SPSS—非线性回归(模型表达式)案例解析

合集下载

SPSS回归分析过程详解

SPSS回归分析过程详解
线性回归模型的一般形式为:Y = b0 + b1X1 + b2X2 + ... + bnXn,其中Y是 因变量,X1、X2、...、Xn是自变量,b0、b1、b2、...、bn是回归系数。
线性回归的假设检验
01
线性回归的假设检验主要包括拟合优度检验和参数显著性 检验。
02
拟合优度检验用于检验模型是否能够很好地拟合数据,常 用的方法有R方、调整R方等。
1 2
完整性
确保数据集中的所有变量都有值,避免缺失数据 对分析结果的影响。
准确性
核实数据是否准确无误,避免误差和异常值对回 归分析的干扰。
3
异常值处理
识别并处理异常值,可以使用标准化得分等方法。
模型选择与适用性
明确研究目的
根据研究目的选择合适的回归模型,如线性回 归、逻辑回归等。
考虑自变量和因变量的关系
数据来源
某地区不同年龄段人群的身高 和体重数据
模型选择
多项式回归模型,考虑X和Y之 间的非线性关系
结果解释
根据分析结果,得出年龄与体 重之间的非线性关系,并给出 相应的预测和建议。
05 多元回归分析
多元回归模型
线性回归模型
多元回归分析中最常用的模型,其中因变量与多个自变量之间存 在线性关系。
非线性回归模型
常见的非线性回归模型
对数回归、幂回归、多项式回归、逻辑回归等
非线性回归的假设检验
线性回归的假设检验
H0:b1=0,H1:b1≠0
非线性回归的假设检验
H0:f(X)=Y,H1:f(X)≠Y
检验方法
残差图、残差的正态性检验、异方差性检验等
非线性回归的评估指标
判定系数R²

非线性回归案例与spss

非线性回归案例与spss

2020/5/31
7
SPSS曲线拟合
1,
2020/5/31
8
2,
2020/5/31
9
3,点击ok,得到结果报表和图形
2020/5/31
10
报表分析
Linear:
compoud:
方程:y=-1.33E4+4.318E3t 方程:y=3603.061(1.192)t
SSE=1.589E9,R2=0.856
SSE=0.122782,R2=0.99188
复合函数是按线性化后的回归模型计算的,因此两
者的残差不能直接比较。为了与线性回归的拟合效果直
接相比,可以先储存复合函数回归的残差序列,然后计
算出复合函数回归的
SSE =262467769=2.625×108, R2=1-262467769/11043353279=0.97623,
2020/5/31
23
2020/5/31
通过以上分析可以认为药物 反应程度y与药剂量x符合以 下非线性回归方程:
yˆ 99.541
99.541
1
x
6.7612 Βιβλιοθήκη 4.7996 R2=0.999
24
2020/5/31
3
导入数据
1,
2,
2020/5/31
4
3,
2020/5/31
5
散点图
2020/5/31
6
散点图分析
从散点图上看到,GDP大致为指数函数形式。复 合函数y=b0bt1的形式与经济意义更相吻合。自变 量为时间变量时,Curve Estimation命令提供了直 接选取自变量为时间的功能,做复合函数y=b0bt1 的曲线回归,同时做简单线性回归y=b0+b1t以做 比较。

《SPSS统计分析》第11章 回归分析

《SPSS统计分析》第11章 回归分析

返回目录
多元逻辑斯谛回归
返回目录
多元逻辑斯谛回归的概念
回归模型
log( P(event) ) 1 P(event)
b0
b1 x1
b2 x2
bp xp
返回目录
多元逻辑斯谛回归过程
主对话框
返回目录
多元逻辑斯谛回归过程
参考类别对话框
保存对话框
返回目录
多元逻辑斯谛回归过程
收敛条件选择对话框
创建和选择模型对话框
返回目录
曲线估计
返回目录
曲线回归概述
1. 一般概念 线性回归不能解决所有的问题。尽管有可能通过一些函数
的转换,在一定范围内将因、自变量之间的关系转换为线性关 系,但这种转换有可能导致更为复杂的计算或失真。 SPSS提供了11种不同的曲线回归模型中。如果线性模型不能确 定哪一种为最佳模型,可以试试选择曲线拟合的方法建立一个 简单而又比较合适的模型。 2. 数据要求
线性回归分析实例1输出结果2
方差分析
返回目录
线性回归分析实例1输出结果3
逐步回归过程中不在方程中的变量
返回目录

