(完整版)平行线的性质和判定的综合运用导学案

合集下载

人教版七年级下册-平行线判定方法的综合运用导学案

人教版七年级下册-平行线判定方法的综合运用导学案

cPba4321第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。

2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。

【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。

【学具准备】三角板 【自主学习】1、预习疑难: 。

2、填空:经过直线外一点,_____ ___与这条直线平行.【合作探究】(一)平行线判定方法1:1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式:。

∵∠1=∠2(已知)简单说成: 。

∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法2应用格式:。

∵∠2=∠3(已知)简单说成: 。

∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法3应用格式:∵∠2+∠4=180°(已知)简单说成: 。

∴a ∥b (同旁内角互补,两直线平行) (三)数学思想:教材15页探究。

D CBAcba21【反馈提高】 (一)例 教材15页(二)练一练:教材15页练习1、2、3(三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a ∥c 。

即 。

方法3:如图1,若 。

方法4:如图1,若 。

方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2; C ∠3=∠4 D.∠BAC=∠ACD8765cba341234DCBA21FE D CBA 876543219654321DCB A(1) () (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( ).同位角不一定相等 B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________; 如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________.ED CB A六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°, 试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。

5.3.1平行线的性质和判定及其综合运用导学案(2)

5.3.1平行线的性质和判定及其综合运用导学案(2)

1FE D CB A 平行线的性质和判定及其综合运用导学案(2)学习目标:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.学习重点: 平行线的判定方法和性质.学习难点: 平行线的性质和判定的综合运用.学习过程:一、知识回顾1.平行线的判定方法有哪些2.平行线的性质有哪些3. 平行线的性质与判定的区别与联系.1、区别:性质是:根据两条直线平行,去证角的相等或互补.判定是:根据两角相等或互补,去证两条直线平行.2、联系:它们都是以两条直线被第三条直线所截为前提;它们的条件和结论是互逆的。

3、总结:已知平行用性质,要证平行用判定二、典例精析例1、如图,三角形ABC 中,D 是AB 上一点,E 是AC 上一点,∠ADE=60°,∠B = 60°, ∠AED=40°.(1)DE 和BC 平行吗为什么(2)∠C 是多少度为什么解:(1)DE 和BC .∵ ∠ADE=60°,∠B = 60°(已知) ∴ = ∴ DE BC ( )(2)∠C=∵ DE BC (已证) ∴∠C= = ( )练习1. 如图,AB ∥EF ,∠ECD =∠E , CD 和AB 平行吗为什么1 FEDCB A例2、如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.(提示:过点E做AB的平行线,这条线叫做辅助线,用虚线表示;它能构造出新条件或明确图形中的隐藏条件.要在解题过程中描述出来)解:过E作EF∥AB∵AB ∴∠ABE+∠ =180°,∠CDE+∠ =180°(两直线平行,同旁内角互补).∴∠ =180°-∠ABE=180°- = °∠ =180°-∠CDE =180°- = °∴∠BED=∠ +∠ = °+ ° = °.练习2.如图所示,AB∥CD,则∠BAE+∠AEF+∠CFE+∠DCF等于( )° ° ° °三、课堂检测1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a①②③④ B .①③④C. ①③D. ④3. 如图,若ABEDCBA。

平行线的性质和判定的综合运用导学案

平行线的性质和判定的综合运用导学案

平行线的性质和判定的综合运用学习目标:1.分清平行线的性质和判定.已知平行用性质,要证平行用判定.2.能够综合运用平行线性质和判定解题.学习重点:平行线性质和判定综合应用 学习难点:平行线性质和判定灵活运用 学习过程: 一、复习提问1、平行线的性质有哪些?2、平行线的判定有哪些?3、平行线的性质与判定的区别与联系(1)区别:性质是:根据两条直线平行,去证角的相等或互补.判定是:根据两角相等或互补,去证两条直线平行.(2)联系:它们都是以两条直线被第三条直线所截为前提;它们的条件和结论是互逆的。

(3)总结:已知平行用性质,要证平行用判定 二、应用例:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

1、分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°,(由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF ,所以∠A +∠AEF =180°成立.于是得证2、证明:∵ AD ∥BC (已知)∴ ∠A+∠B =180°( ) ∵ ∠AEF=∠B (已知) ∴ ∠A +∠AEF =180°(等量代换) ∴ AD ∥EF ( ) 三、练一练:1、如图,已知:AB ∥DE ,BC ∥EF, 求证:∠B =∠E 。

