多元非线性回归模型

合集下载

概率论与数理统计(回归分析)

概率论与数理统计(回归分析)

调整R方值 考虑到自变量数量的R方值,用 于比较不同模型之间的拟合优度。 调整R方值越接近于1,说明模型 拟合优度越好。
残差图 通过观察残差与实际观测值之间 的关系,判断模型是否符合线性 关系、是否存在异方差性等。
05
逻辑回归分析
逻辑回归模型
01
逻辑回归模型是一种用于解决 二分类问题的统计方法,基于 逻辑函数将线性回归的预测值 转换为概率形式。
多元非线性回归模型
在多个自变量X1, X2, ..., Xp的条件下,预测因变量Y的非线性数 学模型。模型形式为Y = f(β0, β1*X1, β2*X2, ... , βp*Xp),其
中f表示非线性函数。
多元逻辑回归模型
用于预测分类结果的多元回归模型,适用于因变量Y为二分 类或多分类的情况。
多重共线性问题
非线性回归模型是指因变量和自 变量之间的关系不是线性的,需 要通过变换或参数调整来拟合数 据。
形式
非线性回归模型通常采用指数函 数对数函数、多项式函数等形 式来表达。
适用范围
非线性回归模型适用于因变量和 自变量之间存在非线性关系的情 况,例如生物医学、经济学、社 会学等领域。
常用非线性回归模型
指数回归模型
线性回归模型假设因变量和自变 量之间存在一种线性关系,即当 一个自变量增加或减少时,因变 量也会以一种恒定的方式增加或 减少。
最小二乘法
01
02
03
最小二乘法是一种数学 优化技术,用于估计线
性回归模型的参数。
最小二乘法的目标是找 到一组参数,使得因变 量的观测值与预测值之
间的平方和最小。
最小二乘法的数学公式为: β=(XTX)^(-1)XTY,其中 X是自变量的数据矩阵,Y 是因变量的数据向量,β

可以化为线性的多元非线性回归模型课件

可以化为线性的多元非线性回归模型课件

特征选择
去除无关或冗余的特征,保留对模型 贡献最大的特征。
模型评估的指标
均方误差(MSE)
R方值
ቤተ መጻሕፍቲ ባይዱ
衡量预测值与真实值之间的平均平方差距 。
衡量模型解释的变异比例,值越接近1表示 模型解释的变异比例越高。
调整R方值
交叉验证误差
对R方值进行调整,以考虑模型中的自由度 和样本大小。
将数据分成多个子集,用其中的一部分训 练模型,另一部分测试模型,重复多次以 获得稳定的误差估计。
特点
具有非线性特征,无法通过简单变换 转化为线性模型,需要采用特定的方 法和技巧进行建模和数据分析。
多元非线性回归模型的重要性
揭示非线性关系
在许多实际问题中,变量之间的关系可能并非线性,此时需要采 用多元非线性回归模型来揭示其内在联系。
提高预测精度
相比于线性模型,多元非线性回归模型能够更准确地拟合数据,从 而提高预测精度。
可解释性
选择的模型应易于解释,有助于理解数据背后的机制。
模型优化的方法
参数优化
通过调整模型参数以改进模型的性能 ,如梯度下降法、牛顿法等。
集成学习
将多个模型的预测结果结合起来以提 高预测精度,如bagging、 boosting等。
正则化
通过在损失函数中添加惩罚项来防止 过拟合,如L1、L2正则化等。
03
02
幂回归模型
适用于因变量和自变量之间存在幂 关系的情况。
指数回归模型
适用于因变量和自变量之间存在指 数关系的情况。
04
03
模型选择与优化
模型选择的原则
适应性
选择的模型应能适应数据的特性,包括分布、自变量和因变量之间的关系等。