线性回归分析实例1输出结果4
各步回归过程中的统计量
返回目录
线性回归分析实例1输出结果5
当前工资变量的异常值表
返回目录
线性回归分析实例1输出结果6
残差统计量
返回目录
线性回归分析实例1输出结果7
返回目录
习题2答案
使用线性回归中的逐步法,可得下面的预测商品流通费用率的回归系数表:
将1999年该商场商品零售额为36.33亿元代入回归方程可得1999年该商场 商品流通费用为:1574.117-7.89*1999+0.2*36.33=4.17亿元。

SPSS在非线性回归分

SPSS在非线性回归分
接着利用散点矩阵图来判断三个变量之间的关系。散点矩阵图8-29分为9个子 图,它们分别描述了三只股票中两两股票价格之间的变化。可以看到,股票 A 的价格和其他两只股票的价格都存在显著线性关系,这是否表示只需要建立一 个二元线性模型即可呢?观察自变量股票B和股票C之间散点图看到,这两只股 票的价格也存在显著的影响关系,这说明了这两个因变量之间可能存在交叉影 响。于是,建立如下非线性回归方程:
8.4 SPSS在非线性回归分析中的应用
8.4 SPSS在非线性回归分析中的应用
(5)线性回归和非线性回归的股票预测图
图8-35显示了原始数据、线性回归模型、非线性回归模型三者的比较。其中, “股票 A” 是实际曲线,“ Predicted Values” 是本案例建立的非线性回归方 程的预测曲线,“ Unstandardized Predicted Values” 是不考虑股票 B 、 C 交 互项的二元线性模型的预测曲线。可以明显看到,非线性回归的预测效果要好 于二元线性回归的预测效果,说明了这里我们引入股票B、C交互项的合理性。
单击【Save】按钮,弹出如下图所示的对话框。它表示要保存到数据文件中的 统计量。

Predicted Values:输出回归模型的预测值。
Residuals:输出回归模型的残差。 Derivatives:模型各个参数的一阶导数值。 Loss function values:损失函数值。
8.4 SPSS
在非线性回归分析中的应用
Step04:输入回归方程
在【Model Expression (模型表达式)】文本框中输入需要拟合的方程式,该方 程中包含自变量、参数变量和常数等。自变量从左侧的候选变量列表框中选 择,参数变量从左侧的【Parameters (参数)】列表框里选入。同时,拟合 方程模型中的函数可以从【Function (函数组)】列表框里选入;方程模型 的运算符号可以用鼠标从窗口“数字符号”显示区中点击输入。

非线性回归分析

非线性回归分析

非线性回归分析(转载)(2009-10-23 08:40:20)转载分类:Web分析标签:杂谈在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。

SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。

应用实例研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下:表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型:本例子数据保存在DATA6-4.SAV。

1)准备分析数据在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。

或者打开已经存在的数据文件(DATA6-4.SAV)。

2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1所示的线回归对话窗口。

图5-1 Nonlinear非线性回归对话窗口3) 设置分析变量设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。

本例子选“发育速率[v]”变量为因变量。

4) 设置参数变量和初始值单击“Parameters”按钮,将打开如图6-14所示的对话框。

该对话框用于设置参数的初始值。

图5-2 设置参数初始值“Name”框用于输入参数名称。

“Starting”框用于输入参数的初始值。

输入完参数名和初始值后,单击“Add”按钮,则定义的变量及其初始值将显示在下方的参数框中。

需要修改已经定义的参数变量,先用将其选中,然后在“Name”和“Starting”栏里进行修改,完成后点击“Change”按钮确认修改。

spss-非线性回归分析

spss-非线性回归分析

实验三非线性回归分析(2学时)一、实验重点掌握非线性回归分析的方法。

二、实验难点模型的选择及对SPSS软件的输出结果进行分析和整理。

三、实验举例例1、对GDP(国内生产总值)的拟合。

选取GDP指标为因变量,单位为亿元,拟合GDP关于时间t的趋势曲线。

以1981年为基准年,取值为t=1,1998年t=18,1991-1998年的数据如下:解:分析过程(一)画散点图图3.1:Y 与t 的散点图图3.2:Ln Y 与t 的散点图(二)根据画散点图,及经济背景可选用模型 复合函数:01t y b b = (也称增长模型或半对数模型)同时,做简单线性回归 01y b b t =+ 以作比较。