变式:如图所示,已知AB ∥CD, BC ∥ EF , 求证:∠ B +∠ E=180°.由以上结论可得:若两个角的两边互相平行,那么这两个角 。

A BCDFEE D CBA2、如图,已知:∠1=∠2,求证:∠3+∠4=180o3、如图,已知:AB ∥CD ,MG 平分∠AMN ,NH 平分∠DNM ,求证:MG ∥NH 。

变式1:如图,已知:AB ∥ CD ,MG 平分∠ EMB,NH 平分∠ DNM ,求证:MG ∥ NH 。

.变式2:如图,已知:AB ∥ CD ,MG 平分∠ BMN ,NH 平分∠ DNM ,求证:MG ∥ NH 。

平行线的性质和判定的综合应用导学案

平行线的性质和判定的综合应用导学案

图2 平行线的判定与性质的综合应用导学案学习目标: 1、知识与技能:理解并掌握平行线的判定与性质,并能灵活运用。

2、数学思考:领悟类比、转化等数学思想方法。

3、问题解决:能够综合运用平行线性质和判定解决问题.4、情感与态度:在学习过程中,通过师生的互动交流,培养良好的学习习惯,主动参与的意识,在独立思考的同时能够认同他人。

学习重点:平行线性质和判定综合应用学习难点:平行线性质和判定灵活运用及推理过程的书写一、 复习①平行线的判定方法: ②平行线的性质: 二、练一练1、如图1,AD ∥BC 可以得到( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠42、如图2,已知∠3=∠4,若要使∠1=∠2,则还需( )A 、∠1=∠3B 、∠2=∠3C 、∠1=∠4D 、AB ∥CD3、如图3,AB ∥DE ,BC ∥FE ,则∠E+∠B= 。

4、如图4,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.5、如图5,直线AB ∥CD ,∠1=75°,则∠2=.图4 图56、推理填空:如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB+∠ABC=1800,则 ∥ ( )②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ( )三、典型例题例1、如图,已知B 、E 分别是AC 、DF 上的点,∠1=∠2,∠C=∠D ,∠A 与∠F 相等吗?请说明理由 .FE21DCBA例2、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30 o ,求∠C 的度数。

例3、如图,已知AB ∥DE ,∠1=1200,∠2=1100,求∠3的度数.ABCD1 2 34图1图3CABDEF321DCBAbac d 12 34FE DCBA 四、学习体会:本节课你有哪些收获?你还有哪些疑惑?五、拓展延伸1、探索发现: 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.(提示:过点P 做平行线)PDCBA P DCBAP DCB A PDCB A(1) (2) (3) (4)变式1:如图所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( )A.180°B.360°C.540°D.720°变式2:如图所示,A 1B ∥A n D ,则∠A 1+∠A 2+…+∠A n 等于,A 1A 3A 2A nBD。

2022年初中数学《平行线的判定》导学案(推荐)

2022年初中数学《平行线的判定》导学案(推荐)

