(导学案)5.2.2 平行线的判定

合集下载

人教版七年级下册导学案5.2.2平行线的判定

人教版七年级下册导学案5.2.2平行线的判定
(5)
(3)(4)
4.如图所示(5),BE是AB的延长线,量得∠CBE=∠A=∠C.
(1)由∠CBE=∠A可以判断______∥______,根据是_________.
(2)由∠CBE=∠C可以判断______∥______,根据是_________.
5拓展延伸
1、已知直线a、b被直线c所截,且∠1+∠2=180°,
【自主学习】
1、预习疑难:。
2、填空:经过直线外一点,________与这条直线平行.
【合作探究】
(一)平行线判定方法1:
1、观察思考:过点P画直线CD∥AB的过程,三角尺起了什么作用?
图中,∠1和∠2什么关系?
2、判定方法1:应用格式:
。∵∠1=∠2(已知)
简单说成:。∴AB∥CD(同位角相等,两直线平行)
。∵∠2+∠4=180°(已知)
简单说成:。∴a∥b(同旁内角互补,两直线平行)
(三)数学思想:教材15页探究。




【典题训练】:
(一)例教材15页
(二)练一练:教材15页练习1、2、3
(三)总结直线平行的条件
方法1:若a∥b,b∥c,则a∥c。即两条直线都与第三条直线平行,这两条直线也互相平行。
方法2:如图1,若∠1=∠3,则a∥c。即。
方法3:如图若。
方法4:如图1,若。
方法5:如图2,若a⊥b,a⊥c,则b∥c。即在同一平面内,垂直于同一条直线的两条直线互相平行。








【拓展训练】
1.如图3,如果∠3=∠7,或______,那么______,理由是__________;

5.2《平行线的判定》导学案

5.2《平行线的判定》导学案

导学案【学习课题】5.2.2平行线的判定【学习课型】新授课【学习课时】1课时【学习目标】1、经历学习的过程,探索归纳出平行线的判定方法,并能熟练运用。

2、通过对平行线判定的探究,获得参与数学活动的体验,增强学习热情。

【重难点预测】\1、重点:平行线的判定及其运用;2、难点:用数学语言表达简单的说理过程。

一、课前准备及预习课前准备:1.如果a∥b,b∥c,那么。

理由是。

2.如图,请填空:①∠1与∠2是直线和直线被直线所截而成的角;②∠3与∠2是直线和直线被直线【所截而成的角;③∠2与∠4是直线和直线被直线所截而成的角。

3. 填空:经过直线外一点,_____ 一条直线与这条直线平行.预习内容:认真阅读教材第171页至第173页的内容,完成下述问题。

问题一:如果有a、b两条直线,如何判断它们是否平行问题二:按要求作图:用直尺和三角板过点P做已知直线a的平行线。

P ●(a二、课内探究探究点一:平行线的判定方法一活动1.如图1(1)所示,用活动木条相交成∠1,∠2,固定木条b、c,转动木条a.]问题:(1)如图1(2),在木条a转动的过程中,观察∠2的变化以及它与∠1的大小关系,你发现木条a与木条b的位置关系发生了什么变化(2)∠1与∠2的大小满足什么关系时,木条a与木条b平行活动2.我们以前已学过用直尺和三角尺过直线外一点画已知直线的平行线.如图2所示.问题:(1)画图过程中,∠1和∠2的大小关系?(2)直线a,b位置关系如何图2判定方法一:简单说成:。

几何语言:(如右图)∵()]12bac∴( ) 巩固练习1:1, 如图∠ 1=150 °,∠2=150°,a ∥b 吗2,如图∠C =61°,当∠ABE = 度时,BE ∥CD探究点2:平行线的判定方法二问题:如图,已知∠1=∠2,a 与b 平行吗为什么~判定方法二:简单说成: 。

几何语言:(如上图)∵ ( )∴ ( )巩固练习2:如右图,直线a 、b 被直线l 所截,已知∠1=115°,∠2=115°,直线a 、b 平行吗为什么—探究点3:平行线的判定方法三问题:如右图,直线a 、b 被直线c 所截,已知∠1+∠2=180°,直线a 、b 平行吗为什么判定方法三: :cab12A BCDE 12bla简单说成: 。