非线性回归分析常见模型

非线性回归分析常见模型

非线性回归常见模型一.基本内容模型一xc e c y 21=,其中21,c c 为常数.将xc ec y 21=两边取对数,得x c c e c y xc 211ln )ln(ln 2+==,令21,ln ,ln c b c a y z ===,从而得到z 与x 的线性经验回归方程a bx z +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型二221c x c y +=,其中21,c c 为常数.令a c b c x t ===212,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型三21c x c y +=,其中21,c c 为常数.a cbc x t ===21,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型四反比例函数模型:1y a b x=+令xt 1=,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型五三角函数模型:sin y a b x=+令x t sin =,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.二.例题分析例1.用模型e kx y a =拟合一组数据组()(),1,2,,7i i x y i =⋅⋅⋅,其中1277x x x ++⋅⋅⋅+=;设ln z y =,得变换后的线性回归方程为ˆ4zx =+,则127y y y ⋅⋅⋅=()A.70e B.70C.35e D.35【解析】因为1277x x x ++⋅⋅⋅+=,所以1x =,45z x =+=,即()127127ln ...ln ln ...ln 577y y y y y y +++==,所以35127e y y y ⋅⋅⋅=.故选:C例2.一只红铃虫产卵数y 和温度x 有关,现测得一组数据()(),1,2,,10i i x y i =⋅⋅⋅,可用模型21e c x y c =拟合,设ln z y =,其变换后的线性回归方程为4zbx =- ,若1210300x x x ++⋅⋅⋅+=,501210e y y y ⋅⋅⋅=,e 为自然常数,则12c c =________.【解析】21e c x y c =经过ln z y =变换后,得到21ln ln z y c x c ==+,根据题意1ln 4c =-,故41e c -=,又1210300x x x ++⋅⋅⋅+=,故30x =,5012101210e ln ln ln 50y y y y y y ⋅⋅⋅=⇒++⋅⋅⋅+=,故5z =,于是回归方程为4zbx =- 一定经过(30,5),故ˆ3045b -=,解得ˆ0.3b =,即20.3c =,于是12c c =40.3e -.故答案为:40.3e -.该景点为了预测2023年的旅游人数,建立了模型①:由最小二乘法公式求得的数据如下表所示,并根据数据绘制了如图所示的散点图.。

实验三_多元线性回归模型及非线性回归(1)

实验三_多元线性回归模型及非线性回归(1)

实验三_多元线性回归模型及⾮线性回归(1)实验三多元线性回归模型及⾮线性回归⼀、多元线性回归模型例题3.2.2 建⽴2006年中国城镇居民⼈均消费⽀出的多元线性回归模型。

数据:地区 2006年消费⽀出Y 2006年可⽀配收⼊X12005年消费⽀出X2北京 14825.41 19977.52 13244.2 天津 10548.05 14283.09 9653.3 河北 7343.49 10304.56 6699.7 ⼭西 7170.94 10027.70 6342.6 内蒙古 7666.61 10357.99 6928.6 辽宁 7987.49 10369.61 7369.3 吉林 7352.64 9775.07 6794.7 ⿊龙江 6655.43 9182.31 6178.0 上海 14761.75 20667.91 13773.4 江苏 9628.59 14084.26 8621.8 浙江 13348.51 18265.10 12253.7 安徽7294.73 9771.05 6367.7 福建 9807.71 13753.28 8794.4 江西 6645.54 9551.12 6109.4 ⼭东 8468.40 12192.24 7457.3 河南6685.18 9810.26 6038.0 湖北 7397.32 9802.65 6736.6 湖南 8169.30 10504.67 7505.0 ⼴东 12432.22 16105.58 11809.9 ⼴西 6791.95 9898.75 7032.8 海南 7126.78 9395.13 5928.8 重庆 9398.69 11569.74 8623.3 四川 7524.81 9350.11 6891.3 贵州6848.39 9116.61 6159.3 云南 7379.81 10069.89 6996.9 西藏 6192.57 8941.08 8617.1 陕西 7553.28 9267.70 6656.5 ⽢肃6974.21 8920.59 6529.2 青海 6530.11 9000.35 6245.3 宁夏 7205.57 9177.26 6404.3 新疆 6730.018871.276207.51、建⽴模型01122Y X X βββµ=+++2、估计模型(1)录⼊数据打开EViews6,点“File ”→“New ”→“Workfile ”选择“Unstructured/Undated”,在Observations 后输⼊31,如下所⽰:点“ok”。

