f ( X1i , X 2i ,, X ki; ˆ1, ˆ2,, ˆp )]2
18
(二)估计方法
1、求解方程组
Q
ˆ1
0
Q
ˆ2
...
Q
ˆk
0 0
问题: (1)偏导不一定好求 (2)方程组很难求解
19
• 将f在新的参数值附近展开,得到一个新的线性 模型,再次用OLS估计,…
• 直到收敛为止, i,l1 i,l (允许误差)
i,l
22
(3)实例
• 课本例3,非线性消费模型 C 0 1Y 2 u
取初始点(0,0 , 1,0 , 2,0)(1,1,1)
f (0 , 1, 2 ) 0 1Y 2
(3)估计: (4)图形:
(5)应用:X Y(Y变化弱)
12
4、指数函数(Y单ln)
(1)模型:Y Ae1X12 X 2 u
(2)线性化:lnY ln A 1X1 2 X 2 u 变量替换为: Y * 0 1X 12 X 2 u
(3)应用:X Y变化强

非线性回归分析的入门知识

非线性回归分析的入门知识

非线性回归分析的入门知识在统计学和机器学习领域,回归分析是一种重要的数据分析方法,用于研究自变量和因变量之间的关系。

在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出一种复杂的非线性关系。

因此,非线性回归分析就应运而生,用于描述和预测这种非线性关系。

本文将介绍非线性回归分析的入门知识,包括非线性回归模型的基本概念、常见的非线性回归模型以及参数估计方法等内容。

一、非线性回归模型的基本概念在回归分析中,线性回归模型是最简单和最常用的模型之一,其数学表达式为:$$Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + ... + \beta_pX_p +\varepsilon$$其中,$Y$表示因变量,$X_1, X_2, ..., X_p$表示自变量,$\beta_0, \beta_1, \beta_2, ..., \beta_p$表示模型的参数,$\varepsilon$表示误差项。

线性回归模型的关键特点是因变量$Y$与自变量$X$之间呈线性关系。

而非线性回归模型则允许因变量$Y$与自变量$X$之间呈现非线性关系,其数学表达式可以是各种形式的非线性函数,例如指数函数、对数函数、多项式函数等。

一般来说,非线性回归模型可以表示为:$$Y = f(X, \beta) + \varepsilon$$其中,$f(X, \beta)$表示非线性函数,$\beta$表示模型的参数。

非线性回归模型的关键在于确定合适的非线性函数形式$f(X,\beta)$以及估计参数$\beta$。

二、常见的非线性回归模型1. 多项式回归模型多项式回归模型是一种简单且常见的非线性回归模型,其形式为: $$Y = \beta_0 + \beta_1X + \beta_2X^2 + ... + \beta_nX^n +\varepsilon$$其中,$X^2, X^3, ..., X^n$表示自变量$X$的高次项,$\beta_0, \beta_1, \beta_2, ..., \beta_n$表示模型的参数。

非线性回归分析常见模型

非线性回归分析常见模型

非线性回归常见模型一.基本内容模型一xc e c y 21=,其中21,c c 为常数.将xc ec y 21=两边取对数,得x c c e c y xc 211ln )ln(ln 2+==,令21,ln ,ln c b c a y z ===,从而得到z 与x 的线性经验回归方程a bx z +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型二221c x c y +=,其中21,c c 为常数.令a c b c x t ===212,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型三21c x c y +=,其中21,c c 为常数.a cbc x t ===21,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型四反比例函数模型:1y a b x=+令xt 1=,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型五三角函数模型:sin y a b x=+令x t sin =,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.二.例题分析例1.用模型e kx y a =拟合一组数据组()(),1,2,,7i i x y i =⋅⋅⋅,其中1277x x x ++⋅⋅⋅+=;设ln z y =,得变换后的线性回归方程为ˆ4zx =+,则127y y y ⋅⋅⋅=()A.70e B.70C.35e D.35【解析】因为1277x x x ++⋅⋅⋅+=,所以1x =,45z x =+=,即()127127ln ...ln ln ...ln 577y y y y y y +++==,所以35127e y y y ⋅⋅⋅=.故选:C例2.一只红铃虫产卵数y 和温度x 有关,现测得一组数据()(),1,2,,10i i x y i =⋅⋅⋅,可用模型21e c x y c =拟合,设ln z y =,其变换后的线性回归方程为4zbx =- ,若1210300x x x ++⋅⋅⋅+=,501210e y y y ⋅⋅⋅=,e 为自然常数,则12c c =________.【解析】21e c x y c =经过ln z y =变换后,得到21ln ln z y c x c ==+,根据题意1ln 4c =-,故41e c -=,又1210300x x x ++⋅⋅⋅+=,故30x =,5012101210e ln ln ln 50y y y y y y ⋅⋅⋅=⇒++⋅⋅⋅+=,故5z =,于是回归方程为4zbx =- 一定经过(30,5),故ˆ3045b -=,解得ˆ0.3b =,即20.3c =,于是12c c =40.3e -.故答案为:40.3e -.该景点为了预测2023年的旅游人数,建立了模型①:由最小二乘法公式求得的数据如下表所示,并根据数据绘制了如图所示的散点图.。