人教版七年级数学下册5.2.2平行线的判定 导学案

人教版七年级数学下册5.2.2平行线的判定 导学案

5.2.2《平行线的判定》导学案一、学习目标1、使学生进一步理解并掌握判定两条直线平行的方法;2、了解简单的逻辑推理过程.重点:判定两条直线平行方法的应用; 难点:简单的逻辑推理过程. 二、预习导学1、预习课本P13—P15页并完成以下练习2、判定两条直线平行的方法有哪些? 判定方法1:__________________________ 判定方法2:__________________________ 判定方法3:__________________________三、探究学习: 1、如图1(1)如果∠1=∠4,根据_______________,可得AB ∥CD (2) ∠1=∠2,根据_______________,可得AB ∥CD (3) 果∠1+∠3=1800,根据__________,可得AB ∥CD 2、如图2(1)如果∠1=∠D ,那么______∥_______ (2)如果∠1=∠B ,那么______∥_______ (3)如果∠A+∠B=1800,那么_____∥____ (4)如果∠A+∠D=1800,那么____∥____ 3、如图3(1) 直线AD 与BC 被直线AB 所截,∠1和∠2是 ,∠2和∠DAB 是 (2)∠5和∠6是直线 和直线 被直线 所截而形成的内错角;ACCDDE 11122233445566F图2A B CDEF12 3 4图1图3图4四、巩固测评: 1、如图10,,如果∠3=∠7,或______,那么___//___, 理由是____________;如果∠5=∠3,或_______,那么____//___, 理由是______________;如果∠2+ ∠5= ___ 或者_____,那___//__ 理由是__________. 2、如图(1)如果已知∠1=∠3,则可判定AB ∥______,其理由 是__________________;(2)如果已知∠4+∠5=180°,则可判定__//___,其理由 是__________________;(3)如果已知∠1+∠2=180°,则可判定___∥___,其理由 是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=_ _,因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________;(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________. 3、如图,若∠2=∠6,则______∥____ 如果∠3+∠4+∠5+∠6=180°那么__∥__, 如果∠9=_____,那么AD∥BC; 如果∠9=_____,那么AB∥CD.4、填注理由如图,已知:直线AB ,CD 被直线EF ,GH 所截,且∠1=∠2,求证:AB//CD °. 证明:∵∠1=∠2 ( ) 又∵∠2=∠3 ( ) ∴∠1=∠3 ( ) ∴AB∥CD ( ) 五、学习心得:9654321DCB A图11。

人教版七年级下册数学5.2.2平行线的判定导学案

人教版七年级下册数学5.2.2平行线的判定导学案

5.2.2 平行线的判断一、课前准备及预习1、课前准备:1.假如 a∥b,b∥c,那么。

理由是。

2.如图,请填空:①∠1 与∠2 是直线和直线被直线所截而成的角;②∠3 与∠2 是直线和直线被直线所截而成的角;③∠ 2 与∠ 4 是直线和直线被直线所截而成的角。

3.填空:经过直线外一点,_____一条直线与这条直线平行.问题一:假如有a、b 两条直线,如何判断它们能否平行?问题二:按要求作图:用直尺点 P 做已知直线 AB 的平行线。

P●A B二、课内研究研究点一:平行线的判断方法一判断方法一:简单说成:。

几何语言:(如上图 4)展现点 1:以以下图 1 ∵∠ 1=∠2,∴_______∥________()。

∵∠ 2=∠3,∴_______∥________()。

图1图2研究点 2:平行线的判断方法二问题2:如上图2,直线a、b 被直线l 所截,已知∠1=115°,∠2=115°,直线 a、b 平行吗?为何?判断方法二:简和单说三。

成:角几板何语言:(如上图 2)过第1页/共6页展现点 2:如图 3 ∵∠ 1=∠2,∴_______∥________()∵∠ 3=∠4,∴_______∥________()图3图 4研究点 3:平行线的判断方法三问题 3:如上图 4,直线 a、b 被直线l 所截,已知∠ 1+∠2=180°,直线 a、b平行吗?为何?判断方法三:简单说成:。