(三)模型求解直接用SPSS 软件的Curve Estimation 命令计算。

(也可以用线性化的方法求解,结果基本一致。

) 运行结果如下:(四)结果分析线性回归方程:2ˆ133754417.520.856y t R =-+=复合函数回归方程:ˆ3603.06(1.1924)t y= ………(*)2ˆln 8.190.1760.992y t R =+=注意:不能直接比较两模型的拟合优度,需要对复合函数模型处理,利用(*)式,得到复合函数的残差,计算该模型的残差平方和RSS=2.1696×108 ,并计算y 的离差平方和TSS=1.1×1010 ,得到非线性回归的相关指数82102.169610110.981.110RSS R TSS ⨯=-=-≈⨯ 由于该相关指数大于线性回归的拟合优度,所以可以判断复合函数模型比线性回归模型要好。

例2 、一位药物学家是用下面的非线性模型对药物反应拟合回归模型1021()i i c i c y c u c =-++ 其中,自变量x 为药剂量,用级别表示; 因变量y 为药物反应程度,用百分数表示。

三个参数c 0 ,c 1 ,c 2都是非负的, c 0 的上限是100%,三个参数的初始值取为c 0 =100,c 1=5 ,c 2=4.8.测得9个数据如下表:解:分析过程:(一)画散点图从图形上看,y 与x 确实呈非线性关系! (二)模型求解用SPSS 软件的Nonlinear 命令计算,具体操作如下: (1)建立数据集;(2)在数据窗口点击:Analyze → Regression → Nonlinear …,出现窗口在将y 点入Dependent 框中,在Model Expression 框中输入表达式:c0-c0/(1+(x/c2)**c1)(3) 点击Parametere …, 出现下图:在Name 框中输入: c0Starting Value 框中输入:100点击add,即可得到参数c0的初始赋值,类似的方法可以得到c1和c2参数的初始赋值,Continue 。

【SPSS统计挖掘】第27章 曲线回归与非线性回归

【SPSS统计挖掘】第27章 曲线回归与非线性回归

• 2.实例结果及分析 • (1)模型描述 • 图27-13所示是SPSS对曲线拟合结果的初步描述统计,例如自变
量和因变量、估计方程的类型等。
• 图27-16所示给出了样本数据分别进行三种曲线方程拟合的检验统计量 和相应方程中的参数估计值。对于对数拟合,它的可决系数R2为0.914, F统计量等于52.999,概率P值小于显著性水平0.05,说明该模型有统计 学意义。
• 假定数据文件图27-24所示中是一家公司在8个周期间的广告费用与 公司收入。公司的老板希望建立一个回归模型用电视广告费用和报 纸广告费用来预测公司收入。以往8周的样本数据如图27-24所示 (单 位:千美元)。请建立回归模型分析。
• SPSS模块说明 • 1.非线性回归 • 单击“分析”|“回归”|“非线性”命令,弹出单“非线性回归”
从图27-8所示中也进一步说明三次曲线曲线方程的拟合效果最好。
• 因变量与自变量之间的相互关系可以用线性方程来近似的反应。但是, 在现实生活中,非线性关系大量存在。线性回归模型要求变量之间必 须是线性关系,曲线估 计只能处理能够通过变量变换化为线性关系的 非线性问题,因此这些 方法都有一定的局限性。相反的,非线性回归 可以估计因变量和自变 量之间具有任意关系的模型,用户根据自身需 要可随意设定估计方程的具体形式。
• 对于二次曲线方程和三次方程拟合来说,它对应的可决系数R2分别为 0.971和0.995,模型也显著有效。
• 虽然上述模型都有显著的统计学意义,但从可决系数的大小可以清晰 看到三种曲线函数方程较其他两种曲线方程拟合效果更好,因此选择 三种曲线方程来描述锡克氏试验阴性率与儿童年龄的关系。
• (3)拟合曲线图,如图27-17所示。 • 最后给出的是实际数据的散点图和三种估计曲线方程的预测图。