非线性回归 方法

非线性回归 方法

非线性回归方法非线性回归是机器学习中的一种重要方法,用于建立输入和输出之间的非线性关系模型。

线性回归假设输入和输出之间存在线性关系,而非线性回归则允许更复杂的模型形式,可以更好地适应现实世界中的复杂数据。

下面将介绍几种常见的非线性回归方法,并说明它们的原理、应用场景和优缺点。

1. 多项式回归多项式回归通过引入高次多项式来拟合数据。

例如,在一元情况下,一阶多项式即为线性回归,二阶多项式即为二次曲线拟合,三阶多项式即为三次曲线拟合,依此类推。

多项式回归在数据不规则变化的情况下能够提供相对灵活的拟合能力,但随着多项式次数的增加,模型的复杂度也会增加,容易出现过拟合问题。

2. 非参数回归非参数回归方法直接从数据中学习模型的形式,并不对模型的形式做出先验假设。

常见的非参数回归方法包括局部加权回归(LWLR)、核回归(Kernel Regression)等。

局部加权回归通过给予离目标点较近的样本更大的权重来进行回归,从而更注重对于特定区域的拟合能力。

核回归使用核函数对每个样本进行加权,相当于在每个样本周围放置一个核函数,并将它们叠加起来作为最终的拟合函数。

非参数回归方法的优点是具有较强的灵活性,可以适应各种不同形状的数据分布,但计算复杂度较高。

3. 支持向量回归(SVR)支持向量回归是一种基于支持向量机的非线性回归方法。

它通过寻找一个超平面,使得样本点离该超平面的距离最小,并且在一定的松弛度下允许一些样本点离超平面的距离在一定范围内。

SVR通过引入核函数,能够有效地处理高维特征空间和非线性关系。

SVR的优点是对异常点的鲁棒性较好,并且可以很好地处理小样本问题,但在处理大规模数据集时计算开销较大。

4. 决策树回归决策树回归使用决策树来进行回归问题的建模。

决策树将输入空间划分为多个子空间,并在每个子空间上拟合一个线性模型。

决策树能够处理离散特征和连续特征,并且对异常点相对较鲁棒。

决策树回归的缺点是容易过拟合,因此需要采取剪枝等策略进行降低模型复杂度。

计量经济学基础-非线性回归模型

计量经济学基础-非线性回归模型

第四节 非线形回归模型一、 可线性化模型在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。

在计量经济分析中经常使用的可线性化模型有对数线性模型、半对数线性模型、倒数线性模型、多项式线性模型、成长曲线模型等。

1.倒数模型我们把形如:u xb b y ++=110;u x b b y ++=1110 (3.4.1) 的模型称为倒数(又称为双曲线函数)模型。

设:xx 1*=,y y 1*=,即进行变量的倒数变换,就可以将其转化成线性回归模型。

倒数变换模型有一个明显的特征:随着x 的无限扩大,y 将趋于极限值0b (或0/1b ),即有一个渐进下限或上限。

有些经济现象(如平均固定成本曲线、商品的成长曲线、恩格尔曲线、菲利普斯曲线等)恰好有类似的变动规律,因此可以由倒数变换模型进行描述。

2.对数模型模型形式:u x b b y ++=ln ln 10 (3.4.2)(该模型是将ub e Ax y 1=两边取对数,做恒等变换的另一种形式,其中A b ln 0=)。