几何语言:(如上图)展现点3:以以下图,在四边形ABCD中,已知∠ B=60°,∠C=120°,AB 与 CD 平行吗?AD 与 BC 平行吗?讲堂小结第2页/共6页文字表达符号语言图形∵察看内容的(已知)选择,我本着∴a∥b先静后动,由 ()近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的观察内容。

随机察看也是不可少的,是相当风趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边察看,一边发问,兴趣很浓。

平行线的判定导学案

平行线的判定导学案

5.2.2 平行线的判定(1) 导学案学习目标:1.借助用直尺和三角板画平行线的过程,得出两直线平行的判定方法一“同位角相等,两直线平行”,进而推导出方法二“内错角相等,两直线平行”与方法三“同旁内角互补,两直线平行”。

2.理解掌握平行线的判定方法,并能运用它判定两直线的平行关系.3.培养识图能力,推理能力和有条理表达能力,发展空间观念。

学习重点:两直线平行的判定方法。

学习难点:运用判定方法来证明两直线的平行关系。

一、准备:[预习自学时请先用铅笔解答问题]1.如果a∥b ,b∥c ,那么______,理由是_______________________.2.如下图,已知四条直线AB、AC、DE、FG及所标示各角,请填空:①∠1与∠2是直线_____和直线____被直线_____所截而成的______角;②∠3与∠2是直线_____和直线____被直线_____所截而成的______角;③∠5与∠6是直线_____和直线____被直线_____所截而成的______角;④∠4与∠7是直线_____和直线____被直线_____所截而成的______角;⑤∠8与∠2是直线_____和直线____被直线_____所截而成的______角.3.仔细观察,下列图中有平行线吗?相信自己的眼睛吗?你该怎样说明这些直线是否平行呢?二、探究活动:1、思考·归纳①在实际生活中,都有哪些地方可以见到平行线?如: 铁轨、跑道、双杠、……如果这些直线不平行,后果怎样?CE1 3 42 ABDFG[认识]判定两条直线是否平行,在实际生活中具有极其重要的应用价值。

②什么是平行线?答: [我们可以利用这个定义来判定两条直线是否平行!] ③还记得画平行线的方法吗?画画看[利用直尺和三角尺] 任意画右边直线的平行线:④在作平行线的过程中,两种工具一静一动,这其中的道理你能明白吗? 静的直尺是在固定一条直线; 动的三角尺能确保一对_________相等. (图中的三线八角形成的条件是什么?) [归纳]既然这就是作平行线的方法,那由 此作出来的就一定是平行线.因此,我们就得出一种判定平行线的方法:[判定1]两条直线被第三条直线所截,若同位角相等,则这两条直线平行. 简述为:_____________________________________ 2、例题·交流例1、如图,直线AB 与CD 被直线EF 所截, ∠1=50°, ∠2=50°.问:AB 与CD 平行吗? 证明:例2数学走近生活:三、初步训练:1.如右图,已知∠C=60°,则当∠ABE=________时, 可判定___∥___(理由是: )2.根据下图填空: ①例: ∵∠A=∠1∴AB ∥DC (同位角相等,两直线平行) ②∵∠2=∠4∴____∥____( 同位角相等,两直线平行 )A B CDEF12C③∵∠3=______∴____∥BC( )④∵∠A=______∴____∥EF( )⑤∵AG∥EF,BC∥EF∴____∥____ ( )3.在第2题图中, ∠A与∠3是一对__________,其形成条件是( ).如果知道∠A=∠3,也能判定AB∥DC.证明过程如下:∵∠1=∠3( )∠A=∠3(已知)∴∠A=∠1(等量代换)∴AB∥DC( )[归纳]由此我们可以得出两直线平行的判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简述为:______________________________________4.(与第3题类似地) 在第2题图中, ∠A与∠4是一对_____________, 其形成条件是( ).如果知道∠A+∠4=180°,也能判定AB∥DC.证明过程如下:∵∠1+∠4=180°( )∠A+∠4=180°(已知)∴∠A=∠1(等量代换)∴AB∥DC( )[归纳]平行线的判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简述为:_______________________________________四、提升平台:1.如图,推理填空:①∵∠1=∠2∴____∥____( ) ②∵∠A=∠3∴____∥____( )321D CBA③∵∠A+∠ABC=180°∴____∥____( ) 2. 如图,已知∠1=030,∠B=060,AB ⊥AC. ①求证:AD ∥BC②由已知条件,你能证明AB ∥DC 吗?答:____________③添加一个条件:_________________,结合已知条件,求证:AB ∥DC. 五、学习小结: 本节课我们学习了:六、教学后记 教后记:(1)对本节课教学做个自我评价: (2)请记录下这节课你上得最精彩的地方 : (3)请总结出这节课你认为有待改进地方:1DCBA。