实验六用spss进行非线性回归分析

实验六用spss进行非线性回归分析

实验六用SPSS进行非线性回归分析例:通过对比12个同类企业的月产量(万台)与单位成本(元)的资料(如图1),试配合适当的回归模型分析月产量与单位成本之间的关系图1原始数据和散点图分析一、散点图分析和初始模型选择在SPSS数据窗口中输入数据,然后插入散点图(选择Graphs→Scatter命令),由散点图可以看出,该数据配合线性模型、指数模型、对数模型和幂函数模型都比较合适。

进一步进行曲线估计:从Statistic下选Regression菜单中的Curve Estimation命令;选因变量单位成本到Dependent框中,自变量月产量到Independent框中,在Models框中选择Linear、Logarithmic、Power和Exponential四个复选框,确定后输出分析结果,见表1。

分析各模型的R平方,选择指数模型较好,其初始模型为但考虑到在线性变换过程可能会使原模型失去残差平方和最小的意义,因此进一步对原模型进行优化。

模型汇总和参数估计值因变量: 单位成本方程模型汇总参数估计值R 方F df1df2Sig.常数b1线性.912110.000对数.943110.000幂.931110.000指数.955110.000自变量为月产量。

表1曲线估计输出结果二、非线性模型的优化SPSS提供了非线性回归分析工具,可以对非线性模型进行优化,使其残差平方和达到最小。

从Statistic下选Regression菜单中的Nonlinear命令;按Paramaters按钮,输入参数A:和B:;选单位成本到Dependent框中,在模型表达式框中输入“A*EXP(B*月产量)”,确定。

SPSS输出结果见表2。

由输出结果可以看出,经过6次模型迭代过程,残差平方和已有了较大改善,缩小为,误差率小于,优化后的模型为:迭代历史记录b迭代数a残差平方和参数A B+133.087导数是通过数字计算的。

a. 主迭代数在小数左侧显示,次迭代数在小数右侧显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS—非线性回归(模型表达式)案例解析
2011-11-16 10:56
由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二!
非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型
还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢?
答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究:
第一步:非线性模型那么多,我们应该选择“哪一个模型呢?”
1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型
点击“图形”—图表构建程序—进入如下所示界面:
点击确定按钮,得到如下结果:
放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高!
点击“分析—回归—曲线估计——进入如下界面
在“模型”选项中,勾选”二次项“和”S"两个模型,点击确定,得到如下结果:
通过“二次”和“S“ 两个模型的对比,可以看出S 模型的拟合度明显高于“二次”模型的拟合度(0.912 >0.900)不过,几乎接近
接着,我们采用S 模型,得到如下所示的结果:
结果分析:
1:从ANOVA表中可以看出:总体误差= 回归平方和 + 残差平方和(共计:0.782)F统计量为(240.216)显著性SIG为(0.000)由于0.000<0.01 (所以具备显著性,方差齐性相等)
2:从“系数”表中可以看出:在未标准化的情况下,系数为(-0.986)常数项
为2.672
所以 S 型曲线的表达式为:Y(销售量)=e^(b0+b1/t) = e^(2.672-0.986/广告费用)
当数据通过标准化处理后,常数项被剔除了,所以标准化的S型表达式为:Y(销售量) = e^(-0.957/广告费用)
下面,我们直接采用“非线性”模型来进行操作
第一步:确定“非线性模型”
从绘图中可以看出:广告费用在1千万——4千多万的时候,销售量增加的跨度较大,当广告费用超过“4千多万"的时候,增加幅度较小,在达到6千多万”达到顶峰,之后呈现下降趋势。