上式lny 对参数0b 和1b 是线性的,而且变量的对数形式也是线性的。

因此,我们将以上模型称为双对数(double-log)模型或称为对数一线性(log-liner)模型。

令:x x y y ln ,ln **==代入模型将其转化为线性回归模型: u x b b y ++=*10* (3.4.3)变换后的模型不仅参数是线性的,而且通过变换后的变量间也是线性的。

模型特点:斜率1b 度量了y 关于x 的弹性:xdx y dy x d y d b //)(ln )(ln 1== (3.4.4) 它表示x 变动1%,y 变动了多少,即变动了1b %。

模型适用对象:对观测值取对数,将取对数后的观测值(lnx ,lny )描成散点图,如果近似为一条直线,则适合于对数线性模型来描述x 与y 的变量关系。

非线性回归分析与曲线拟合方法

非线性回归分析与曲线拟合方法

非线性回归分析与曲线拟合方法回归分析是一种常见的统计分析方法,用于研究自变量与因变量之间的关系。

在实际应用中,很多数据并不符合线性关系,而是呈现出曲线形式。

这时,我们就需要使用非线性回归分析和曲线拟合方法来更好地描述数据的规律。

一、非线性回归分析的基本原理非线性回归分析是一种通过拟合非线性方程来描述自变量与因变量之间关系的方法。

与线性回归不同,非线性回归可以更准确地反映数据的特点。

在非线性回归分析中,我们需要选择适当的非线性模型,并利用最小二乘法来估计模型的参数。

二、常见的非线性回归模型1. 多项式回归模型:多项式回归是一种常见的非线性回归模型,它通过多项式方程来拟合数据。

多项式回归模型可以描述数据的曲线特征,但容易出现过拟合问题。

2. 指数回归模型:指数回归模型适用于自变量与因变量呈指数关系的情况。

指数回归模型可以描述数据的增长或衰减趋势,常用于描述生物学、物理学等领域的数据。

3. 对数回归模型:对数回归模型适用于自变量与因变量呈对数关系的情况。

对数回归模型可以描述数据的增长速度,常用于描述经济学、金融学等领域的数据。

4. S形曲线模型:S形曲线模型适用于自变量与因变量呈S形关系的情况。

S形曲线模型可以描述数据的增长或衰减过程,常用于描述市场营销、人口增长等领域的数据。

三、曲线拟合方法曲线拟合是一种通过选择合适的曲线形状来拟合数据的方法。

在曲线拟合过程中,我们需要根据数据的特点选择适当的拟合方法。

1. 最小二乘法:最小二乘法是一种常用的曲线拟合方法,通过最小化观测值与拟合值之间的残差平方和来确定拟合曲线的参数。

2. 非线性最小二乘法:非线性最小二乘法是一种用于拟合非线性模型的方法,它通过最小化观测值与拟合值之间的残差平方和来确定模型的参数。

3. 曲线拟合软件:除了手动选择拟合方法,我们还可以使用曲线拟合软件来自动拟合数据。

常见的曲线拟合软件包括MATLAB、Python的SciPy库等。

四、应用实例非线性回归分析和曲线拟合方法在实际应用中有着广泛的应用。

非线性回归分析简介

非线性回归分析简介

非线性回归分析简介在统计学和机器学习领域,回归分析是一种重要的数据分析方法,用于研究自变量和因变量之间的关系。

在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出一种复杂的非线性关系。

因此,非线性回归分析应运而生,用于描述和预测这种非线性关系。

本文将介绍非线性回归分析的基本概念、方法和应用。

一、非线性回归分析概述1.1 非线性回归模型在回归分析中,最简单的模型是线性回归模型,即因变量和自变量之间的关系可以用一个线性方程来描述。

但是在实际问题中,很多情况下因变量和自变量之间的关系并不是线性的,而是呈现出曲线、指数、对数等非线性形式。

这时就需要使用非线性回归模型来拟合数据,通常非线性回归模型可以表示为:$$y = f(x, \beta) + \varepsilon$$其中,$y$为因变量,$x$为自变量,$f(x, \beta)$为非线性函数,$\beta$为参数向量,$\varepsilon$为误差项。