5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线〔板书课题〕.2.学习目标:〔1〕学会并记住平行线的判定方法1、2、3.〔2〕能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:〔1〕自学内容:课本P12至P13的内容.〔2〕自学时间:10分钟.〔3〕自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.〔4〕自学参考提纲:①12“思考〞中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,假设∠1=∠2,那么a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?②a.在图1中,∠2与∠3是一对内错角.∠3=∠2,能得到直线a∥b吗?分析:假设能由∠3=∠2转化为∠1=∠2,那么由判定方法1,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称为内错角相等,两直线平行.③a.在图1中,∠2与∠4是一对同旁内角.∠2+∠4=180°,能得到直线a∥b吗?分析:假设能由∠2+∠4=180°转化为∠1=∠2〔或∠3=∠2〕,那么由判定方法1〔或判定方法2〕,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称为同旁内角互补,两直线平行.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂,关注学生在自学中遇到的疑难问题.②差异指导:对个别学习有困难的学生进行点拨引导.〔2〕生助生:小组相互交流学习,纠正认知偏差.4.强化:〔1〕判定方法1、2、3及其几何表述.〔2〕练习:课本P15“复习稳固〞的第1、2题.1.自学指导:〔1〕自学内容:课本P14例题.〔2〕自学时间:4分钟.〔3〕自学要求:阅读教材,重点处做好圈点,有疑点处做上记号.〔4〕自学参考提纲:①仔细体会,揣摩例题的几何推理过程,你能仿照它用别的方法说明b∥c 吗?②本例的结论也可作为平行线的一种判定方法,简述为:在同一平面内,垂直于同一条直线的两直线平行.③如图2,BE是AB的延长线.∠CBE=∠A可以判定哪两条直线平行?根据是什么?答案:BC∥AD.根据是同位角相等,两直线平行.∠CBE=∠C可以判定哪两条直线平行?根据是什么?答案:AB∥CD.根据是内错角相等,两直线平行.④如图3,这是小明同学自己制作的英语抄写纸的一局部,其中的横线互相平行吗?你有多少种判别方法?答案:平行.理由不唯一.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:关注学生完成自学参考提纲的进度、存在的问题及疑点.②差异指导:对个别学习有困难或认知缺乏的学生进行点拨引导.〔2〕生助生:小组内学生相互交流,取长补短.4.强化:〔1〕判断两条直线平行的方法:①平行公理的推论:如果两条直线都与第三条直线平行,这两条直线也互相平行.②平行线判定方法1,即同位角相等,两直线平行.③平行线判定方法2,即内错角相等,两直线平行.④平行线判定方法3,即同旁内角互补,两直线平行.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.〔2〕练习:课本P14“练习〞第2题.三、评价1.学生学习的自我评价:各小组针对学习收获和存在的困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习过程中的态度、方法和成效进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本节课通过“问题情境—合作探究—建立模型—求解—应用〞的根本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;开展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学、应用数学的自信心.(时间:12分钟总分值:100分)一、根底稳固〔70分〕1.〔20分〕如图,直线a,b,c被直线l所截,量得∠1=∠2=∠3.〔1〕假设∠1=∠2,那么a∥b,理由是同位角相等,两直线平行.〔2〕假设∠1=∠3,那么a∥c,理由是内错角相等,两直线平行.〔3〕直线a,b,c互相平行吗?为什么?解:平行,∵b∥a,c∥a,∴b∥c,∴a∥b∥c.第1题图第2题图第3题图第4题图2.(10分)如图,根据图中所给条件:〔1〕互相平行的直线有a∥b,c∥d;〔2〕互相垂直的直线有e⊥b,e⊥a.3.〔10分〕如图,如果∠3=∠7或∠4=∠8或∠2=∠6或∠1=∠5,那么a∥b,理由是同位角相等,两直线平行;如果∠5=∠3或∠2=∠8,那么a∥b,理由是内错角相等,两直线平行;如果∠2+∠5=180°或∠3+∠8=180°,那么a∥b,理由是同旁内角互补,两直线平行.4.〔10分〕如图,如果∠2=∠6,那么AD∥BC,如果∠3+∠4+∠5+∠6=180°, 那么AD∥BC;如果∠9 =∠DAB,那么AD∥BC;如果∠9=∠3+∠4,那么AB∥CD.5.〔20分〕如图,直线a,b被直线c所截,现给出以下四个条件:①∠1=∠5;②∠1=∠7;③∠4=∠7;④∠2+∠3=180°.其中能说明a∥b的条件序号为(A)A.①②B.①③C.①④D.③④二、综合应用〔20分〕6.如图,当∠1=∠3时,直线a,b平行吗?当∠2+∠3=180°时,直线a,b 平行吗?为什么?解:∵∠1=∠3,∠3=∠4,∴∠1=∠4,∴a∥b〔同位角相等,两直线平行〕.∵∠3=∠4,∠2=∠5,∠2+∠3=180°,∴∠4+∠5=180°,∴a∥b〔同旁内角互补,两直线平行〕.三、拓展延伸〔10分〕7.如下列图,直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,那么a与c平行吗?为什么?解:∵∠1=∠2,∴a∥b〔内错角相等,两直线平行〕.∵∠3+∠4=180°,∴b∥c〔同旁内角互补,两直线平行〕.又∵a∥b,∴a∥c〔如果两条直线都与第三条直线平行,那么这两条直线也互相平行〕.5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何表达的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.〔板书课题〕2.学习目标:〔1〕能表达平行线的三条性质.〔2〕能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:〔1〕自学内容:课本P18的内容.〔2〕自学时间:8分钟.〔3〕自学要求:正确画图、测量、验证、归纳.〔4〕探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交〔如图1所示〕.②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:〔1〕师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.〔2〕生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:〔1〕平行线的性质1及其几何表述.〔2〕经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:〔1〕自学内容:课本P19的内容.〔2〕自学时间:8分钟.〔3〕自学要求:阅读教材,重要的局部做好圈点,疑点处做好记号.〔4〕自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:〔1〕师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对局部感到困难的学生进行点拨引导.〔2〕生助生:小组内相互交流、研讨、订正.4.强化:〔1〕平行线的性质1、2、3及其几何表述.〔2〕判定与性质的区别:从角的关系得到两直线平行,就是判定;从直线平行得到角相等或互补,就是性质.〔3〕练习:课本P20“练习〞第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法、成效及缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用标准性的几何语言.缺乏的是师生之间的互动配合和默契程度有待加强.(时间:12分钟总分值:100分)一、根底稳固〔60分〕1.〔10分〕如图,由AB∥CD可以得到〔C〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.〔10分〕如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=〔C〕A.180°B.270°C.360°D.540°3.〔10分〕如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.〔10分〕如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.〔20分〕如图,a∥b,c、d是截线,假设∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°〔两直线平行,内错角相等〕,∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用〔20分〕6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸〔20分〕7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.〔1〕∠DAB等于多少度?为什么?〔2〕∠EAC等于多少度?为什么?〔3〕∠BAC等于多少度?〔4〕由〔1〕、〔2〕、〔3〕的结果,你能说明为什么三角形的内角和是180°吗?解:〔1〕∵DE∥BC,∴∠DAB=∠B=44°〔两直线平行,内错角相等〕.〔2〕∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).〔3〕∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。