多元非线性数据拟合模型的数学推论及其回归方程的计算机拟合

多元非线性数据拟合模型的数学推论及其回归方程的计算机拟合

在已有的相关研究中,大多数研究者主要SEM的整体拟合效果,即模型与数据 的匹配程度。常用的整体拟合指标有绝对拟合指数(如χ2值、RMSEA等)和 相对拟合指数(如CFI、TLI等)。然而,这些研究往往忽略了SEM的内部拟合 效果,即模型中每个路径系数是否合理、准确。此外,模型的复核效度检验也 是至关重要的,它可以帮助我们判断模型的稳定性和可靠性。
结论
多元非线性数据拟合模型在理解和预测现实世界中的复杂现象方面具有重要价 值。通过掌握数学推论和回归方程的计算机拟合方法,我们可以更好地理解和 应用这些模型。在具体应用中,我们需要根据实际问题和数据的特点选择合适 的模型,并灵活运用各种手段对模型进行优化,以提高预测的准确性和稳定性。
参考内容
结构方程模型(SEM)是一种广泛应用于社会科学、心理学、经济学等领域的 数据分析工具,它能够同时处理多个因变量和自变量之间的关系,并对其进行 统计检验和模型拟合。在SEM的应用过程中,对模型拟合评鉴是非常重要的一 环,它可以帮助我们了解模型是否合理、准确,以及是否能够解释我们所研究 的实际问题。
通过研究结果,我们发现模型的总体拟合效果较好,能够较好地解释该地区消 费者的购买行为。然而,在内部拟合效果方面,部分路径系数和负载系数的估 计结果并不十分理想,需要进一步加以改进和完善。此外,复核效度检验也为 我们提供了对模型可靠性进行评估的依据。
总之,本研究通过对SEM模型的整体拟合、内部拟合和复核效度检验的评估, 发现该模型虽然在一定程度上能够解释该地区消费者的购买行为,但仍存在一 定的改进空间。未来研究可以通过进一步完善SEM模型的内部结构和路径关系、 优化估计方法等方面加以改进,以提高模型的解释力和预测力。
多元非线性数据拟合模型的数学推论及 其回归方程的计算机拟合

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)

多元非线性回归

多元非线性回归

多元非线性回归今天给大家展示的内容是关于多元非线性回归模型,一般对统计分析略有了解的人都会知道,回归模型一般分为一元线性回归模型,多元线性回归模型,还有非线性回归模型,非线性回归模型有一元的,也有两元的,还有多元的!其中最复杂的应该是多元非线性回归模型,复杂在何处:第一,我们事前并不知道该用什么样的非线性模型去拟合数据?第二,即使我们知道了需要的非线性模型,但是里面的参数设置,要靠自己专业和经验来设置,没错——靠经验!问题是我们(除了一些大牛)是没经验的。

为了降低难度,结合今天设计学院一位学姐问的问题,赋文君利用别人的模型,去尝试的复现别人的结果,顺便介绍非线性回归分析的基本步骤!注意,以下内容基本在百度上搜不到!都是赋文君自己摸索出来的。

问题背景为了研究建筑材料的抗压强度,某个硕士研究生设计了一个实验,实验材料:石灰,细砂,水玻璃;实验器材:若见先进设备,其实我也没用那些工程机械。

通过一些列物理等方面的参数分析检验,得出了一些实验结果,在利用回归模型分析和相关性分析深入了解石灰,水玻璃和细砂,抗压强度四者之间的数量关系和相关程度。

抗压强度是因变量,石灰,水玻璃和细砂是自变量。

2.原始数据3.非线性回归分析步骤将数据导入或者录入spss中,接着就可以对其进行回归分析了。

按钮点击顺序,找到“分析”——“回归”——“非线性”:将抗压强度选为因变量,接着要输入模型了,案例论文用的是二阶混料规范多项式:为了便于录入模型和分析,把上面的模型分解开:变量x的前面系数(即参数)分别设定为a,b,c,其中a1表示石灰的系数,a2表示水玻璃的系数,a3表示细砂的系数,b1表示石灰*水玻璃的系数,b2表示石灰*细砂的系数,b3表示水玻璃*细砂的系数,c1 c2 c3分别表示,石灰,水玻璃和细砂平方的系数,d是常数量。