5.2.2平行线的判定导学案

5.2.2平行线的判定导学案

5.2.2 平行线的判定【学习目标】1.掌握平行线的判定,并能应用这些知识判断两条直线是否平行,2.培养初步的推理能力. 【学习过程】一、预习案还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、导学案探索一:请同学们仔细阅读课本P171~173页“平行线的判定”,你知道在画平行线这一过程中,三角板所起的作用吗?由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以) 判定方法1 几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD由判定方法1,结合对顶角的性质,我们可以得到: 判定方法2 几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD由判定方法1,结合邻补角的性质,我们可以得到: 判定方法3 几何语言表述为:∵ ∠___+∠___=180°∴ AB ∥CD思考;1.判定方法一怎样探索出来的?2. 怎样用判定方法一推出判定方法二?如图由∠1=∠2,怎样推出a ∥b ?写出推理过程:3. 怎样推出判定方法三?你有几种方法?写出推理过程:练习一:(1题) (2题) (3题)1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____. 若∠1=∠3,则______∥______,根据是_____ ____. 2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___ 3.根据图3完成下列填空(括号内填写定理或公理) (1)∵∠1=∠4(已知)83625147FE DCBAC123 4 5DA Bc∴ ∥ ( ) (2)∵∠ABC +∠ =180°(已知)∴AB ∥CD ( ) (3)∵∠ =∠ (已知)∴AD ∥BC ( ) (4)∵∠5=∠ (已知)∴AB ∥CD ( )探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a ∥b ,你能说明是什么道理吗? 结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:在同一平面内,垂直于同一直线的两直线平行. 如图,几何语言表述为:∵a ⊥2l ,b ⊥2l ∴练习二:1.如右图所示,AB ⊥BC ,BC ⊥CD ,BF 和CE 是射线,并且∠1=∠2, 试说明BF ∥CE .三、展示案1.如图1所示,在下列条件中,不能判断L 1∥L 2的是().A .∠1=∠3B .∠2=∠3C .∠4+∠5=180°D .∠2+∠4=180°2.如图2所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系? 3.如图所示,已知∠OEB=130°,∠FOD=25°, OF 平分∠EOD ,试说明AB ∥CD .四、本节课你有哪些收获?1 2ab 3c图1图2。

人教版数学七年级下册 5.2.2 平行线的判定 导学案

人教版数学七年级下册   5.2.2 平行线的判定 导学案

人教版七年级数学下册导学案 第五章 相交线与平行线 5.2.2 平行线的判定【学习目标】1.正确理解平行线的三种判定方法;2.初步应用平行线的判定方法进行简单的推理和计算。