六年级下册数学导学案《平行线的性质》

六年级下册数学导学案《平行线的性质》

学案《平行线的性质》学习目标:1、经历探索直线平行的性质的过程,掌握并理解平行线的三条性质。

并能用它们进行简单的推理和计算。

2 、能用直线平行的性质进行简单的推理和计算,初步养成言之有据的习惯。

学习重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

学习难点:能区分直线平行的性质和判定,正确利用平行线的性质解决有关问题。

学习过程: 一、交流预习 1、判定两直线平行的方法有哪些? 结合右图用符号语言表述。

2、已知直线a ∥b ,请画一条截线c 与直线a 、b相交,并按上图用数字标出八个角。

请用量角器测量这些角的度数,把结果填入表内。

图中哪些角是同位角?它们具有怎样的大小关系?图中哪些角是内错角?它们具有怎样的大小关系?图中哪些角是同旁内角?它们具有怎样的大小关系?二、合作探究根据测量所得数据作出猜想:两条平行线被第三条直线所截,同位角 ,内错角 ,同旁内角 。

如果直线a 与b 不平行,你的猜想还成立吗?( )平行线具有性质:性质1:两条 线被第三条直线所截,同位角 。

简称为:两直线 ,同位角 。

几何语言表示:性质2:两条 线被第三条直线所截,内错角 。

简称为:两直线 ,内错角 。

几何语言表示: 性质3:两条 线被第三条直线所截,同旁内角 。

简称为:两直线 ,同旁内角 。

几何语言表示:三、分层提高 1.你能根据性质1,说出性质2、性质3成立的道理吗? 对于性质2,试根据性质1在下面的说理中注明每步推理的根据。

如图,解: ∵a ∥b∴∠1=∠3( ) 又∵∠2=_____( )∴∠2=∠3 ( )ca bc ab类似地,对于性质3,请你仿照上面的推理写出说理过程。

解:2.看图填空:(1)由DE∥BC,可以得到∠ADE=________,依据是_____________________________________;(2)由DE∥BC,可以得到∠DFB=________,依据是_____________________________________;(3)由DE∥BC,可以得到∠C+________=180°,依据是__________________;(4)由DF∥AC,可以得到∠AED=________,依据是_____________________;(5)由DF∥AC,可以得到∠C=________,依据是________________________;3.如图AB∥EF,DE∥BC,且∠E=120°,那么你能求出∠1、∠2、∠B的度数吗?为什么?四、总结归纳五、巩固反馈1.判断题(1)两条直线被第三条直线所截,则同旁内角互补。