多元线性回归和非线性回归

多元线性回归和非线性回归


SSR R SST
2 ˆ ( y y ) i 2 ( y y ) i i 1 i 1 n
n
,x ,x 称 y 关于 x 1 2, p 的样本复相关系数,R 的大小可以
反映作为一个整体的 x ,x ,x 1 2, p与 y 的线性相关的密切 程度.
修正多重决定系数(adjusted multiple coefficient of determination)
回归参数的估计
估计的多元线性回归的方程
(estimated multiple linear regression equation)
1.
2. 3.
ˆ ,b ˆ ,b ˆ, ˆ 估计回归方程 ,b 用样本统计量 b 0 1 2 p 中的 参数 b 时得到的方程 , b , b , , b 0 1 2 p 由最小二乘法求得 一般形式为
ˆ ˆ ˆ ˆ ˆ y b b x b x b x 0 1 1 2 2 p p

ˆ, ˆ, ˆ, ˆ是 b , b , b , , b b , b 0 1 2 p 0 b 1 b 2 p
估计值 ˆ 是 y 的估计值 y
参数的最小二乘法
1. 使因变量的观察值与估计值之间的离差平方和 ˆ, ˆ, ˆ, ˆ 。即 b b , b 达到最小来求得 b 0 1 2 p
i 1
3. 确定显著性水平和分子自由度p、分母自由度np-1找出临界值F 4. 作出决策:若F>F ,拒绝H0
方差分析表
前面的这些计算结果可以列成表格的形式,称为方差分析表. 方差分析表
方差来源 平方和 回归 残差 总和 SSR SSE SST 自由度 p 方差 SSR / p F 值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

j表示在其他解释变量保持不变的情况下,
Xj每变化1个单位时,Y的均值E(Y)的变化。
非线性的情况:
(1) ln Yi 1 2 ln X i ui
(2) ln Yi 1 2 X i ui
(3)Yi 1 2 ln X i ui
(4)Yi 1 2 X i 3 X i2 ui
非线性回归模型的线性化
一、双对数模型 二、半对数模型 三、幂函数模型 四、多项式函数模型 五、倒数函数模型
一元线性回归模型
Yi 1 2 X i ui
i=1,2…,n
1表示X每变化一个单位时, 的均值E(Y)的变化。 Y
多元线性回归模型
Yi 1 2 X 2i 3 X 3i k X ki ui i=1,2…,n
Cobb-Dauglas生产函数
Yi AKi Li e

ui
Q:产出量,K:投入的资本;L:投入的劳动
方程两边取对数:
ln Qi = ln A + ln Ki + ln Li+ui
斜率系数衡量的是被解释变量Y关于解释变量X的弹 性, 表示当L不变时,K每变动百分之一,Y的均值 变动的百分比; 表示当K不变时,L每变动百分之 一,Y的均值变动的百分比。
(二)半对数模型
如果设定的非线性模型为
ln Yi 1 2 X i ui
E (lnYi ) E (lnYi 1 ) Y的均值的相对变化 X i X i 1 X的绝对变化
2
斜率系数 2 衡量的是当变量X的绝对量每发生单位变动 时,引起被解释变量Y平均值的相对变动比率。 令
研究119个发展中国家1960-1985年的GDP增长率与 相对人均GDP之间的关系,考虑建立如下模型:
GDPG 1 2 RGDP 3 RGDP ui i i i
2
其中GDPG表示GDP的百分比增长率(1960-1985 年间的平均增长率),RGDP表示1960年的相对人 均GDP(即占美国1960年人均GDP的百分比)。 回归结果如下: 2 ˆ GDPG 0.013 0.062RGDP 0.061RGDP
i i i
Se = (0.004)
(0.027)
(0.033)
这个回归结果表明,在一定范围内发展中国家 GDPG随着RGDP的提高而递增,但增加的速 度递减。
(五)倒数函数模型 如果设定的非线性模型为
Yi 1 2 (1 X i ) ui
这种模型表示随着X的递增Y将呈现非线性的递减, 但最终以为渐近线。 令
Yi* ln Yi
即可将原模型化为标准的线性回归模型
假设Y为对外劳务输出,欲研究Y随时间变化的趋 势,则可建立如下模型:
ln Yt 1 2tt ut
若回归结果如下所示
ˆ ln EXSt 7.7890 0.00743t t
Se = t
(0.0023)
(0.00017)
= (3387.619) (44.282ห้องสมุดไป่ตู้)
两边取对数,得
ln Yi ln A 2 ln X 2i k ln X ki ui