【课前预习】1.下列说法不正确的是( ) A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行2.在同一平面内,不重合的三条直线a 、b 、c 中,如果a b ⊥,b c ⊥,那么a 与c 的位置关系是( ) A .垂直 B .平行 C .相交D .不能确定3.下列说法错误的是( )A .过任意一点P 可作已知直线m 的一条平行线B .同一平面内的两条不相交的直线是平行线C .过直线外一点只能画一条直线与已知直线平行D .平行于同一条直线的两条直线平行4.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( ) A .只有①B .只有②C .①②都正确D .①②都不正确5.下列说法错误的是( ) A .对顶角一定相等B .在同一平面内,有且只有一条直线和已知直线垂直C .同位角相等,两直线平行D .如果两个角的和是90,那么称这两个角互为余角 6.下列命题中,是真命题的有( )①同位角相等;①对顶角相等;①同一平面内,如果直线l 1∥l 2,直线l 2∥l 3,那么l 1∥l 3;①同一平面内,如果直线l 1⊥l 2,直线l 2⊥l 3,那么l 1∥l 3. A .0个B .1个C .2个D .3个7.对于同一平面内的三条直线a ,b ,c ,给出下列5个论断:① //a b ; ② //b c ; ③ a b ⊥ ; ④ //a c ;⑤ a c ⊥ ;以其中两个论断作为题设,一个论断作为结论组成命题,下列命题不正确的是( ) A .若①②,则④B .若①②,则⑤C .若②④,则①D .若③⑤,则②8.过直线l 外一点P 作直线l 的平行线,下列尺规作图中错误的是( )A .B .C .D .9. 如图所示,已知直线a ,b ,c ,在下列条件中,能够判定a①b 的是( )A .①1=①2B .①2=①3C .①3=①4D .①2=①410.如图,下列判断正确的是:( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2,则AB ∥CDC .若∠A=∠3,则AD ∥BCD .若∠3+∠DAB=180° ,则AB ∥CD【学习探究】阅读课本,完成下列问题1、 经过直线外一点,有且________与这条直线平行.2、如果a ∥b ,b ∥c ,那么______,理由是平行于同一条直线的两条直线_____.3、如图1,已知四条直线AB 、AC 、DE 、FG 及所标示各角,请填空: ①∠1与∠2是直线_____和直线____被直线_____所截而成的______角; ②∠3与∠2是直线_____和直线____被直线_____所截而成的______角; ③∠5与∠6是直线_____和直线____被直线_____所截而成的______角; ④∠4与∠7是直线_____和直线____被直线_____所截而成的______角; ⑤∠8与∠2是直线_____和直线____被直线_____所截而成的______角.4、同一平面内,如果两条直线__________,那么这两条直线平行。

5.2.2平行线的判定(2)导学案

5.2.2平行线的判定(2)导学案

课题5.2.2平行线的判定(2)导学案课时1 课型新授课 授课人 授课时间 学习目标知识与能力:总结平行线的判定方法,并能解决一些简单问题. 过程与方法:通过简单说理,培养推理能力。

情感态度与价值观:初步了解转化的数学思想方法。

学习重点:判定两条直线平行,培养推理能力. 学习难点:推理过程的理解 一、课前预习 (一)知识链接运用“三线八角”判断两直线平行的方法:方法1:_________________________. 方法2:_____________________方法3:_________________________________. (二)自主学习1.细读P15页中”探究”说明:遇到一个新问题时常常把它_________(或___________)的问题.这也是一种很重要的数学思想---转化的思想.2.认真研读P15页例题,填写理由部分中”为什么”,把理由部分改写成推理形式(也可自己用其他方法写出):3、如图,如果b ⊥a ,c ⊥a ,那么b ∥c.推理过程如下:∵b ⊥a ,c ⊥a(_________)∴∠1=∠2=90°(____________________) ∴______∥______(______________________).4. 总结直线平行的判定方法 方法1:若a∥b,b∥c,则a∥c。