5.3平行线的性质(导学案)doc

5.3平行线的性质(导学案)doc

ba 43215.3.1平行线的性质(导学案)【学习目标】1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的探索方法,培养学生的辩证思维能力和逻辑思维能力.3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.【学习重点】平行线性质的研究和发现过程是本节课的重点. 【学习难点】正确区分平行线的性质和判定是本节课的难点. 【自主学习】1、预习疑难:2、平行线判定: 【合作探究】 (一)平行线性质1、观察思考:教材19页思考2、探索活动:完成教材19页探究3、归纳性质:∵a ∥b (已知)。

∴∠3+∠6=180°( )(二)证明性质的正确性:1、性质1→性质2:如右图,∵a ∥b (已知)∴∠1=∠2( )又∵∠3=∠1(对顶角相等)。

F E DC B AO B∴∠2=∠3(等量代换)。

2、性质1→性质3:如右图,∵a ∥b (已知)∴∠1=∠2( )又∵ ( )。

∴ 。

(三)两条平行线的距离1、如图,已知直线AB ∥CD,E 是直线CD 上任意一点,过E 向直线AB 作垂线,垂足为F ,这样做出的垂线段...EF ..的长度...是平行线的距离。

2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变3、对应练习:如右图,已知:直线m ∥n ,A 、B 为 C D m直线n 上的两点,C 、D 为直线m 上的两点。

(1)请写出图中面积相等的各对三角形;(2)如果A 、B 、C 为三个定点,点D 在m 上移动。

那么,无论D 点移动到任何位置,总有三角形 与 A B n三角形ABC 的面积相等,理由是 。

【展示提升】(一)例 (教材20)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?1、分析①梯形这条件说明 ∥ 。

《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学

《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学

第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,表达民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决方法〔一〕重点平行线的性质公理及平行线性质定理的推导.〔二〕难点平行线性质与判定的区别及推导过程.〔三〕解决方法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习稳固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤〔一〕明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.〔二〕整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习稳固新知.〔三〕教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题〔出示投影片1〕.1.如图1,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.2.如图2,〔1〕,那么与有什么关系?为什么?〔2〕,那么与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又效劳于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形〔见图4〕,当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,答复出不管怎样画截线,所得的同位角都相等.根据学生的答复,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的根底上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手答复.【教法说明】在前面复习引入的第2题的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣.教师根据学生答复,给予肯定或指正的同时板书.[板书]∵〔〕,∴〔两条直线平行,同位角相等〕.∵〔对项角相等〕,∴〔等量代换〕.师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手答复以下问题.教师根据学生表达,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵〔〕,∴〔两直线平行,同位角相等〕.∵〔邻补角定义〕,∴〔等量代换〕.即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵〔见图6〕,∴〔两直线平行,同位角相等〕.∵〔〕,∴〔两直线平行,内错角相等〕.∵〔〕,∴.〔两直线平行,同旁内角互补〕〔板书在三条性质对应位置上.〕尝试反响,稳固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习〔出示投影片2〕:如图7,平行线、被直线所截:图7〔1〕从,可以知道是多少度?为什么?〔2〕从,可以知道是多少度?为什么?〔3〕从,可以知道是多少度,为什么?【教法说明】练习目的是稳固平行线的三条性质.变式训练,培养能力完成练习〔出示投影片3〕.如图8是梯形有上底的一局部,量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师防止包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,标准学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵〔梯形定义〕,∴,〔两直线平行,同旁内角互补〕.∴.∴.变式练习〔出示投影片4〕1.如图9,直线经过点,,,.〔1〕等于多少度?为什么?〔2〕等于多少度?为什么?〔3〕、各等于多少度?2.如图10,、、、在一条直线上,.〔1〕时,、各等于多少度?为什么?〔2〕时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言表达,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,假设学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.〔四〕总结、扩展〔出示投影片1第1题和投影片5〕完成并比较.如图11,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.学生活动:学生答复上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.〔出示投影6〕学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的根底上上升到理性认识,总结出平行线性质与判定的不同.稳固练习〔出示投影片7〕1.如图12,是上的一点,是上的一点,,,.〔1〕和平行吗?为什么?图12〔2〕是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了稳固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业〔一〕必做题课本第99~100页A组第11、12题.〔二〕选做题课本第101页B组第2、3题.作业答案A组11.〔1〕两直线平行,内错角相等.〔2〕同位角相等,两直线平行.两直线平行,同旁内角互补.〔3〕两直线平行,同位角相等.对顶角相等.12.〔1〕∵〔〕,∴〔内错角相等,两直线平行〕.〔2〕∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,同位角相等〕.B组2.∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,内错角相等〕.∵〔〕,∴〔两直线平行,同位角相等〕,〔同上〕.又∵〔已证〕,∴.∴.又∵〔平角定义〕,∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
平行线的性质和判定的综合运用导学案
主备人:苗艳玲 审批人: 时间:12年 月 日 印刷份数:140
学习目标:1.分清平行线的性质和判定.已知平行用性质,要证平行用判定.
2.能够综合运用平行线性质和判定解题.
学习重点:平行线性质和判定综合应用 学习难点:平行线性质和判定灵活运用 学习过程: 一、复习提问
1、平行线的性质有哪些?
2、平行线的判定有哪些?
3、平行线的性质与判定的区别与联系
(1)区别:性质是:根据两条直线平行,去证角的相等或互补.
判定是:根据两角相等或互补,去证两条直线平行.
(2)联系:它们都是以两条直线被第三条直线所截为前提;
它们的条件和结论是互逆的。