Yi ln Yi , 1 ln A, X 2i ln X 2i , X ki ln X ki
即可将原模型化为标准的线性回归模型
Yi 1 2 X 2i k X ki ui
(5)Yi 1 2 (1/ X i ) ui
(一)双对数模型
ln Yi ln A 2 ln X 2i k ln X ki ui

Yi ln Yi , 1 ln A, X 2i ln X 2i , X ki ln X ki
即可将原模型化为标准的线性回归模型
R2=0.9894
结果表示对外劳务输出每年以0.743%的速 度增长。
如果设定的非线性模型为
Yi 1 2 ln X i vi
斜率系数 2 衡量的是当变量X变动1%时,Y的 均值变动的绝对量。 令
Zi ln X i
即可将原模型化为标准的线性回归模型
印度农户食物支出与总支出的关系 回归结果: 食物支出i=94.2087+0.4368总支出i 若建立回归模型 食物支出i=b0+b1ln总支出i+ui 则回归结果为 食物支出i=-1283.912+257.2700ln总支出i
Zi 1 / X i
则可将原模型化为标准的线性回归模型
Yi 1 2 Zi ui
ln X 2i ln X 2i 1 ( X 2i X 2i 1 ) / X 2i 1 X 2的相对变化
E(lnYi) E(lnYi 1 ) ( EYi EYi 1 ) / EYi 1 Y的均值的相对变化
Y的均值的相对变化 2 X的相对变化
假设我们想求出耐用品支出(EXDURt)对个人消 费总支出(PCEXt)的弹性。把耐用品支出的对 数和个人消费总支出的对数进行回归分析,回归 结果如下:
斜率系数意味着总支出每提高1%,导致样 本中包括的55个家庭的食物支出平均增加约 2.57卢比。
(三)幂函数模型 幂函数模型的一般形式为
Yi AX2i2 X 3i3 X kik eui
如:Cobb-Dauglas生产函数
Yi AKi Li e

ui
Q:产出量,K:投入的资本;L:投入的劳动
Yi 1 2 X 2i k X ki ui
斜率系数 k 测度了Y对Xk的弹性,表示是在其他 解释变量保持不变的情况下,当变量Xk变动1% 时,Y的均值的相对变动比率。
以 2为例说明:
2
E (lnY )i E (lnYi 1 ) ln X 2i ln X 2i 1
(四)多项式函数模型
多项式函数模型的一般形式为:
Yi 0 1 X i 2 X i k X i ui
2 k

Z1i X i , Z2i X i2 ,Zki X ik
则可将原模型化为标准的线性回归模型
Yi 0 1Z1i 2 Z2i k Zki ui
ln EXDUˆt 9.6971 1.9056ln PCEXt R
Se = t (0.4341) (0.0514)
= (-22.3370) (37.0962)
R2=0.9849
斜率系数的经济意义:EXDUR对PCEX的 弹性约为1.90,这表明,若个人消费总支出 提高1%,耐用品消费支出则提高约1.9%。
相关文档
最新文档