即两条直线都与第三条直线平行,这两条直线也互相平行。

方法2:如图1,若∠1=∠3,则a∥c。

即 。

方法3:如图1,若______,则____即 。

方法4:如图1,若______,则_____即 __。

方法5:如图2,若a⊥b,a⊥c,则b∥c。

即在同一平面内,垂直于同一条直线的两条直线互相平行。

ab c┐1 ┐2cPba4321图1cba21图2DCBA21三、应用提升1、练习:课本16页练习3题,习题5、8、9、10、12 2.如图3,填空:(1)如果∠1=∠2,那么_∥__,理由是 _______________,两直线平行; (2)如果∠2=∠3,那么____∥___,理由是_______________,两直线平行; (3)如果∠1+∠4=180°,那么___∥___,理由是_________,两直线平行; (4)如果∠3+∠4=180°,那么___∥___,理由是_________,两直线平行. 3.如图4,如果∠B=∠___,那么DE ∥BC ,理由是同位角相等,两直线平行. 4.如图5,如果∠C=∠_____,那么DE ∥BC ,理由是内错角相等,两直线平行. 5. 如图6,填空:(1)如果∠A=∠______,那么AD ∥BC,理由是同位角相等,两直线平行. (2)如果∠C=∠_______,那么DC ∥AB ,理由是内错角相等,两直线平行; (3)如果∠A+∠D=180°,那么______∥______,理由是同旁内角互补,两直线平行;(4)如果∠A+∠ABC=180°,那么______∥______,理由是同旁内角互补,两直线平行6、 如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC∥AB.7、如图所示直线a,b 被直线c 所截,现给出下列四个条件: ①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b 的条件序号为( ) A.①② B.①③ C.①④ D.③④8.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.4321d cb a如图3E DCBA如图4 ACBED如图5ADBCE如图6(1)由∠CBE=∠A 可以判断______∥______,根据是____________________ (2)由∠CBE=∠C 可以判断______∥______,根据是____________________.四、学习小结 1、我的收获:2、我的困惑:五、课后巩固: 书面作业:课本第17页4、6题 教学反思:8765cba 3412第7题ED C B A第8题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线
5.2 平行线及其判定
5.2.2平行线的判定
【教学目标】
知识与技能
1.会用判定方法1得出判定方法2和3,会用判定方法1.
2.3进行简单推理。

会用判定方法1,2得出方法3
2.识记常用的平行线的判定方法。

过程与方法
1.整理并体会课文中“遇到一个新问题时,常常把它转化为已知的(或已解决的)问题。

”的思想方法。

2.在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。

情感、态度与价值观
让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。

【教学重难点】
重点:掌握平行的判定方法。

难点:文字语言,图形语言,符号语言之间的互译和“转化”思想的理解
【导学过程】
【知识回顾】
经过直线外一点,_____ ___与这条直线平行.
【情景导入】
【新知探究】
探究一、平行线判定方法1:
1.能否由平行线的画法找到判断两直线平行的条件?
2
1
C
4
3
b
a
2.如图,把直尺的一边作为第三条直线,在画平行线的过程中,始终保持什么角相等? 由此你能猜想两条直线平行的依据吗?过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?
平行线判定方法1:
简单说成:
你能用符号语言表述平行线判定公理吗?
∵ ( ) ∴ ( ) 3、如图∵∠1=∠2,
∴_______∥________( )。

∵∠2=∠3,
∴_______∥________( )。

探究二、平行线判定方法2、3:
1、两条直线被第三条直线所截形成“三线八角”,同时得到同位角、内错角和同旁内角,由同位角相等可以判定两直线平行,那么,能否利用内错角和同旁内角来判定两直线平行呢?
2、如图
(1) ∠1=∠2时,a 与b 是什么关系? (2) ∠2与∠3是什么位置关系的角? (3)当∠2=∠3时, a 与b 平行么?
3.通过以上你能总结出什么结论?
(试着写出推理过程)
判定方法2: 应用格式:。

∵∠2=∠3(已知)
简单说成: 。

∴a ∥b (内错角相等,两直线平行)
1 2
a b c
3 4
4.将上题中条件改变为∠2+∠4=180°,能得到a∥b吗?(试写出推理过程)
判定方法3:应用格式:。

∵∠2+∠4=180°(已知)
简单说成:。

∴a∥b(同旁内角互补,两直线平行)
探究三、例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
解:
你还能利用其他方法说明b∥c吗?
【知识梳理】
本节课你学到了什么?有什么收获和体会?还有什么困惑?
【随堂练习】
1、如图,若∠A=∠3,则∥;若∠2=∠E,则∥;
若∠+∠= 180°,则∥.
2、已知:AE平分∠BAC,CE平分∠ACD,∠1与∠2互余,AB∥CD吗?说明理由.
3、已知:如图,,,且. 求证:EC∥DF.。

相关文档
最新文档