1.2 非线性回归分析的优势与线性回归相比,非线性回归分析具有更强的灵活性和适用性。

通过使用适当的非线性函数,可以更好地拟合实际数据,提高模型的预测能力。

非线性回归分析还可以揭示数据中潜在的复杂关系,帮助研究人员更好地理解数据背后的规律。

1.3 非线性回归分析的挑战然而,非线性回归分析也面临一些挑战。

首先,选择合适的非线性函数是一个关键问题,需要根据实际问题和数据特点进行合理选择。

其次,非线性回归模型的参数估计通常比线性回归模型更复杂,需要使用更为复杂的优化算法进行求解。

因此,在进行非线性回归分析时,需要谨慎选择模型和方法,以确保结果的准确性和可靠性。

二、非线性回归分析方法2.1 常见的非线性回归模型在实际应用中,有许多常见的非线性回归模型,常用的包括多项式回归模型、指数回归模型、对数回归模型、幂函数回归模型等。

这些模型可以根据实际问题的特点进行选择,用于描述和预测自变量和因变量之间的非线性关系。

统计学中的非线性回归模型与应用案例

统计学中的非线性回归模型与应用案例

统计学中的非线性回归模型与应用案例统计学是一门研究数据收集、分析和解释的学科。

在统计学中,回归分析是一种常用的方法,用于研究自变量与因变量之间的关系。

传统的回归模型假设自变量与因变量之间的关系是线性的,然而在现实世界中,很多情况下变量之间的关系并不是简单的线性关系。

因此,非线性回归模型应运而生。

非线性回归模型允许自变量与因变量之间的关系呈现出曲线、指数、对数等非线性形式。

这种模型的应用非常广泛,可以用于解决各种实际问题。

下面将介绍一些非线性回归模型的应用案例。

案例一:生长曲线模型生长曲线模型是一种常见的非线性回归模型,用于描述生物体、经济指标等随时间变化的增长过程。

以植物的生长为例,我们可以将植物的高度作为因变量,时间作为自变量,建立一个非线性回归模型来描述植物的生长过程。

通过拟合模型,我们可以预测植物在未来的生长情况,为农业生产提供参考依据。

案例二:Logistic回归模型Logistic回归模型是一种常用的非线性回归模型,用于研究二分类问题。

例如,我们可以使用Logistic回归模型来预测一个人是否患有某种疾病。

以心脏病的预测为例,我们可以将心脏病的发生与各种危险因素(如年龄、性别、血压等)建立一个Logistic回归模型。

通过拟合模型,我们可以根据个体的危险因素预测其是否患有心脏病,从而采取相应的预防措施。

案例三:多项式回归模型多项式回归模型是一种常用的非线性回归模型,用于描述自变量与因变量之间的高阶关系。

例如,我们可以使用多项式回归模型来研究温度与气压之间的关系。

通过拟合模型,我们可以得到温度与气压之间的高阶关系,从而更好地理解气象变化规律。

案例四:指数回归模型指数回归模型是一种常用的非线性回归模型,用于描述自变量与因变量之间的指数关系。

例如,我们可以使用指数回归模型来研究广告投入与销售额之间的关系。

通过拟合模型,我们可以得到广告投入对销售额的指数影响,从而为企业制定广告投放策略提供决策依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见非线性回归模型
1.简非线性模型简介
非线性回归模型在经济学研究中有着广泛的应用。

有一些非线性回归模型可以通
过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无
法通过代换转化为线性回归模型。

柯布—道格拉斯生产函数模型
y AKL
其中L和K分别是劳力投入和资金投入, y是产出。

由于误差项是可加的,
从而也不能通过代换转化为线性回归模型。

对于联立方程模型,只要其中有一个方程是不能通过代换转化为线性,那么这个联立方程模型就是非线性的。

单方程非线性回归模型的一般形式为
y f(x1,x2, ,xk; 1, 2, , p)
2.可化为线性回归的曲线回归
在实际问题当中,有许多回归模型的被解释变量y与解释变量x之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为
线性关系,利用线性回归求解未知参数,并作回归诊断。