从图形可以看出:它符合The asymptotic regression model (渐近回归模型)表达式为:Y(销售量)= b1 + b2*e∧b3*(广告费用)
当b1>0, b2<0, and b3<0,时,它符合效益递减规律,我们称之为:Mistcherlich's model
第二步:确定各参数的初始值
1:b1参数值的确定,从表达式可以看出:随着”广告费用“的增加,销售量也会增加,最后达到一个峰值,由于:b2<0, b3<0 ,随着广告费用的增加:
b2*e∧b3*(广告费用)会逐渐趋向于“0”而此时 Y(销售量)将接近于 b1值,从上图可以看出:Y(销售量)的最大值为12点多,接近13,所以,我们设定b1的初始值为13
2:b2参数值确定:当Y(销售量)最小时,此时应该广告费用最小,基本等于“0”,可以得出:b1+b2= Y(销售量)此时Y销售量最小,从图中可以看出:第一个值为6.7左右,接近7这个值,所以:b2=7-13=-6
3: b3参数值确定:可以用图中两个分离点的斜率来确定b3的值,例如取
(x1=2.29,y1=8.71) 和(x2=5.75, y2=12.74) 通过公式
y2-y1/x2-x1=1.16,(此处可以去整数估计值来算b3的值)
确定参数初始值和参数范围的方法如下所示:
1:通过图形确定参数的取值范围,然后在这个范围里选择初始值。

2:根据非线性方程的数学特性进行某些变换后,再通过图形帮助判断初始值的范围。

3:先使用固定的数代替某些参数,以此来确定其它参数的取值范围。

4:通过变量转换,使用线性回归模型来估计参数的初始值
第三步:建立模型表达式和选择损失函数
点击“分析”—回归——非线性,进入如下所示界面:
如上图中,点击参数,分别添加b1,b2,b3进入参数框内,在模型表达式中输入:b1 + b2*Exp(b3*广告费用)(步骤为:选择“函数组”—算术——Exp函数),将“销售量”变量拖入“因变量”框内
“损失函数”默认选项为“残差平方和” 如果有特需要求,可以自行定义
点击“约束”进入如下所示的界面:
点击“继续”按钮,此时会弹出警告信息,提示用户是否接受建议, 建议内容为:将采用序列二次编程进行参数估计,点击确定,接受建议即可
参数的取值范围指在迭代过程中,将参数限制在有意义的范围区间内,提供两种对参数范围约束的方法:
1:线性约束,在约束表达式里只有对参数的线性运算
2:非线性约束,在约束表达式里,至少有一个参数与其它参数进行了乘,除运算,或者自身的幂运算
在“保存”选项中,勾选“预测值”和“残差”即可,点击继续
点击“选项”得到如下所示的界面:
此处的“估计方法”选择“序列二次编程”的方法,此方法主要利用的是双重迭代法进行求解,每一步迭代都建立一个二次规划算法,以此确定优化的方向,把估计参数不断的带入损失函数进行求值运算,直到满足指定的收敛条件为止
点击继续,再点击“确定”得到如下所示的结果:
上图结果分析:
1:从“迭代历史记录”表中可以看出:迭代了17次后,迭代被终止,已经找到最优解
此方法是不断地将“参数估计值”代入”损失函数“求解,而损失函数采用的是”残差平方和“最小,在迭代17次后,残差平方和达到最小值,最小值为(6.778)此时找到最优解,迭代终止
2:从参数估计值”表中可以看出:
b1= 12.904 (标准误为0.610,比较小,说明此估计值的置信度较
高) b2=-11.268 (标准误为:1.5881,有点大,说明此估计值的置信度不太高)b3=-0.496(标准误为:0.138,很小,说明此估计值的置信度很高)
非线性模型表达式为:Y(销售量)= 12.904-11.268*e^(-0.496*广告费用)
3:从“参数估计值的相关性”表中可以看出:b1 和 b3的相关性较强,b2和b1或b3的相关性都相对弱一些,其中b1和b2的相关性最弱
4:从anova表中可以看出:R方 = 1- (残差平方和)/(已更正的平方和) = 0.909,拟合度为0.909,说明此模型能够解释90多的变异,拟合度已经很高了
前面已经提到过,S行曲线的拟合度更高,为(0.916)那到底哪个更合适呢?如果您的数据样本容量够大,我想应该是“非线性模型”的拟合度会更高!
其实想想,我们是否可以将“非线性”转换为“线性”后,再利用线性模型进行分析了?后期有时间的话,将还是以本例为说明,如何将“非线性”转换为“线性”后进行分析!!。

相关文档
最新文档