(3)总结:已知平行用性质,要证平行用判定 二、应用
例:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

1、分析:
(执果索因)从图直观分析,欲证AD ∥EF ,只需
∠A +∠AEF =180°,
(由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又
∠B =∠AEF ,
所以∠A +∠AEF =180°成立.于是得证
2、证明:∵ AD ∥BC (已知)
∴ ∠A+∠B =180°( ) ∵ ∠AEF=∠B (已知) ∴ ∠A +∠AEF =180°(等量代换) ∴ AD ∥EF ( ) 三、练一练:
1、如图,已知:AB ∥DE ,∠ABC+∠DEF=180°, 求证:BC ∥EF 。

A B
C
D F
E
2 F E D C B A
3、如图,已知:AB ∥CD ,MG 平分∠AMN ,NH 平分∠DNM ,求证:MG ∥NH 。

4、如图,已知:AB ∥CD ,∠A =∠C , 求证:AD ∥BC 。

四、自我检测
1、如图,AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下: 因为∠ECD=∠E,
所以CD ∥EF( ) 又AB ∥EF,
所以CD ∥AB( ). 2、下列说法:①两条直线平行,同旁内角互补;②同位角相等,
两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )
A.①
B.②和③
C.④
D.①和④
3、如图,平行光线AB 、DE 照射在平面镜上,经反射得到光线BC 与EF ,已知∠1= ∠2, ∠3= ∠4,则光线BC 与EF 平行吗?为什么?
C
1A B
C
D
M
F
G
E
H
N
2
B
E
3
4、如图,已知B 、E 分别是AC 、DF 上的点,∠1=∠2,∠C=∠D. (1)∠ABD 与∠C 相等吗?为什么.
(2)∠A 与∠F 相等吗?请说明理由 .F
E
2
1
D
C
B
A
5、如图,已知EAB 是直线,AD ∥BC,AD 平分∠EAC,试判定∠B 与∠C 的大小关系,并说明理由.
E D
C B
A
6、已知,如图1,∠AOB 纸片沿CD 折叠,若O′C ∥BD,那么O′D 与AC 平行吗?请说明理由.
O '43
21O
D
C
B
A
7、如图,EF ⊥AB ,CD ⊥AB ,∠EFB=∠GDC ,求证:∠AGD=∠ACB 。

A
B
C
D
F
G
E
4
E
D
C
B A
F E
D
C
B
A 8、探索发现: 如图所示,已知A
B ∥CD,分别探索下列四个图形中∠P 与∠A,∠
C 的关系,•请你从所得的四个关系中任选一个加以说明. (提示:过点P 做平行线)
P D
C
B
A P D
C
B
A P D
C
B A P
D
C
B A
(1) (2) (3) (4)
变式1:如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的
度数.
变式2:如图所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( )
A.180°
B.360°
C.540°
D.720°
五、反思总结
1、本节课你有哪些收获?
2、你还有哪些疑惑?
六、布置作业:1、预习教材21—22页。

2、完成导学案。

相关文档
最新文档