如下列模型。

(1)y 0 1e x
(2)y 0 1x2x2p x p
(3)y ae bx
(4)y=alnx+b
对于(1)式,只需令x e x即可化为y对x是线性的形式y01x,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。

对于(2)式,可以令x1=x,x2=x2,⋯,x p=x p,于是得到y关于x1,x2,⋯, x p 的线性表达式y 0 1x12x2 pxp
对与(3)式,对等式两边同时去自然数对数,得lnylnabx ,令
y lny, 0 lna, 1 b,于是得到y关于x的一元线性回归模型:
y 0 1x。

乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为yt本身是异方差的,而lnyt是等方差的。

加性误差项模型认为yt是等
方差的。

从统计性质看两者的差异,前者淡化了y t值大的项(近期数据)的作用,
强化了y t值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则
对近期数据拟合得效果较好。

影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。

异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用
加权最小二乘。

3.多项式回归
多项式回归模型是一种重要的曲线回归模型,这种模型通常容易转化为一般的多元线性回归来做处理。

1、常见的多项式回归模型
回归模型y i01xi2x i2i称为一元二阶多项式模型。

通常将回归模
型中的系数表示成:y i01x i11x i2i,回归函数y i01x i11x i2是一
条抛物线方程,通常称为二项式回归函数。

回归系数1为线性效应系数,11为
二次效应系数。

当自变量的幂次超过3时,回归系数的解释变得困难起来,回归函数也变得
很不稳定,对回归模型的应用会收到影响。

因而,幂次超过3的多项式回归模
型不常使用。

在实际应用当中,常遇到含两个或两个以上自变量的情况,称回归模型:y i01x i111x i212x i222x i2212x i1x i2i为二元二阶多项式回
归模型。

它的回归系数中分别含有两个自变量的线性项系数1和2,二次项系数11和22,并含有交叉乘积项系数12,交叉乘积项表示x1与x2的交互作用,
系数12通常称为交互影响系数。

4.非线性模型
在非线性回归中,平方和分解式SST=SSR+SSE 不在成立,类似于线性回归中的复决定系数,定义非线性回归的相关指数:R^2=1-SSE/SST
用非线性最小二乘法求解非线性回归方程,非线性最小二乘是使残差平方和
达到最小,这种平方损失函数的优点是数学性质好,在一定条件下具有统计学的一
些优良性质,但其最大的缺点是缺乏稳健性。

当数据存在异常值时,参数的估计效
果变得很差。

因而在一些场合,可以用一些更稳健的残差损失函数代替平方和损
n
失函数,例如绝对值损失函数。

绝对值残差损失函数为:Q()y i f(x i,)有
i1
时候用最小绝对值法的最大残差比普通最小二乘法的最大残差更大,这是否与最小绝对值法的稳健性相矛盾?其实这正说明了最小绝对值法的稳健性。

这是因为最小绝对值法受异常值的影响程度小,回归线向异常值靠拢的程度也小,因而异
常值的残差反而大。

5.最小二乘估计
参数估计的常见方法
直接搜索法
直接搜索法是把参数的所有可能取值都代入S,使S达到最小的取值即为参数的估计值。

直接搜索法原理简单,但只适用参数个数少,且参数的可能取值也少(或对参数估计的精度要求不高)的情况。

格点搜索法
格点搜索法的效率高于直接搜索法。

格点搜索法不是是把参数的所有可能取值都代入S,而是按一定规律把部分取值代入S。

例1设只有一个参数b,b的可能取值为区间[0,1]。

先把区间10等分,然
后分别把a0=0,a1=0.1,⋯,a10=1带入S,设ai使得S最小,然后重新把
[ai,a(i+1)]10 等分,重复上述方法,使参数的可能取值范围不断减小,直到满足
精度要求或者收敛,即得参数的最小二乘估计。

相关文档
最新文档